
Range Flow in Varying Illumination:
Algorithms and Comparisons

Tobias Schuchert, Til Aach, Senior Member, IEEE, and Hanno Scharr

Abstract—We extend estimation of range flow to handle brightness changes in image data caused by inhomogeneous illumination.

Standard range flow computes 3D velocity fields using both range and intensity image sequences. Toward this end, range flow

estimation combines a depth change model with a brightness constancy model. However, local brightness is generally not preserved

when object surfaces rotate relative to the camera or the light sources, or when surfaces move in inhomogeneous illumination. We

describe and investigate different approaches to handle such brightness changes. A straightforward approach is to prefilter the

intensity data such that brightness changes are suppressed, for instance, by a highpass or a homomorphic filter. Such prefiltering may,

though, reduce the signal-to-noise ratio. An alternative novel approach is to replace the brightness constancy model by 1) a gradient

constancy model, or 2) by a combination of gradient and brightness constancy constraints used earlier successfully for optical flow, or

3) by a physics-based brightness change model. In performance tests, the standard version and the novel versions of range flow

estimation are investigated using prefiltered or nonprefiltered synthetic data with available ground truth. Furthermore, the influences of

additive Gaussian noise and simulated shot noise are investigated. Finally, we compare all range flow estimators on real data.

Index Terms—Range flow, illumination changes, brightness constancy constraint, prefiltering, homomorphic filter, gradient constancy,

structure tensor, 3D motion estimation.

Ç

1 INTRODUCTION

IN this paper, the importance of adequate brightness
models in 3D velocity field estimation by range flow is

investigated. Brightness modeling is an essential compo-
nent in standard motion estimation approaches. It may
provide explicit equations describing brightness con-
straints, and lead to methods such as prefiltering, dis-
cretizations of the constraint equations by convolution
filters, and finally, a parameter estimation scheme calculat-
ing velocities from input data.

The motivation of this work is the estimation of plant
growth. Growth is one of the most important processes in
plant life and therefore of high botanical interest. However,
this paper does not focus on a best estimation system or
method for this application; rather, it discusses the influence
of brightness changes on 3D motion estimation, which
frequently occur in such botanical as well as in many other
types of data, such as outdoor image sequences.

Estimation of 3D motion fields was (and still is) the
subject of considerable research efforts. Range flow estima-
tion [2], [3] uses solely data from range sensors, whereas

Spies et al. [4], [1] incorporate information from both range
and image sensors. Reconstruction of scene flow and 3D
structure from the optical flow observed in several cameras
has been proposed by [5], [6], [7]. These scene flow
approaches and most optical flow-based approaches [8],
[9] imply brightness constancy and are therefore not
suitable if substantial brightness changes are present in a
sequence (see Fig. 1, upper half of the shown leaf). For
optical flow estimation, less brightness sensitive models,
e.g., constancy of the intensity gradient vector [10], [11]
have been proposed, as well as physics-based brightness
change models [12], [13]. The physics-based models pre-
sented in [13] have recently been adapted and extended to
moving surfaces under inhomogeneous illumination [14].
Also, suppressing brightness changes by appropriate
prefiltering of the intensity data has been shown to be very
efficient. One of the simplest approaches is to apply a
spatial high-pass filter to minimize the effect of global
brightness inhomogeneities. Toth et al. [15] show that using
homomorphic prefilters [16] can highly improve motion
detection in image sequences with inhomogeneous illumi-
nation. More recent approaches for scene flow estimation
use statistical similarity measures [17], a gradient constancy
constraint [18], or probability distributions for optical flow
and disparity [19] to make scene flow estimation more
robust against brightness changes.

Our contribution. The contribution of this paper is
twofold: On the one hand, range flow estimation, as
presented by Spies et al. [1], is extended to cope with
inhomogeneous illumination. To this end, different techni-
ques known from optical flow estimation are introduced
into the range flow constraints, namely, 1) gradient
constancy [10], 2) combining of brightness and gradient
constancy [11], and 3) physics-based brightness modeling
[14]. On the other hand, the performance of the standard
and the novel range flow models is investigated. The
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models are tested on two kinds of synthetic data sets with
known ground truth. These sequences are either used with
or without suppression of illumination inhomogeneities by
high-pass or homomorphic filtering. A 3D motion estima-
tion result for a “real” image sequence from a botanical
experiment on leaf growth is shown in Fig. 1.

Our experiments focus on the effects of brightness models
on 3D motion estimation and are therefore especially
designed to reveal their influence. For quantitative experi-
ments we selected image areas without occlusions, inner
borders, holes, or aperture problems. This affects the choice
of the parameter estimation scheme used to finally calculate
the 3D motion. For optical flow estimation, estimators such
as local least squares [20], local total least squares [21], or
variational approaches [22] are often applied. Occlusions
and other model violations are typically handled using
robust error norms instead of plain least squares [23], [24].
Variational estimators allow us to incorporate additional
prior knowledge by, e.g., regularization terms, which tend to
close holes and compensate for the aperture problems. Our
study, however, seeks to shed light on model violations; thus
no robust estimators handling occlusion and no variational
estimators regularizing data are employed. Instead, we apply
local total least squares estimation on a neighborhood to

avoid compensation of model violations by, say, regulariza-
tion. In a final system, robust and/or variational estimators
may, of course, be used if needed.

With respect to our earlier work in [25], this paper provides
a more detailed derivation of the physics-based brightness
model, and deeper analyses of 1) prefilters, 2) prefilters and
models for additive Gaussian noise and intensity dependent
noise, and 3) the influence of the neighborhood size. More-
over, more experiments on synthetic data and one additional
experiment on real data are supplied.

Paper organization. In Section 2, we derive the differ-
ential range flow model. Then, different prefilters and
intensity constraints for range flow are presented in Section 3.
In Section 4, we briefly review parameter estimation
methods, followed by experiments on synthetic and real
data in Section 5.

2 RANGE FLOW

Range flow is based on two motion constraints: One
pertains to the range data and the other one to the intensity
data. Following [1], we briefly review these two constraints.

2.1 The Range Constraint

Let a surface be described by its depth Z ¼ ZðX;Y ; tÞ as a
function of space and time, where X, Y , and Z are spatial
coordinates and t denotes time. Without loss of generality,
we define X and Y to be aligned with the camera sensor
coordinates x and y, respectively. The Z-axis is the optical
axis of the camera, which is assumed as projective. The total
derivative of Z with respect to time then yields the so-called
range flow motion constraint equation

dZ

dt
¼ @XZ

dX

dt
þ @Y Z

dY

dt
þ @tZ; ð1Þ

where partial derivatives are denoted by @XZ :¼ @Z
@X and so

on. The range flow is now defined as f ¼ ½U; V ;W �T:¼
½dXdt ; dYdt ; dZdt �

T. Some range sensors, like those used in [4], and
3D structure from motion algorithms (cf. [14]) produce
range data as data sets X ¼ Xðx; y; tÞ, Y ¼ Y ðx; y; tÞ, and
Z ¼ Zðx; y; tÞ over the sensor coordinates x, y, and time t.
Rewriting the range flow constraint (1) as in [4] allows us to
compute partial derivatives directly on the sensor grid
rather than in world coordinates, thus avoiding interpola-
tion artifacts and expensive preprocessing steps. Range
flow, i.e., the total derivatives of the world coordinates with
respect to time, may then be calculated as

U ¼ dX
dt
¼ @xX _xþ @yX _yþ @tX; ð2Þ

V ¼ dY
dt
¼ @xY _xþ @yY _yþ @tY ; ð3Þ

W ¼ dZ
dt
¼ @xZ _xþ @yZ _yþ @tZ; ð4Þ

where total derivatives with respect to time are indicated by
a dot. Not being interested in the changes on the sensor
grid, i.e., the optical flow, _x and _y in (2)-(4) can be
eliminated. This yields
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Fig. 1. Castor bean plant leaf. (a) Images of the input sequence, with
strong brightness changes occurring especially in the upper half of the
central leaf. (b) Estimated motion vector fields of two range flow models,
with and without 3D structure shown. Top two images: standard range
flow [1]. Bottom two images: proposed TAYLOR model.



@ðZ; Y Þ
@ðx; yÞ U þ

@ðX;ZÞ
@ðx; yÞ V þ

@ðY ;XÞ
@ðx; yÞ W þ

@ðX;Y ; ZÞ
@ðx; y; tÞ ¼ 0; ð5Þ

where

@ðZ; Y Þ
@ðx; yÞ ¼

@xZ @xY
@yZ @yY

����
���� ¼ @xZ@yY � @yZ@xY ð6Þ

is the Jacobian of Z; Y with respect to x; y, and so on.

Equation (5) depends only on derivatives in sensor

coordinates, and can be calculated easily using derivative

kernels. Assuming aligned world and sensor coordinate

systems (@yX ¼ @xY ¼ 0), (5) reduces to

ð@yY @xZÞU þ ð@xX@yZÞV � ð@xX@yY ÞW
þ ð@xX@yY @tZ � @xX@tY @yZ � @tX@yY @xZÞ ¼ 0 :

ð7Þ

2.2 The Intensity Constraint

The range flow constraint pertains solely to range data, and

the full flow can only be estimated where three or more

distinct depth planes intersect. Plant surfaces are often

nearly planar, smooth surfaces resulting in aperture

problems almost everywhere when using the range flow

constraint only. As proposed in [4], intensity data should

therefore be additionally incorporated. Let the intensity of a

point remain constant over the observation time interval.

Then, the so-called brightness constancy constraint equa-

tion often used for optical flow estimation (see, e.g., [8])

holds. Linearization of this constraint yields

dI

dt
¼ @xI _xþ @yI _yþ @tI ¼ 0: ð8Þ

Eliminating optical flow ð _x; _yÞ using (2) and (3) yields

@ðI; Y Þ
@ðx; yÞ U þ

@ðX; IÞ
@ðx; yÞ V þ

@ðX;Y ; IÞ
@ðx; y; tÞ ¼ 0: ð9Þ

The estimated range flow f ¼ ½U; V ;W �T has to fulfill both

the range flow constraint (5) and the intensity constraint (9).

The intensity constraint is more reliable to provide point-to-

point correspondences and therefore often solves the

aperture problem. Together with the range constraint, it

allows us to solve for f in places where the range constraint

alone is insufficient. The combination of range and intensity

constraints and the estimation of f via total least squares is

described in Section 4.

3 HANDLING BRIGHTNESS CHANGES

Range flow estimation, as presented in the previous section,

yields good results for objects under homogeneous, diffuse

illumination. Problems occur for directed, inhomogeneous

illumination because the intensity constraint (9) is not

sufficiently well satisfied anymore. For an illumination-

independent range sensor, such as a laser range sensor, the

range constraint is still fulfilled. However, range data

estimated from a structure from motion approach may also

be corrupted. In the next section, different approaches to

handle illumination changes are presented. Three of these

lead to constraints novel in range flow estimation.

3.1 Prefiltering

Prefiltering is a well-known technique for illumination
change suppression, making the image data more or less
illumination invariant.

Temporal and/or spatial high-pass filtering approxi-
mately eliminates slow brightness changes in the data.
However, faster illumination changes in both the spatial
and temporal domains still remain present in the data. In our
experiments, we evaluate high-pass filtering according to

~I ¼ ð1l�G�preÞ � I ð10Þ

where G�pre denotes a spatial Gaussian filter (see, e.g., [26])
with standard deviation �pre, and where 1l is an identity
filter whose impulse response is the unit impulse, and
where � is a convolution.

A more sophisticated approach uses homomorphic
filtering [16], [15]. Following [15], we briefly derive a
straightfoward implementation of homomorphic filtering,
which proved to be very successful in suppressing
illumination changes. Homomorphic filtering is based on
modeling the image intensity Iðx; yÞ as being determined by
illumination Lðx; yÞ reflected toward the camera by the
surfaces of the objects present in the scene. The reflectance
of the surfaces is denoted by Rðx; yÞ. Note that in this
model, both the illumination and the object reflectances are
already projected onto the image plane, i.e., they depend on
the sensor coordinates x; y. For Lambertian surfaces, the
image intensity can thus be modeled by

Iðx; yÞ / Lðx; yÞ � Rðx; yÞ: ð11Þ

The structure of the scene is represented by the reflectance
Rðx; yÞ, from which motion therefore needs to be estimated.
A logarithmic point transform converts the multiplicative
relation1 between illumination L and reflectance R into an
additive one according to

logðIðx; yÞÞ / logðLðx; yÞÞ þ logðRðx; yÞÞ: ð12Þ

In a rough approximation, logðLÞ and logðRÞ may be
considered separated in frequency domain as Lðx; yÞ is
assumed to be low-frequent (such that even its harmonics
generated by the nonlinear point transform can be ne-
glected), while R, and hence logðRÞ, is regarded as
predominantly high-frequent such that it can be extracted
by a high-pass filter. In practice, though, the two components
overlap. The design of the high-pass filter thus implies a
trade-off between suppressing brightness changes and loss
of relevant signal. After high-pass filtering, exponentiation
returns an approximation of the sought reflectance compo-
nent. Note that the nonlinear log-operation turns the camera
noise, which, neglecting quantum noise, is often modeled as
being signal-independent, into signal-dependent noise,
which may affect motion parameter estimation. Fig. 2
illustrates the effects of the proposed prefilters on a 2D
signal Iðx; tÞ with exponential temporal brightness changes.
Results for linear high-pass and homomorphic prefiltering of
the signal for noise-free data (top), for added Gaussian noise
(middle), and for intensity-dependent noise (bottom) are
shown (see Section 5 for details on intensity-dependent
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1. Note that this multiplicative relation is also preserved for cameras
with a nonlinear conversion from image irradiance to intensity, if the
nonlinearity follows a �-curve.



noise). Evidently, homomorphic prefiltering removes all

brightness changes for noise-free data, whereas high-pass

prefiltering only removes signal offset. Fig. 2f shows how the

nonlinear log-operation leads to increased noise in regions

with small intensity values, especially for t < 0. If the noise is

intensity-dependent like shot noise, homomorphic prefilter-

ing may reduce this effect (Fig. 2i). A general possibility to

reduce the signal dependence of shot or quantum noise is to

subject the data first to a square-root transform [27]. We will,

though, not consider this any further here.

3.2 The Gradient Constancy Constraint

The intensity constraint (9) can be replaced by an

illumination-invariant or illumination-insensitive con-

straint, which can be applied instead of or together with

prefiltering the data.

For the estimation of optical flow, a successful such

constraint is to assume that the 2D image intensity gradient

remains constant along the motion trajectory [11]. As

gradient computation corresponds to derivative filtering,

which is a high-pass operation, this constraint therefore

attenuates illumination changes, as discussed in Section 3.1.

This leads to two linearized gradient constancy constraints

dIx
dt
¼ @xIx _xþ @yIx _yþ @tIx ¼ 0; ð13Þ

dIy
dt
¼ @xIy _xþ @yIy _yþ @tIy ¼ 0; ð14Þ
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Fig. 2. Sine wave with increasing illumination, parameter a1 ¼ 0:1, a1;x ¼ 0, (left) without prefilter, (center) after high-pass, and (right) homomorphic

prefiltering (low-pass with �pre ¼ 35). Noise added: (top) no noise, (middle) additive Gaussian noise (�n ¼ 0:5), and (bottom) shot noise (k ¼ 0:5, see
(33)).



where lower indices indicate partial derivatives, e.g.,
Ix :¼ @xI. As already done for the derivation of (9), the
optical flow _x; _y is eliminated using (2) and (3), yielding

@ðIx; Y Þ
@ðx; yÞ U þ

@ðX; IxÞ
@ðx; yÞ V þ

@ðX;Y ; IxÞ
@ðx; y; tÞ ¼ 0; ð15Þ

@ðIy; Y Þ
@ðx; yÞ U þ

@ðX; IyÞ
@ðx; yÞ V þ

@ðX;Y ; IyÞ
@ðx; y; tÞ ¼ 0: ð16Þ

3.3 Combined Intensity and Gradient Constancy
Constraint

A known drawback of the gradient constancy constraint is
that it noticeably reduces structure in the images and leads
to aperture problems. Using both the intensity constraint
and the gradient constraint simultaneously reduces this
effect in optical flow estimation [11]. Doing so leads to three
constraint equations, i.e., (9), (15), and (16), which should be
satisfied simultaneously by the horizontal and vertical
range flow components U and V .

3.4 A Physics-Based Brightness Change Model

A different approach to handling brightness changes is to
model these explicitly and to then estimate both optical flow
and brightness change parameters based on this model.
Haußecker and Fleet [13] proposed a generalized formula-
tion of optical flow estimation based on models of bright-
ness variation that are caused by time-dependent physical
processes. Brightness changes along a temporal trajectory
xðtÞ ¼ ðxðtÞ; yðtÞÞT. This is described by a parameterized
function hI

IðxðtÞ; tÞ ¼ hIðI0; t; aÞ; ð17Þ

where I0 ¼ Iðxð0Þ; 0Þ denotes image intensity at time t ¼ 0

and a ¼ ½a1; . . . ; an�T contains n brightness change para-

meters. Taking the total derivative on both sides yields

@xI _xþ @yI _yþ @tI ¼ _hIðI0; t; aÞ: ð18Þ

Assuming brightness constancy, i.e., hIðI0; t; aÞ ¼ c, (18)
reduces to (8). Fig. 3a shows constant, linear, and nonlinear
changes of intensity due to brightness changes. Given a
physical model h for brightness changes, both the optical
flow ð _x; _yÞ and the parameter vector a need to be estimated.
Several time-dependent brightness change models are
proposed in [13], i.e., changing surface orientation, motion
of the illuminant, and physical models of heat transport in

infrared images. We use the brightness change model
presented in [14], which describes spatially-varying time-
dependent illumination changes caused by directed, inho-
mogeneous illumination and changing surface orientation.
Fig. 3b illustrates spatially-varying intensity changes in a
neighborhood �. �X and �Y are local coordinates of �. This
model is also able to describe illumination by spotlights,
whereas the models presented in [13] assume that the
intensity change of pixels is constant over a local neighbor-
hood. Following [14], the brightness change function is set to

hIðI0; t; aÞ ¼ I0 exp hð�X;�Y ; t; aÞð Þ: ð19Þ

The incident irradiance caused by the moving illuminant is
assumed to be spatially inhomogeneous. It therefore
changes not only according to a time-dependent parameter,
but varies also smoothly in space. Approximating these
brightness changes by a second order Taylor series, and
with the notation

a ¼ ½a1; a1;x; a1;y; a2; a2;x; a2;y�T; ð20Þ

this yields

hð�X;�Y ; t; aÞ :¼
X2

i¼1

ai þ ai;x�X þ ai;y�Y
� �

ti ð21Þ

and its temporal derivative is

_hð�X;�Y ; t; aÞ ¼
X2

i¼1

i ai þ ai;x�X þ ai;y�Y
� �

ti�1: ð22Þ

As shown in [14], we may drop a2;x and a2;y as these have only
a negligible effect on the estimation. Similarly to Section 2.2,
we obtain the total differential

dI

dt
¼ @xIxþ @yI _yþ @tI ¼ I _hð�X;�Y ; t; aÞ ð23Þ

where we, as before, eliminate the optical flow ð _x; _yÞ using
(2) and (3), leading to

@ðI; Y Þ
@ðx; yÞ U þ

@ðX; IÞ
@ðx; yÞ V þ

@ðX;Y ; IÞ
@ðx; y; tÞ

� Ia1 � Ia1;x�X � Ia1;y�Y � 2Ia2t ¼ 0:

ð24Þ

4 ESTIMATION OF MOTION AND BRIGHTNESS

PARAMETERS

So far, we have described modeling and prefiltering of the
data. Estimating the 3D motion from the input data then
corresponds to fitting the selected model to the original or,
if applicable, prefiltered data. The parameters to be
estimated comprise the motion parameters U , V , W for all
models and, for the physics-based brightness change model
from Section 3.4, the brightness change parameters
a1; a1;x; a1;y; a2 in the Taylor series (21).

To estimate parameters within a total least-squares
framework, we closely follow [1]. The range constraint (7)
yields for every pixel an equation of the form dT

rcp ¼ 0 with

drc ¼
@ Z; Yð Þ
@ x; yð Þ ;

@ X;Zð Þ
@ x; yð Þ ;

@ Y ;Xð Þ
@ x; yð Þ ;

@ X; Y ; Zð Þ
@ x; y; tð Þ

� �T

ð25Þ
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Fig. 3. (a) Change of intensity values caused by brightness changes (cf.
[13]) and (b) temporal intensity changes caused by illumination changes
within a spatial neighborhood with local 3D coordinates �X.



and parameter vector

p ¼ U; V ;W; 1½ �T: ð26Þ

To solve this equation which contains three unknowns, we

assume that, within a local neighborhood �, one parameter

vector p solves all equations up to an error e. Minimizing

the weighted L2-norm of the error e yields

kek2 ¼ pTJrcp ¼
!

min; ð27Þ

with structure tensor Jrc ¼W � ðdrcdT
rcÞ and an averaging

filter W which determines the neighborhood �. As
described in Sections 2.2, 3.2, 3.3, and 3.4, we have more
than one constraint for the U and V components of the range
flow. In the same way as expressing the range constraint by
dT
rcp ¼ 0, the intensity constraint (9) and the gradient

constancy constraints (15) and (16) may be expressed by
dT
Qp ¼ 0, where dQ is computed from the observed data

according to

dQ ¼
@ Q; Yð Þ
@ x; yð Þ ;

@ X;Qð Þ
@ x; yð Þ ; 0;

@ X; Y ;Qð Þ
@ x; y; tð Þ

� �T

; ð28Þ

with Q 2 fI; Ix; Iyg selected as appropriate. We adapt all
constraints to identical dimensions by inserting zeros at
those positions into the data vector d, which correspond to
positions of parameters in the parameter vector p which are
not part of the respective constraint. In particular, the
physics-based brightness change model in Section 3.4
contains motion and brightness change parameters, thus
leading to the enlarged parameter vector

p ¼ ½U; V ;W; 1; aT�T: ð29Þ

The data vectors for both the range constraint and the
brightness change constraint hence have to be enlarged
correspondingly by appropriate insertion of zeros.

As shown in [1], combining the different constraints
yields a new structure tensor which is simply the weighted
sum of the tensor Jrc from the range constraint (27), and the
tensors Ji, i ¼ 1; . . . ; 4, from the intensity-dependent con-
straints (9), (15), (16), and (24). With the weights �i, the
overall tensor thus is

J ¼ Jrc þ
X4

i¼1

�iJi: ð30Þ

The weights �i may even be used to switch between the
models and to account for different signal-to-noise-ratios in
the structure tensors. Furthermore, the data channels
should be scaled to the same mean and variance before
they are combined.

The optimal estimate of the sought parameter vector is
then given by the eigenvector b corresponding to the lowest
eigenvalue of J. The lowest eigenvalue can be regarded as an
error measure, which vanishes for an error-free estimate. As
the eigenvector is only defined up to a scaling factor, the range
flow is finally computed by the normalization (see (26))

U
V
W

0
@

1
A ¼ 1

b4

b1

b2

b3

0
@

1
A: ð31Þ

5 EXPERIMENTS

The models compared are combinations of the range
constraint with

1. the intensity constancy constraint (9), i.e., �2 ¼ �3 ¼
�4 ¼ 0 (INT),

2. the gradient constancy constraint (15) and (16), i.e.,
�1 ¼ �4 ¼ 0 (GRAD),

3. the combined intensity and gradient constancy con-
straint (9), (15), and (16), i.e., �4 ¼ 0 (INTGRAD), and

4. the intensity constraint with modeling of brightness
changes by Taylor series (24), i.e., �1 ¼ �2 ¼ �3 ¼ 0
(TAYLOR).

Model INT without prefiltering is the original range flow as
introduced by Spies et al. [1]. We investigate the influence of
temporal and spatial-varying temporal brightness changes
for noise-free input sequences as well as for data corrupted
by additive Gaussian noise or by intensity-dependent noise.
Furthermore, accuracy of the 3D motion estimates is
evaluated on a rendered cube illuminated by a directed
light source, and finally, on real data. For the synthetic
sequences, the ground truth of the range flow is available,
while for all other experiments, we generate reference range
data by multicamera stereo reconstruction, as described in
[28]. Using multicamera data allows for comparison with [18]
and has no further effect on range flow.

To compute the intensity derivatives, we used the
optimized 5� 5� 5 filter sets described in [29] for all
experiments. Motion and brightness change parameters are
determined as the minimizer of the model error given in
(27), as described in Section 4. Spies et al. [1] use �1 ¼ 1 for
their experiments (cmp. (30)). We scale all structure tensors
from the different models and prefilters to have the same
variance as model INT without prefiltering. In our earlier
work [25], structure tensors were not scaled, therefore
leading to slightly different results.

5.1 Sinusoidal Patterns

For a systematic error analysis of the different models, we
use patches with synthetically generated sinusoidal pat-
terns under varying illumination. The varying illumination
is generated according to (17), (19), and (21). Three frames
of a typical test sequence are shown in Fig. 4. Its parameters
were set as follows: Rendered surfaces translate with U ¼
0:0073 mm/frame, V ¼ 0 mm/frame, and W ¼ 0:5 mm/
frame and rotate around the Y -axis with an angular velocity
of ! ¼ 0:002 radians/frame. For t ¼ 0, the surface normal of
the patch is n ¼ ð1; 2;�1ÞT, and the distance of the patch
center to the camera is Z0 ¼ 100 mm. The synthetic sensor
contains 301� 301 pixels of size ð0:0044 mmÞ2. The focal
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Fig. 4. Scaled (a) first, (b) central, (c) and last frame of sinusoidal
sequence with illumination parameters a1 ¼ 0 and a1;x ¼ 0:06.



length of the synthetic projective camera is f ¼ 12 mm. For

each experiment, we evaluate the mean absolute value of

the relative error of U

ERRU ¼
1

N

XN
i

jUestimatedðiÞ � UreferenceðiÞj
jUreferenceðiÞj

ð32Þ

over all pixels i at a minimum distance of 60 pixels from the

nearest image border. The structure tensor weighting matrix

W is realized by a large, 65-tab Gaussian with standard

deviation �W ¼ 19 in order to reduce systematic errors

stemming from the phase of the sinusoidal pattern. Prefilters

are designed as described in Section 3.1, i.e., �pre denotes the

standard deviation of the low-passG�pre in (10). As in [14], we

compare estimation errors of U for increasing illumination

parameters a1ja1;x¼0 and a1;xja1¼0 to simulate brightness

changes. We provide here the errors for U only, as errors

of V and W exhibited very similar behavior. Furthermore,

we investigate the influence of adding Gaussian noise with

�n ¼ 0:025 or shot noise to the intensity data. The Poisson-

distributed shot noise is approximated by adding Gaussian

noise with intensity-dependent standard deviation

�sn ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; tÞ
�

r
ð33Þ

with k ¼ 0:025 and � ¼ 1. The sinusoidal pattern for t ¼ 0

has intensity values in the range of 0 � I � 2. To facilitate

the evaluation of the effects of prefiltering, we show the

errors for all tested models with and without prefiltering in

Figs. 5, 6, 7, 8, 9, and 10.
In Fig. 5, the errors of U for the described models with

and without high-pass prefiltering are shown over the
parameter a1. High-pass prefiltering reduces estimation
errors for models INT and INTGRAD. For models GRAD
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Fig. 5. Error of motion estimates U versus increasing temporal
brightness changes and high-pass prefiltering or without prefiltering
(“nopre”). Temporal brightness changes are modeled by a1 6¼ 0. All other
parameters of a in (20) are zero. Standard deviation �pre according to
(10). Models are (a) INT, (b) GRAD, (c) INTGRAD, and (d) TAYLOR.

Fig. 6. Same as Fig. 5 but with homomorphic prefiltering instead of high-
pass. Models are (a) INT and (b) TAYLOR.

Fig. 7. Error of motion estimates U versus increasing spatially-varying
temporal brightness changes and high-pass prefiltering or without
prefiltering (“nopre”). Spatially-varying temporal brightness changes
are modeled by a1;x 6¼ 0. All other parameters of a in (20) are zero.
Standard deviation �pre according to (10). Models are (a) INT, (b) GRAD,
(c) INTGRAD, and (d) TAYLOR.

Fig. 8. Same as Fig. 7 but with homomorphic prefiltering instead of high-
pass. Models are (a) INT and (b) TAYLOR.



and TAYLOR, using no prefilter yields results as good as
using a high-pass with standard deviation �pre > 15 (see
(10)). Strong filtering, i.e., small �pre, degrades estimation
results for all models. Overall, the model TAYLOR yields
the best results for most cases; only for a1 � 0:3, the model
GRAD performs slightly better. Grooves in the error
surfaces where errors become low, e.g., for model INT at
a1 � 0:1 and �pre < 10, may be the result of improved
gradients due to brightness changes and are highly
pattern-dependent. All models perform comparable when
applying homomorphic prefiltering. Therefore, in Fig. 6,
we show errors for the models INT and TAYLOR only.
Homomorphic prefiltering with �pre > 10 reduces the
brightness changes efficiently for all values of a1, while
prefiltering with �pre < 10 degrades the signal. For small
brightness changes, model TAYLOR performs even better
without prefiltering.

Figs. 7 and 8 repeat the experiments shown in Figs. 5 and 6,
but with brightness changes now being governed by the
parameter a1;x instead of a1. This means that brightness
changes vary now not only temporally, but also spatially.

Evidently, the errors shown in Fig. 7 depend more
strongly on �pre than those in Fig. 5.

Prefiltering with standard deviation of 12 � �pre � 50
yields the best results. As before, models GRAD and
TAYLOR perform well without prefilter. Fig. 8 shows
similar behavior for homomorphic prefiltering. Prefiltering
with �pre > 50 degrades the signal for all models but model
TAYLOR. For model TAYLOR, using no prefilter yields best
results if a1;x 	< 0:07.

Figs. 9 and 10 illustrate the effects of the proposed
prefilters on noisy data. In Section 3.1, high-pass filtering
was shown to have no effect on noise distributions, in
contrast to homomorphic prefiltering. We present errors of

U for high-pass prefiltering for added Gaussian noise with
standard deviation �n ¼ 0:025 only (Fig. 9) because results
for shot noise are almost the same. In comparison to the
noise-free case, the errors increased and the grooves in the
error surfaces vanished. Overall, the model TAYLOR yields
best results for a1 > 0 and similar results as the other
models for a1 � 0.

Fig. 10 shows how homomorphic prefiltering affects
estimation results for added Gaussian noise and simulated
shot noise. As stated above, the nonlinear log-operation
makes originally signal-independent noise signal-depen-
dent. Therefore, homomorphic prefiltering of noisy intensity
data with brightness changes a1 > 0:5 causes heavily
degraded signals. If the noise itself is signal-dependent,
such as shot noise, homomorphic prefiltering performs
much better. In both noise experiments, model TAYLOR
without prefilter yields the best and most reliable results.

5.2 Synthetic Cube

The synthetic cube sequence allows us to test the models on
more realistic data, but still with an available ground truth.
The cube moves with U ¼ �0:2 mm/frame, V ¼ 0 mm/
frame, andW ¼ �2 mm/frame. In addition to ambient light,
the cube is illuminated by a fixed spotlight from the right. The
input data consists of sequences with nine frames each,
acquired by five synthetic cameras positioned on the x-axis.
This setup allows us to use the optimized filter sets proposed
in [29]. We compute range data with the stereo estimation
algorithm presented in [14]. Fig. 11 shows two frames of the
cube sequence, a frame after high-pass prefiltering and one
after homomorphic prefiltering. Also shown are the regions
investigated on the left and right side of the cube, as well as a
rendering of the ground truth. Both prefilters have a standard
deviation of �pre ¼ 2, and the weighting matrix W is
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Fig. 9. Same as Fig. 5 but for data with additive Gaussian noise of
standard deviation �n ¼ 0:025. Error of motion estimates U versus
increasing temporal brightness changes and high-pass prefiltering or
without prefiltering (“nopre”). Models are (a) INT, (b) GRAD,
(c) INTGRAD, and (d) TAYLOR.

Fig. 10. Same as Fig. 6 but for input data with added Gaussian noise
with �n ¼ 0:025 (top) or shot noise with k ¼ 0:025 (bottom). Error of
motion estimates U versus increasing temporal brightness changes and
homomorphic prefiltering or without prefiltering (“nopre”). Models are
(left) INT and (right) TAYLOR.



implemented using a 31-tab Gaussian with standard devia-

tion �W ¼ 11. In Fig. 12, motion estimates of the original

range flow [1] (i.e., model INT) are compared to the following

three models: GRAD with high-pass prefilter, INTGRAD

with homomorphic prefilter, and TAYLOR without prefilter.

For all models, the errors are too small to be visible without

amplification. Thus, errors are amplified forU andV by 100 and

for W by 50.
Model INT without prefilter (Fig. 12a) yields highly

corrupted estimation results on the right side of the cube,

where illumination changes because of the fixed spotlight.

The other side does not suffer from illumination changes.

Range flow estimates there are thus much more accurate.

As expected, estimates are substantially improved by the

other models where brightness changes are present.
All combinations of models and prefilters yield more or

less the same results as original range flow on the left side

of the cube.
On its right side, where the brightness changes dominate,

applying a high-pass prefilter, for instance, together with

model GRAD (Fig. 12b), improves the motion estimates

where spatial brightness changes are small, i.e., in the

middle of the light spot. Motion estimates are visibly worse

at the borders of the light spot. Model TAYLOR (Fig. 12d)

and model INTGRAD yield more uniform and more

accurate motion vectors for the right side of the cube.

Table 1 shows numerical errors of the different models for
the regions on the left and right side of the cube (see Fig. 11).
We show the average angular error [8]

AAE ¼ arccos
fcfe
fcj j fej j

� 	

½ � ð34Þ

and its standard deviation where fc is the true and fe the
estimated flow.

Furthermore, since our target application is plant growth
estimation, we compare average relative growth rates. In
this experiment, the cube does not grow, thus estimated
relative growth rates should be zero. According to [30], the
relative area change dA of a local surface s may be
calculated by

dA ¼ ½jsðxþ 1; yÞ þ fðxþ 1; yÞ � ðsðx; yÞ þ fðx; yÞÞj
� jsðx; yþ 1Þ þ fðx; yþ 1Þ � ðsðx; yÞ þ fðx; yÞÞj�=
½jsðxþ 1; yÞ � sðx; yÞj � jsðx; yþ 1Þ � sðx; yÞj�

ð35Þ

when sðx; yÞ ¼ ½Xðx; yÞ; Y ðx; yÞ; Zðx; yÞ�T is parameterized

in sensor coordinates x and y, and when the 3D displace-

ment vector field fðx; yÞ ¼ ½Uðx; yÞ; V ðx; yÞ; Wðx; yÞ�T is

given. The relative growth rate is determined by

RGR ¼ ðdA� 1Þ � 100%.
Table 1 confirms the observations from Fig. 12 that all

models perform comparably on the left side of the cube. On
the right side of the cube, where illumination changes are
present, homomorphic prefiltering results in excellent
estimates for all models. Model TAYLOR is most robust
with respect to prefiltering, whereas results for the other
models are much more prefilter-dependent.
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Fig. 11. Cube experiment data. (a) First and (b) last frame of cube
sequence, (c) central frame of cube sequence after high-pass and
(d) homomorphic prefiltering, (e) regions of cube used for error analysis,
and (f) rendering of ground truth.

Fig. 12. Scaled motion estimates with amplified errors for different
models: (a) INT without prefiltering, (b) GRAD with high-pass prefilter-
ing, (c) INTGRAD with homomorphic prefiltering, (d) TAYLOR without
prefiltering. The ground truth is shown in Fig. 11f.



Additionally, we show results obtained by the recent
scene flow approach of Huguet and Devernay [18]. This is
essentially a warping technique for stereo camera sequences
analogous to the optical flow approach of Papenberg et al.
[11]. We apply the algorithm as provided by Huguet and
Devernay using parameter settings of the rotating sphere
experiment. Only the weighting parameter � of the gradient
constraint was increased to � ¼ 30 in order to reduce the
effect of the severe brightness variations in the data. The
algorithm handles four input images, i.e., two for each
camera in a stereo setup, instead of nine frames from five
cameras. We chose the first and the last frame of the two
outer cameras from the cube data set.

Compared to the original range flow of [1], and on the
right side of the cube, errors are reduced by approximately
a factor of 2. However, on the stronger tilted left side of the
cube, results are drastically worse than for all other models.
In contrast to the other models, prefiltering does not or not
significantly improve results. Probably incorporating more
input data, i.e., more than four images, may significantly

improve results. This would confirm that using an
elaborate estimator alone does not necessarily help;
instead, the whole estimation framework, including appro-
priate constraints, discretizations, and the estimator, needs
to be optimized.

In Fig. 13, we compare the performance of the different
models for different sizes of the neighborhood � used in the
estimation process. As stated in Section 4, the neighborhood
� is defined by a normalized Gaussian filter W with
standard deviation �W. On the left side of the cube, all
models yield similar results for most sizes of W. Only for
higher values of �W doesmodel INTGRAD with homo-
morphic prefiltering yield slightly higher errors. For
neighborhoods with �W > 25, edges in the data degrade
estimation results. On the right side of the cube, model INT
without prefiltering performs worst, as expected. Also,
model GRAD with high-pass prefiltering yields unsatisfying
results. Model INTGRAD with homomorphic prefiltering
and model TAYLOR without prefilter perform similarly
and significantly better than the other models. The
optimal size of filter W is �W 	< 15.

We conclude that, if the brightness constancy assump-
tion is violated, homomorphic prefiltering rather than linear
high-pass prefiltering should be used. Furthermore, the size
of the prefilter has a great impact on estimation results and
has to be chosen carefully. Nevertheless, even for small
neighborhoods, modeling brightness changes yields slightly
more accurate results than using a model which merely
attenuates the effects of brightness changes.

5.3 Real Data

The previous experiments showed that model TAYLOR
yields the most reliable estimates. Haußecker and Fleet [13]
tested their brightness change model on a sequence of an arm
under changing illumination. We replicate this experiment
for range flow and estimate 3D structure and 3D motion of
the arm. We use a stereo camera setup and calculate 3D
structure using the algorithms described in [14]. The
prefilters have the same size as in the cube experiment, and
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TABLE 1
Average Angular Error (AAE) in Degrees, Average Relative Growth Rate (RGR) in Percent per Frame

and Their Standard Deviations of Regions on the Left and Right Sides of the Cube (see Fig. 11e)

Errors or standard deviations above 1 degree (AAE) or 1 percent/frame (RGR) are indicated in red, below 0.1 degree (AAE) or 0.01 percent/frame
(RGR) in green. Please note that the method from [18] uses only four input frames in total.

Fig. 13. Average angular error of the motion estimates in the (a) left and
(b) right region of the cube for increasing �W of weighting matrix W for
different models.



the neighborhood matrix W is implemented using a
Gaussian filter with �W ¼ 5. We do not show motion
estimates if UXj j; UYj j > 10 or UZj j > 20.

Fig. 14 shows one frame of the sequence (rotation under
directional illumination from the right) and the estimated
3D structure and 3D motion of the arm using model
TAYLOR without prefilter. Haußecker and Fleet [13]
calculated error ellipses to indicate confidence in optical
flow estimates. They use an approximation of the error
covariance matrix, as derived in [31]. We adapt this concept
to show uncertainties of range flow solutions. Error
covariance matrices � are approximated by � ¼ H�1, where
the Hessian H is given by

H ¼ �

�2
nkpk

2
M� 1

kpk2
pTJp
� �

I

 !
ð36Þ

and M contains all but the last column and last row of
structure tensor J in (30). I is an identity matrix of the same
size as M, and p is the estimate (27) of the parameter
vector. The parameter � is given by � ¼ �2=ð�2

n þ �2Þ,
where �2 denotes the signal power in the measurements.
Note that this equation differs from the one presented in
[31] as the additional terms in the latter collapse to zero at
the solution p. For the arm sequence, we show error
ellipsoids, i.e., ellipsoids satisfying eT��1

f e ¼ 6:25, where
�f is the 3D error covariance submatrix for range flow f ,
and e is a point on the ellipsoid. These ellipsoids cover
approximately 90 percent of the expected errors.

Fig. 15 shows a closeup view of two frames of the input
sequence in Fig. 14 as well as the estimated motion and
uncertainty ellipsoids for different models. Estimates of
model INT without prefilter are strongly degraded in
regions where brightness changes occur. Motion estimates

are significantly better for model GRAD with high-pass

prefilter, but uncertainty ellipsoids are still quite large.

Model INTGRAD increases reliability of the estimates, but

at the border of the illuminated region (right side of the

arm) estimates are still noticeably degraded. Model TAY-

LOR without prefilter performs best. Uncertainty ellipsoids

are significantly smaller compared to all other models, and

the motion estimates capture the motion of the arm well.
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Fig. 14. (a) One image of the rotating arm sequence indicating the area
shown in Fig. 15, (b) 3D structure and 3D motion estimated with model
TAYLOR without prefilter.

Fig. 15. (a) and (b) The area of interest of frames 1 and 9 of the rotating
arm sequence. Motion estimates and uncertainty ellipsoids are shown
for (c) model INT without prefilter, (d) model GRAD with high-pass
prefilter, (e) model INTGRAD with homomorphic prefilter, and (f) model
TAYLOR without prefilter.



In Fig. 1, in Section 1, we show estimated 3D velocity
fields for a freely moving castor bean leaf. The scene is
illuminated by directed infrared light emitting diodes from
the top right causing shadows on the leaf of interest. Depth
reconstruction was obtained according to [28] using five
images from different camera positions at each time step.
For motion estimation, a sequence of nine frames from the
center camera with a sampling rate of one frame per
2 minutes was taken, i.e., acquisition time for all images was
16 minutes.

The leaf rotates around the node where it is attached to
the stem. This results in a visible motion toward the camera
and to the right, while the shadow area caused by the top
leaf decreases. Model TAYLOR visibly improves estimation
results in regions with illumination changes compared to
the standard range flow model [1]. As expected, for an
almost rigid motion, which can be assumed because of the
relatively high temporal resolution, we obtain a smoothly
varying vector field.

6 CONCLUSIONS

In this paper, we extended range flow estimation described
in [1] by different approaches to handle inhomogeneous
illumination. We presented a detailed error analysis for four
different brightness constraints in combination with high-
pass or homomorphic prefiltering on synthetic image
sequences. Experiments on two real sequences showed the
applicability of the models in more realistic scenarios.

Prefiltering improved estimation results on data when
illumination changes were present; however, the standard
deviation �pre of the low pass used in the filters should be
large enough. If not, too much signal is lost, resulting in less
accurate motion estimates. High-pass filtering performs
well if Gaussian noise or shot noise is present. Homo-
morphic filtering works excellently for shot noise, but errors
increase when Gaussian noise and strong brightness
changes are present. We conclude that, except for this case,
well-tuned homomorphic prefiltering allows for accurate
range flow estimation in conjunction with all models.
However, a wrongly tuned filter severely corrupts motion
estimates. Furthermore, prefiltering increased uncertainty
of motion estimates as the relevant signal is then also
affected by the filtering.

Modeling brightness changes by the models GRAD or
TAYLOR instead of high-pass prefiltering results in motion
estimates of the same or higher accuracy in almost all
scenarios investigated. The model INTGRAD mostly
showed results lying between the results of standard range
flow (model INT) and the model GRAD. Generally, the best
results were achieved by model TAYLOR and, especially
when noise was present, without prefiltering. Only for
brightness changes with strong spatial variations, i.e.,
a1;x � 0, and noise-free data is homomorphic prefiltering
recommended. We conclude that suitably modeling bright-
ness changes almost always outperforms other approaches
and increases overall accuracy without tuning of prefilters.

Typical growth rates of fast growing leaves are approxi-
mately 3 percent per hour or 0.1 percent/frame when a
typical frame rate of 0.5 frames per minute is assumed. The
cube experiment showed that growth estimates are accurate
when homomorphic prefiltering or model TAYLOR are
applied. On the right side of the cube, best growth estimates

are well below 0.1 percent/frame and accurate enough for

plant growth studies where a relative measurement error of

approximately 10 percent is acceptable. However, variances

are high, such that spatial resolution is not yet in the desired

range. In addition, results for the accuracy on the left,

stronger tilted side of the cube are not yet sufficient. In

future work, an estimation scheme needs to be designed

which is suitable to estimate growth also for more inclined

surfaces. This may allow to build a method accurate enough

for leaf growth estimation by divergence of range flow.
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