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Abstract 
Over the past decade IPM did implement various 

measuring techniques applicable to thin films and massive 
Materials [1]. The customer-oriented measuring systems 
combine accuracy, rapidity, and few efforts for the mounting 
of the sample. Some systems are even fully automated, and 
some measurements are offered to third parts on a commercial 
basis. In this paper we want to discuss the Harman method for 
measuring the thermoelectric properties at high temperatures.  

The Harman method [2] is known to enable the direct 
measurement of the Figure of Merit at or below room 
temperature. Beside the simplicity to put the method in 
practice, the thermoelectric properties are measured in the 
same direction. The second advantage is that a technological 
Figure of Merit, which does account for the electrical 
contacting of the thermoelectric material, is accessible 
without being forced to make the entire thermoelectric device. 
In this paper a correction factor is derived to take account for 
the heat loss by radiation at higher temperatures, the contact 
resistances and the effect of the geometry of the sample. The 
correction factor is evaluated for various experimental 
conditions and the key features of an experimental setup for 
measurements at high temperature are discussed. 

The Harman- Method 
The Harman- Method has been used more or less 

exclusively for the measurement of the Figure of Merit of 
Bi2Te3-based materials at room temperature because Ohmic 
contact can be relatively easily made on this material (10-11 
Ωm2) [3] and the radiated heat could be neglected. In this 
case, the sample arrangement is simple and is shown in the 
figure 1. The sample, a bar or a rod relatively narrow and 
long, is soldered to feed lines. The solder cover the whole 
surface of both ends of the sample, so that the current 
streamline be parallel to the longitudinal axis of the sample. 

 
Figure 1: Arrangement of the sample 
When an electrical current I is flowing in the sample, heat is 
generated (pumped) at the junctions. In the steady state, this 
heat will just be equal to the heat flowing in the sample: 

TKTI ∆=α  (1) 
T∆ is the temperature difference along the sample, α  is 

given by: 

MS ααα −=  (2) 

where Sα and Mα is the Seebeck coefficient of the sample and 
of the electrodes, respectively. 
The equation (2) can be rewritten as a function of the voltage 
drop ρV at the electrodes, the electrical conductivity σ and 

the thermal conductivity k : 
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Since, αα VT =∆ , the equation (3) can be written as a 
function of a pseudo Figure of Merit 
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The sequence of the measurement is as follows: 
- Measurement of the voltage drop TV  between the 

electrodes in the steady state 
- Switching off of the current source 
- Measurement of the voltage drop αV  just after the 

turning off of the current source. 
- Calculation of ρV by subtracting αV  from TV   

Correction factors 
At high temperature, the radiated heat has to be taken into 

account. Furthermore, and independently of the temperature 
of measurement, the effect of the electrical contact resistance 
on the measurement should not be overlooked since the 
Harman- method uses the same wires for the feed line and for 
the voltage measurements. As a consequence, the voltage ρV  
has to be added to the voltage drop due to the contact 
resistance cV : 

cc VVV +=+ ρρ  (5) 

We can already take note that the contact resistance, if not 
taken into account in the data analysis, lead to an 
underestimation of the Figure of Merit. 
The Figure of Merit will also be underestimated if the radiated 
heat is not taken into account, because it will decrease the 
temperature gradient generated by the Peltier effect, and 
consequently αV . The equation (4) should then be corrected 
with a factor β  larger than 1: 
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Derivation of the correction factor β 



The full derivation of the correction factor β has not been 
published yet, and is given below. Nevertheless, the starting 
equation, which just replaces the equation (1) when the 
radiated heat and the difference of contact resistances 

between the electrode 1 and the sample and the sample and 
the electrode 2 are taken into account, can be found in the 
article of T.C. Harman [4]: 
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Where hT  and cT are the temperature of the hot and cold ends 
of the sample, respectively. The average temperature of the 
sample is given by: 

2)( ch TTT −=  (7) 

mK and SK  are the thermal conductance of the electrodes and 
of the sample, L  and a  are the length and diameter of the 
sample, respectively. Besides Mh  is equal to 34 TRεσ  where 

Rσ  is the Stefan-Bolzmann’s constant and Mε is the 
emissivity of the electrodes.  γ represents Sha κ , where 

34 Th Rεσ= , ε and Sκ being the emissivity and the thermal 
conductivity of the sample, respectively. cR∆  is the 
difference of contact resistance at the junction 
electrode/sample and not their absolute value. 

nλ  is calculated by solving the following equation: 

)()()( 01 aJaJa nnn λγλλ =  (8) 

Where 1J  and 0J  are the functions of Bessel. 

The specific contact resistance cr  (resistance per unit of area) 
is introduced in the equation (7) by replacing I with: 
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When the thermal conductivity substitutes for the thermal 
conductance, it turns out that: 

LakK sS
2π=  and LaK MM

2πκ=  (10) 

Where L  and ML  are the lengths of the sample and of the 
feed lines, respectively. 
After several rearrangements, the equation (7) becomes: 
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Method of calculation of β 
The equation (7) comes also as: 
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1a  represents the effect of the contact resistance. 

2a  arises from the effect of the difference of the contact 
resistances. 

3a  account for the heat losses along the feed lines. 

4a  represents the heat radiated by the feedlines. 

5a  represents the heat radiated by the sample. 

The factor of correction β  can be calculated easily, if the 
geometry of the sample and electrodes, the material 
properties, the temperature gradient and the contact 
resistances are known. In this case 1a , 2a , 3a , 4a , 5a  and 

αV  can be evaluated as well as cV +ρ , cV +ρ  being the solution 

of a second order polynomial: 
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It is worth noticing that there can be two values of β when 
the contact resistances on both side of the sample are not the 
same. 

 
Figure 2: Model for the electrical contact resistances 

Effect of the sample geometry and emissivity on β 



The correction factor β  as well as 5..1, =xax has been 
calculated with the following data: 
Table 1a: Data use for the results presented in the table 1b. 
T [K]: 900 K ρ  [W.m]: 20e-6 

ML  [m]: 10e-2 

hT [K]: 902 cr  [W.m2]: 0 b  [m]: 5e-4 

cT [K]: 898 a  [m]: 5e-3 
cr∆  [W.m2]: 0 

Sκ [W.m-1.K-1]: 2 Mκ  [W.m-1.K-1]: 20  

Sα [V.K-1]: 200e-6 Mα  [V.K-1]: 20e-6  

The results are shown in the table 1 for various emissivity and 
length of the sample. It can be seen that the sample must be 
significantly shorter than 1 cm for the heat loss by radiation 
be reasonable low. The calculation has been done with a value 
of the emissivity of 0,5 and temperature of 900 K. If it is not 
the case, the heat radiated will dramatically impact the 
measurement of the Figure of Merit. For example, the figure 
of merit will be underestimated by about 41% if the sample is 
2 cm long and if its emissivity is 0,5. If we are looking at the 
other factors that can affect the measurement, the heat 
radiated is by far the most important at high temperature, if 
the electrical contact resistance are neglected. 

 
Table 1b: Effect of the sample geometry and emissivity on β . The data used for the calculation are reported in the Table 1a. 

SL  \ ε  0 0,5 1 

0,2 cm 
cV +ρ =9,989e-4 

β =1,002 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-3 

,..)(4 Mha =0 

,..)(5 εa =1,000 

cV +ρ =1,036e-3 

β =1,049 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-3 

,..)(4 Mha =4,1e-2 

,..)(5 εa =1,005 

cV +ρ =1,081e-3 

β =1,095 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-3 

,..)(4 Mha =8,3e-2 

,..)(5 εa =1,011 

1 cm 
cV +ρ =9,896e-4 

β =1,002 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-3 

,..)(4 Mha =0 

,..)(5 εa =1,000 

 

cV +ρ =1,330e-3 

β =1,347 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =2.07e-1 

,..)(5 εa =1,130 

 

cV +ρ =1,650e-3 

β =1,347 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =4,13e-1 

,..)(5 εa =1,248 

 
2 cm 

cV +ρ =1,007e-3 

β =1,020 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-2 

,..)(4 Mha =0 

cV +ρ =1,892e-3 

β =1,915 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-2 

,..)(4 Mha =4,13e-1 

cV +ρ =2,6770-3 

β =2,710 

,..)(1 Cra =1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =2e-2 

,..)(4 Mha =8,27e-1 

 
Effect of the electrical contact resistances 
The correction factor β  as well as 5..1, =xax has been 
calculated with the following data: 
Table 2a: Data use for the results presented in the table 2b. 
T [K]: 900 K ρ  [W.m]: 20e-6 

ML  [m]: 10e-2 

hT [K]: 902 ε = Mε =0 b  [m]: 5e-4 

cT [K]: 898 a  [m]: 5e-3 
SL  [m]: 1e-2 

Sκ [W.m-1.K-1]: 2 Mκ  [W.m-1.K-1]: 20  

Sα [V.K-1]: 200e-6 Mα  [V.K-1]: 20e-6  

 

The emissivity has been set to 0 and the length of the 
sample is 1 cm. It can bee seen that in this particular case, the 
contact resistance have to be lower than 1x108 Ohm.m2 to not 
affect the correction factor more than 10%. Surprisingly, it 
does seem that the difference of contact resistance at the two 
ends of the sample, does not drastically affect the 
measurement. This is perhaps misleading and not true, 
because when Harman did introduce cr∆ , he only consider 
the thermal heating due to contact resistances and not it effect 
on the measured voltages. The physical origin of the second 
solution of the equation (12) is a consequence of a 
dissymmetrical heating of the sample at the junctions, which 
in the worst case can completely offset the Peltier effect. 



 
Table 2b: Effect of the sample geometry and emissivity on β . The data used for the calculation are reported in the Table 2a 

cr \ 
cr∆  0 [Ohm.m2] 1x10-8 [Ohm.m2] 1x10-7 [Ohm.m2] 

1x10-9 
[Ohm.m2] cV +ρ =1,007e-3          * 

β =1,0201 

,..)(1 Cra =1,01 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

,..)(5 εa =1 

  

1x10-8 
[Ohm.m2] cV +ρ =1,097e-3          * 

β =1,111 

,..)(1 Cra =1,1 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

,..)(5 εa =1 

 

cV +ρ =1,0975e-3 (
cV +ρ =6,47)                * 

β =1,111 ( β =6,5e3) 

,..)(1 Cra =1,1 

,..)(2 cra ∆ =1,71e-4 ( ,..)(2 cra ∆ =5,9e3) 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

,..)(5 εa =1 

 

1x10-7 
[Ohm.m2] cV +ρ =1,995e-3          * 

β =2,020 

,..)(1 Cra =2 

,..)(2 cra ∆ =0 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

cV +ρ =1,995e-3 (
cV +ρ =6,46)                  * 

β =2,0206 ( β =6,5e3) 

,..)(1 Cra =2 

,..)(2 cra ∆ =3,11e-4 ( ,..)(2 cra ∆ =3,3e3) 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

cV +ρ =1,995e-3 (
cV +ρ =6,46)                  * 

β =2,026 ( β =6,5e3) 

,..)(1 Cra =2 

,..)(2 cra ∆ =3,12e-3 ( ,..)(2 cra ∆ =3,3e3) 

,..)(3 Ma κ =1e-2 

,..)(4 Mha =0 

 
 

Key features of an experimental setup for measurement at 
high temperatures. 
The heat loss by radiation has to be minimized. It is therefore 
important that the environment temperature be the same that 
the sample temperature. The location of temperature sensors, 
as close as possible from the sample, will be important as 
well. The coating of the sample with a thin material (few nm) 
having a low emissivity may also be decisive. The electrical 
contacts have to be Ohmic. The Harman method is therefore 
only applicable on particular materials, where the technology 
to get ohmic contacts exists. The application of the Harman 
method to the measurement of a particular material may also 
serve to the industry as an indicator of the maturity of the 
technology related to the material.  

Conclusions 
The assertion of Harman that his method could be easily at 

1000K was perhaps exaggerated because the sample has to be 
very short. It is not sure that the optimal geometry that 
minimizes the heat losses will be suitable to accurately 
measure the electrical response of the sample. It is 
nevertheless not excluded that the efforts undertaken to 
extend this measurement method at high temperature finally 
pay off at last. 

Acknowledgments 
The authors would like to thank the chemical company 

BASF for its financial support. 

References 
 
1. Jacquot, A. et al, “Measuring methods applicable to 

thermoelectric Materials: Fraunhofer-IPM capabilities”, 
25th International Conference on Thermoelectrics, 
Vienna, Austria, August 2006, pp. 184-188.  

2. Harman, T.C., “Special techniques for Measurement of 
Thermoelectric Properties”, J. Appl. Phys., Vol. 29 
(1958), pp. 1373-1374. 

3. Stockholm, J.G., “Modern thermoelectric cooling 
technology”, 9th International Conference on 
Thermoelectrics, Pasadena, USA, August 1990, pp. 90-
108. 

4. Harman, T.C. et al, “Measurement of the thermal 
conductivity by utilization of the Peltier effect”, J. Appl. 
Phys., Vol. 30, No.9 (1959), pp. 1351-1359. 


