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 Process principle of hot metal gas forming (HMGF)

 Motivation and Objectives

 Measurement Technique

 Process analyses

 Tool integrated heating by conduction

 Summary and outlook
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Media based forming at Fraunhofer IWU

1995 20062001 20192011

Hydroforming with 
heated oil

Hot Metal Gas Forming (HMGF) / press 
hardening (HMGF-PH)

Hybrid processes for 
hybrid parts

Hydroforming at room temperature with water

Over 20 years of expertise in hydroforming at the Fraunhofer IWU
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Media based forming at Fraunhofer IWU

 2 Hydroforming presses
 2 Gas pressure units from Maximator
 Control units for electrical tool heating and cooling
 Automated handling system with robot
 Heating devices

Equipment for media based forming
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Equipment for media based forming

 Different software for forming simulation
 Facilities for thermal and mechanical material testing 

(strain-rate and temperature effects)
 Metallographic laboratory
 Optical measurement systems

Simulation-based process design
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 martensite generation for increasing tensile strength by cooling of 
heated blanks at a rate of min. 30 K/s with tools

 very common for manufacturing of automotive components with 
high geometric complexity

 high strength and ductility of blanks with low sheet thicknesses

Principle and known advantages of press hardening
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Principle and known advantages of press hardening

 high variety of possible geometric designs by forming tubes or 
closed profiles with various media under inner pressure against tool 
cavities

 integration of functions

 avoidance of joining operations

 high profile stiffness

Principle and known advantages of hydro forming

 high variety of possible geometric designs by forming tubes or 
closed profiles with various media under inner pressure against tool 
cavities

 integration of functions

 avoidance of joining operations

 high profile stiffness

Principle and known advantages of hydro forming

Principle of HMGF-PH and Motivation

Efficient use of HMGF-PH requires  
reliable FEM-models and robust 

process design!

 HMGF-PH is more complex but:

 utilization of advantages of both process routes

 decreasing number of process steps

combination of both principles

 HMGF-PH is more complex but:

 utilization of advantages of both process routes

 decreasing number of process steps

combination of both principles
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 practical tests and numerical simulations of HMGF with a new and innovative forming 
demonstrator tool DP3

 improved measurement technology enabling simultaneous measurement of part 
temperature and the movement of the component wall

 cyclic and close-to-serial-production tests for characterising the temperature 
distribution in the tools

 design of a complex near-series demonstrator DP4 and demonstrator manufacturing 
using conductive component heating in combination with HMGF

 application the newly developed tool steel HTCS®-23xx and HTCS®-26-EP of 
Rovalma for the active tool parts

Objectives
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Initial situation and Objectives

 New tool steels HTCS®-23xx and HTCS®-26-EP by Rovalma with improved thermal 
conductivity properties available

 HMGF parameters currently analysed separately  no detailed conclusions regarding 
the mapping of deformation stages and temperature distribution

Initial situation

 New tool steels HTCS®-23xx and HTCS®-26-EP by Rovalma with improved thermal 
conductivity properties available

 HMGF parameters currently analysed separately  no detailed conclusions regarding 
the mapping of deformation stages and temperature distribution

Initial situation conductive heated tube & demonstrators
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Analysis of material displacement during HMGF
component design and simulation

component design DP3

 Component geometry DP3

 different corner radii (R8, R14)

 eccentric shape 

 initial tube material

 diameter 57 mm

 wall thickness1.5 mm

 flow curve data

 tensile tests at different temperatures (950 °C, 900 °C, 850 °C, 
800 °C, 750 °C, 680 °C, 600 °C) and strain rates (0.5, 5, 50 s-1)

 extrapolated flow curves for quasi-static strain rates 
approximated according to Swift/ Hockett-Sherby

 static coefficient of friction μ = 0.35

 tube mesh: Belytschko-Tsay shell elements (initial length of 0.75mm)

FEM-simulated forming result 

R14

R8



© Fraunhofer IWU

8

Measurement techniques: Displacement

HMGF tool DP3 with tactile measurement equipment, view from top

4
3

7

6

 spring loaded tactile pin (4) is
pressed against surface of heated
part (5) 

 during deformation traversed 
path is tracked by a laser (1) 

 fixing (3) limits the pin movement

 position of the pin near R14 gives 
information about complete 
forming of component

 results serve as validation data for 
simulation
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 testing of two thermal sensors

 88046K IEC

 HKMTIN-IM 025U-300 "helix" by OMEGA

 mounted onto tip of tactile pin

 measuring the temperature of the displaced 
component surface during forming

 allows conclusions interpretation regarding 
material ductility during the process

 limited sensor lifetime due to high workpiece 
temperatures

thermal sensors on the tip of tactile sensors and setup

Measurement techniques: Temperature
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Analysis of material displacement during HMGF

 matching measurement of internal 
pressure and displacement of the 
component wall as a function of time

 major deformation completed within 0.5 s

 pressure at this time: <25 Mpa

 full pressure: 50 Mpa

 successful validation of simulation

 reaching of yield strength lead to
aprupt material flow

displacement R14 vs. inner pressure 113 (ok-part)
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Analysis of temperature development during HMGF
temperature of the part 

 matching measurement of temperature 
and displacement of the component wall 
as a function of time

 starting temperature of component: 
950°C

 manual workpiece transfer 
(furnace  tool)

 temperature ~600°C when major 
deformation is completed

 cooling rate of 100 K/s is far above the 
usual 27 K/s

 sufficient for reliable martensite
formation during contact and cooling 
of the component 

thermal behavior of part
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Analysis of temperature development during HMGF
temperature of the tool

constant starting temperature in the range of 20°C 
 stable process conditions 
 repeatability of component properties

Tool cross section 

Sensor positions
(a-f)

Cooling channels

Active tool components
HTCS®-23XX by Rovalma

Workpiece
PHS1800 by SSAB

furnace temperature: 950 °C manual transfer (furnace  tool)

maximum internal pressure: 70 Mpa
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Tool integrated heating by conduction
component design and simulation

 new demonstrator DP4

 prove of technological feasibility on the basis of a complex 
part geometry

 results close to series production

 initially wall thickness of 1.5 mm

 frequently occurring cross sections of vehicle components 
and a additional requirement for tool technology with a 
bendy

 FEM-results:

 a minimum sheet thickness of the tube material of about 
0.85 mm 

 maximum thinning of 43.3%

Geometry DP4

FEM-simulated forming result 
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Tool integrated heating by conduction
tool concept

HMGF forming tool

 complicated construction

 devices for conduction,

 tool guides/force absorption

 and cooling channels are incorporated

 spring loaded electrodes are raised with 
open tool

 electrodes clamp component while heating 

 newly developed tool material HTCS®-26-EP by 
Rovalma

 improved thermal conductivity properties

 conduction system monitored by installed 
pyrometers
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Tool integrated heating by conduction
tool concept

 real HMGF forming tool

HMGF forming tool with part, view from top HMGF tool with conductive heated part
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 bended component inhomogeneous heating 

 current flow follows the shortest possible route 
through the component inner arc

 counteracting by pulsing of current

 resulting short time window without power 
supply, heat transfer from hot to cooler areas

 overall almost homogenous heating of the 
component 

 targeted austenitisation temperature 911 °C

 constant starting temperature guaranteed by 
principle

 significantly reduced surface scaling

 no transfer and less air contact

Tool integrated heating by conduction
results of forming tests

conductive heating, inner & outer arc of part
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Summary and outlook

 HTCS®-23xx evaluated as suitable for use in HMGF tool

 temperature, shape and internal pressure recorded and evaluated simultanously

 discovered interrelationships lead to better understanding of the HMGF process

 essential for future process design using FEM-simulation

 tests with tool-integrated component heating via conduction 

 important basis for the design of more complex production tools 

 additional technological expense of the integrated conduction device for medium 
quantities of components is justified 

 HTCS®-26-EP with improved thermal conductivity properties used as tool material 

 suitable for use in HMGF tools due to its strength and high thermal conductivity

manufactured part
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