
 
 
Fraunhofer-Institut 
Experimentelles 
Software Engineering 
 
Fraunhofer-Institut 
Angewandte 
Informationstechnik 
 
Fraunhofer-Institut 
Techno- und  
Wirtschaftsmathematik 

  

Simulation-based Evaluation and Improvement
of Software Development Processes 
 
SEV Progress Report No. 1 

Authors: 
Jürgen Münch 
Thomas Berlage 
Thomas Hanne 
Holger Neu 
Stefan Nickel 
Sascha von Stockum 
Andreas Wirsen 
 
 
 
Supported by the BMBF Project SEV 
(Project Number 101842) 

IESE-Report No. 048.02/E 
Version 1.0 
August 16, 2002 

 
A publication by Fraunhofer IESE 

 



 



 

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft. 
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists compa-
nies in building software competencies 
customized to their needs, and helps them 
to establish a competetive market position.
 
Fraunhofer IESE is directed by 
Prof. Dr. Dieter Rombach 
Sauerwiesen 6 
D-67661 Kaiserslautern 





Abstract 

Systematic selection of appropriate processes, methods, and tools for the de-
velopment of high quality software requires knowledge about their effects un-
der varying project conditions. Up to now, the selection has essentially relied on 
subjective experience, empirically gained experience from previous projects, or 
experience from expensive controlled projects. This results in the situation that 
decisions concerning alternatives, in particular, are only insufficiently supported. 
The goal of the project SEV (Simulation-based Evaluation and Improvement of 
Software Development Processes) is the development of a simulation platform 
for software development processes and experiments. Process simulation is 
used to support decisions on process alternatives for a project on the basis of 
existing knowledge. Thereby, new development knowledge can be gained 
faster and more cost effectively. This progress report documents basic work 
towards the development of the simulation platform. In particular, application 
scenarios for the platform are described, an overview of an initial approach for 
using the platform is given, visualization requirements and concepts are de-
scribed, simulation requirements and techniques are sketched, a survey of 
state-of-the-art simulation software is given, and an initial model for an exam-
ple key software development process is sketched. Finally, a business model for 
applying the platform in industrial practice is described. 

Keywords: software process simulation, software process improvement, controlling, deci-
sion support, software process modeling, software process planning, software 
process visualization, and quality assurance 

Copyright © FhG 2002 v



 

 

Copyright © FhG 2002 vi



Table of Contents 

1 Project Objectives 1 

2 Work Performed to Date and Results 3 
2.1 Application Scenarios 3 
2.1.1 Scenario 1: Decision Support 3 
2.1.2 Scenario 2: Software Process Improvement 4 
2.1.3 Scenario 3: Training Support 4 
2.2 Initial Method 5 
2.2.1 Systematic Elicitation of Process Knowledge 6 
2.2.2 Process and Quality Modeling 7 
2.3 Simulation Requirements and Techniques 8 
2.3.1 General Remarks 8 
2.3.2 Continuous Modeling: Software Development and Macro 

Simulation 9 
2.3.3 Discrete Modeling: Software Development and Logistics 

Simulation 10 
2.4 Visualization Requirements and Concepts 12 
2.4.1 Requirements 12 
2.4.2 User Models 13 
2.5 Tool Support 15 
2.5.1 Data Mining and Knowledge Builder 15 
2.5.2 Simulation Tools 16 
2.5.3 Optimization Tools 18 
2.5.4 Other Tools 18 
2.6 Initial Model for Software Inspections 19 
2.6.1 Purpose of the Model 19 
2.6.2 Process Model of an Inspection-based Process 19 
2.6.3 Identification of Cause–Effect-Relationships 22 
2.6.4 Building a Simulation Model 28 
2.6.5 Potentials for Optimization 37 
2.6.6 Further Plans 38 

3 Dissemination of Results 39 
3.1 Dissemination Activities 39 
3.2 Business Model 39 
3.2.1 Additional Service 40 

4 Glossary 41 
 

Copyright © FhG 2002 vii



 

Copyright © FhG 2002 viii



Project Objectives 

1 Project Objectives 

The goal of the project SEV (Simulation-based Evaluation and Improvement of 
Software Development Processes) is the development of a simulation platform 
for software development processes and experiments. Simulation is used to 
support decisions on process alternatives for a project on the basis of existing 
knowledge. Thereby, new development knowledge can be gained faster and 
more cost effectively. The goal is divided into the following sub-goals: 

1.) Forecasting and conducting ‘what-if-games’ for the selection of software 
development processes and development approaches shall be supported. 
The decision about process alternatives for a concrete project shall be 
reached on the basis of existing knowledge. Results can be used for project 
planning, systematic improvement of processes, and risk analyses. In addi-
tion to this, the integration of optimization algorithms promises the identi-
fication of potentials for further improvements of software development 
processes, which with purely empirical methods, could only be identified at 
high costs. 

2.) The costs of new experiments shall be reduced by simulation. Well-
understood parts of experiments can be simulated as well as accompanying 
processes such as technical processes. By analyzing results of simulation 
runs (e.g., by performing sensitive analyses), fields for real experiments can 
be identified. 

3.) Practice-oriented teaching and training of project managers and planners 
shall be supported. Planning and project scenarios can be executed and the 
effects of planning decisions can be visualized graphically.  

4.) The results of the project in the form of knowledge about simulation based 
process evaluation and improvement of software development processes 
shall be transferred into industrial practice. This requires a method for fast 
elicitation and modeling of processes as well as a business model on how 
to apply the knowledge in industrial contexts. 
 

The main focus is on decision support. Better support for teaching and training 
is regarded as a side effect of the project.  

To reach the goals of this project, a simulation platform consisting of an evalua-
tion and improvement method, an integrated tool environment, and a simula-
tion cockpit for the effective application of the method is going to be devel-
oped. The simulation platform should effectively support project managers and 
planners, people performing experiments, process engineers (in the context of 
process improvement), and trainers (in the context of practice-oriented teach-
ing). Using the simulation platform promises the following advantages: 

Copyright © FhG 2002 1



Project Objectives 

• Cost reduction by simulating software development processes and human 
behavior. 

• Cost reduction by better selecting and focusing the scope of real experi-
ments. 

• Coupling with optimization methods promises results that could not be ob-
tained by varying the impact factors in real or simulated experiments. 

• The demonstration of the benefits of new methods in the context of an in-
dustrial development environment. 

• Practice-oriented learning with respect to project planning and management 
can be performed in a scenario-oriented way.  

• The simulation platform with the corresponding method can be integrated 
into process improvement programs. 
 

Essential scientific challenges are: 

• The development of a basic set of simulation models, which comprise the 
basic elements for the modeling of software development processes. Scien-
tific questions address an appropriate modularization and combination 
techniques. 

• The cost effective achievement of sufficient validity of the simulation models 
for the user. 

• The selection of an appropriate simulation technique for different software 
development processes and tasks. 

• The development of a method for the use of simulations for identifying 
process improvement potentials. 

• The development of simulation techniques for the optimization of iterative 
processes. 
 

The simulation of software development processes is an upcoming and innova-
tive research field. Important issues of this project are 

• the modularization of simulation models in order to allow for fast and cost 
effective modeling and the construction of large-scale models, 

• the development of guidance that helps to select appropriate modeling 
techniques according to the purpose, the scope and the key result variables, 

• the development of visualization techniques specialized for the simulation of 
software development processes,  

• the identification and exploitation of potentials for optimization, 
• the possibility of estimating the importance of model parameters and their 

sensitivity, and 
• the use of simulation for the definition of real experiments. 

Copyright © FhG 2002 2



Work Performed to Date and 
Results 

2 Work Performed to Date and Results 

2.1 Application Scenarios 

In the following, typical application scenarios for the simulation platform are 
defined. 

Each scenario definition is structured according to the following schema: 

• Name: Identifier for the scenario 
• User: Who uses the scenario? 
• Purpose and goal: Why shall the scenario be executed? 
• Benefits: What kind of benefits does the user have from the simulation? 
• Steps of the execution: What steps are conducted? 
• User interface (GUI): Description of user interaction and visualization 
• Scientific contributions: Solutions contributing to open research topics 

 

2.1.1 Scenario 1: Decision Support 

• Name: Decision support  
As an example, the selection of an inspection technique is chosen. 

• User: Project manager, project planner. 
• Purpose and goal: Decision support, where in the overall development proc-

ess (e.g., after design and after coding) inspections should be performed 
and what kind of inspections should be performed. The relation between 
the effort spent for inspections and their benefits is interesting. 

• Benefits: Gives a better basis to decide on when and what kind of inspec-
tions should be performed and demonstrates the benefits of the inspections. 
Alternative inspection techniques can be compared in the project situation 
without cost effective real experiments. 

• Steps of the execution:  
Preparation: 
1. Modeling of the project-specific development process and 
  different inspection processes. 
2. Development of simulation models. 
Decision support: 
1. Presentation of alternatives. 
2. Selection of alternatives. 
3. Visualization of the effects in the application context 
   (several simulation runs). 

Copyright © FhG 2002 3



Work Performed to Date and 
Results 

Usage: 
1. Introduction of inspections based on the findings 
  of the simulation. 
2. Verification of effects using measurement programs. 

• User interface (GUI):  
Presentation of important dependent variables (e.g., time, cost, and defect 
detection rate) with respect to the overall process  

• Scientific contributions: 
-  How to cost effectively achieve sufficient validity of the simulation 
  models for the user. 
- How to model process alternatives. 
 

2.1.2 Scenario 2: Software Process Improvement 

• Name: Software process improvement 
• User: SEPG (software engineering process group), responsible for quality  
• Purpose and goal: Decision support concerning the impact of a process im-

provement measure on costs, quality, and time to market. Allows for assess-
ing the effects of improvement measures and their prioritization (e.g., in the 
context of CMM improvement activities; CMM is the abbreviation of Capa-
bility Maturity Model for Software).  

• Benefits: Cost effective and goal-oriented selection and prioritization of 
process improvement measures before implementation. 

• Steps of the execution: 
1. Modeling of the project-specific development process. 
2. Identification of alternative improvement measures.  
3. Construction of simulation models of the development process. 
4. Integration of improvement measures into the models. 
5. Comparison of the simulation results. 
6. Implementation of improvement measures. 

• User interface (GUI):  
Comparison of effects with respect to process and product attributes of in-
terest (with and without the improvement measure). 

• Scientific contributions: 
Development of a process for the use of simulations for the identification 
and assessment of improvement measures. 
 

2.1.3 Scenario 3: Training Support 

• Name: Training support for project managers and project planners  
• User: Trainees for project management or project planning (persons with 

low experience in these tasks, students) 

Copyright © FhG 2002 4



Work Performed to Date and 
Results 

• Purpose and goal: Practice-oriented demonstration of the behavior of soft-
ware development processes, especially the influences of planning decisions 
and process changes. Two situations are considered: 1.) Demonstra-
tion of the effects of typical situations in software development projects 
(e.g., late staffing, inspections vs. testing); 2.) Executing planning and pro-
ject scenarios wherein the user can vary parameters and the effects are 
clearly visualized. A task could be to vary the parameters in a way that a de-
fined behavior of the model is achieved (e.g., shorter development time at 
same quality). 

• Benefits:  
-  Fast gaining of experience without performing real projects or experi-
ments.  
- Good identification of the importance of project management decisions. 
- Identification of side effects of decisions. 

• Steps of the execution: 
1. Presentation of the situation (problem, process, context). 
2. Description of the effects under consideration. 
3. Explanation of cause-effect-relations. 
4. Simulation with parameters defined by the user. 
5. Visualization of the effects and their causes. 
6. Simulation with different parameter values. 
7. Variation of the parameters in a way that a specific behavior is achieved. 

• User interface (GUI): 
Comparative graphical representation of the effects and their causes. 

• Scientific contributions:  
- Visualization of the causes. 
- Supporting empirically based learning with simulations. 
 

2.2 Initial Method 

The Initial method comprises the development of the whole method consisting 
of integrated techniques for process elicitation, process and quality modeling, 
simulation modeling, combining real experiments with simulation, and goal-
oriented analysis. As a first result, a framework for the method is specified.  

For the framework, the following levels can be distinguished: 

• Model pool level: On this level, modular process and simulation models are 
developed, maintained, and stored on different abstraction levels. The mod-
els on this level are not project specific.  

• Project level: On this level, project specific models are built and integrated. 
• Application level: On this level, simulations are performed for different pur-

poses (e.g., decision support, training).  

Copyright © FhG 2002 5



Work Performed to Date and 
Results 

• Real world: On this level, results of simulation runs are used to influence real 
world processes (e.g., prescriptive models based on experience gained with 
simulation are used to guide real development processes). 

For the framework, the following steps can be distinguished: 

• Selection: In this step, appropriate modeling elements are identified with re-
spect to the goal and context of the tasks to be performed. 

• Instantiation: In this step, the modular models are tailored to the project 
context. 

• Integration: In this step, the modular models are combined into an inte-
grated simulation model. 

• Operation: In this step, the simulation runs are performed. 
• Application: In this step, consequences of the simulation runs are imple-

mented in the real world process. 
 

 

Figure 2.1  Method Framework 

2.2.1 Systematic Elicitation of Process Knowledge 

The Systematic Elicitation comprises the development of techniques to elicit 
process knowledge. Software process modeling is the task of developing soft-
ware process models. This can be done either descriptively (i.e., capturing the 
structure and behavior of real processes) or prescriptively (i.e., reasoning about 
processes just from experience with the intention that the developed models 
guide software developers in a project).  

Copyright © FhG 2002 6



Work Performed to Date and 
Results 

We propose as an initial technique an elicitation approach that is concept-
oriented, i.e., the elicitation of process knowledge follows the sequential gath-
ering of information for specific process concepts. We organize the modeling as 
a seven-step activity that has been demonstrated to be useful for both descrip-
tive modeling and formal modeling of standard descriptions. The steps and 
control flows among them are described in the following. Note that the order 
of steps is sequential except when specifying the control flows by attributes and 
criteria. Product flows are specified during steps 3 and 4. The steps are de-
scribed in [VM97] and [VBG+95]. 

2.2.2 Process and Quality Modeling 

Process and Quality Modeling comprises the identification of appropriate tech-
niques for explicitly representing software development processes. We propose 
to use formal models to describe software development processes.  The follow-
ing advantages of formalized software engineering models (using formal proc-
ess modeling languages) can be identified: 

• Formal process models facilitate the creation and modification of consistent 
software process descriptions. The formality of the models allows computer-
aided processing of the models. Process modeling environments or tools (e. 
g., SPEARMINT (Insert reference.) ) support the creation and modification of 
process descriptions. The use of formal models facilitates both the consistent 
integration of separately modeled views to a comprehensive model, as well 
as the realization of automatic filters, which can select process information 
according to certain perspectives and present this information in an appro-
priate style. Since the standards can be modeled and checked from different 
perspectives, a higher degree of correctness and better capture of real world 
phenomena are achieved. This becomes more and more important when tai-
loring (i.e., adopting, modifying, and integrating) processes to project-
specific goals and characteristics is required, leading to process variants. 

• Formal process models are appropriate means for storing software develop-
ment knowledge. Reusing experience (e.g., products, process models, pre-
diction models, project plan fragments) is a key to systematic and disciplined 
software engineering. Although there are some successful approaches to 
software product reuse (e.g., class libraries), improvement should comprise 
the reuse of all kinds of software-related experience, especially process-
related experience. Formal process models are means of capturing the rele-
vant aspects of real world activities. They are easier to maintain than infor-
mal descriptions and they can be stored using various structures (e.g., type 
hierarchies, clusters of domain specific assets). 

• Formal process models enable sophisticated analyses. The formal style of 
process description allows several kinds of (possibly automated) analyses, 
which can be performed before the project starts, during process execution 

Copyright © FhG 2002 7



Work Performed to Date and 
Results 

and in a post-mortem fashion after project termination. Before the project 
starts, project plans can be analyzed statically (e.g., consistency checking) or 
dynamically (e.g., risk analysis through simulation, or what-if analysis). 
Analyses during enactment comprise project tracking and trend analyses so 
that adjustments can be done (e.g., by providing measurement-based feed-
back). Post-mortem analyses (e.g., statistical tests) are used to evaluate the 
current practices in the project context. Weaknesses are identified and proc-
esses should be analyzed with respect to the goals of the project. Also, de-
viations between the actual process performance and the models should be 
examined. 

• Formal process models are the basis for process-sensitive software engineer-
ing environments. Process-sensitive software engineering environments in-
terpret process models in order to automate parts of the development proc-
ess and to guide developers by informing them about the state of the pro-
ject. Although extensive research has been undertaken in the past, only few 
products are available. Moreover, they have shortcomings that do not allow 
for successful application in larger projects. Process-sensitive software engi-
neering environments can be seen as a future process support technology, 
which will provide services such as automated developer guidance, on-line 
coordination, communication support, and process management support. 

Quality modeling can be regarded as part of process modeling. Attributes of 
processes, products and resources correspond to quality properties. So-called 
quality models capture cause-effect-relationships.  

2.3 Simulation Requirements and Techniques 

2.3.1 General Remarks 

For modeling software development processes using advanced simulation tools 
it is useful to compare this domain with typical areas of application. As dis-
cussed in the simulation literature, there are basically two main approaches 
(simulation methods) and both of them are suitable for modeling software de-
velopment processes. The first one is based on time continuous system simula-
tion. This approach is usually called system dynamics. The other approach is 
time-discrete event-oriented stochastic simulation (discrete-event simulation; 
see e.g. [BC84]).  

We will discuss both approaches in the following two subsections, comparing 
the software development processes with typical areas of applying the two 
paradigms in simulation. In Section 2.4.2. we discuss "macro modeling", which 
is usually used for large-scale systems as an approach suitable for the simulation 
of software development processes. In Section 2.4.3. we discuss logistics as an 
outstanding example of production processes [BHL90] analyzed by simulation 

Copyright © FhG 2002 8



Work Performed to Date and 
Results 

models, and consider possibilities to transfer corresponding approaches in simu-
lation to software development processes. Also, specific requirements of soft-
ware process simulation are discussed. 

2.3.2 Continuous Modeling: Software Development and Macro Simulation 

Complex systems are often analyzed on a macro or aggregate level because a 
detailed analysis is impossible: It is not possible or too expensive to access all 
data describing such a system. The data is afflicted with stochastic influences 
etc. Therefore, much of the complexity is not considered in the model. Typical 
examples of such systems are macro-economic systems, sectoral economic sys-
tems, and ecological or demographical systems.  

Another feature of such systems is, however, more relevant: The variables de-
scribing the system on a macro level are usually interconnected and the exis-
tence of feedback loops frequently leads to an unexpected temporal behavior 
of the system. The beer game and the "Schweinezyklus" are famous examples 
of models leading to periodical changes of the system state, and this behavior is 
not obvious by just looking at the mathematical description of the system.  

In the late 50s and the 60s, Forrester [Fo61, Fo68] has developed an approach 
for simulating systems which can mathematically be described by differential 
equations or difference equations. This approach is usually called system dy-
namics. He introduced a symbolic language characterizing model objects (vari-
ables) such as stocks (accumulation variables), flows (rates of change), faucets, 
and drains.  

For applying system dynamics it is necessary to identify the most important 
variables describing a system, and to find out which temporal relationships they 
have, i.e., which variables influence which other variables and in which way. 
This approach was successfully used in a large number of areas.   

For a system dynamics model of software development processes, typical stocks 
might be the workforce, the work to be done, the work finished, etc. Flow 
variables such as the productivity of the workforce or fatigue of the staff may 
influence the time required for a specific task. The application of system dy-
namics to software development on a quite aggregate level is, therefore, rather 
obvious. However, explicit representations of objects such as team members or 
tasks to be done are not possible in simple system dynamics models. Also, sto-
chastic influences of the system are not considered. 

Copyright © FhG 2002 9



Work Performed to Date and 
Results 

2.3.3 Discrete Modeling: Software Development and Logistics Simulation 

Logistics deals with activities relating to the procurement, transport, transship-
ment, and storage of goods. As generally understood, it is concerned particu-
larly with the realization and control of the material flow (raw materials, interim 
and final products). In logistics, a simulation model represents the flow of 
goods through a manufacturing and commissioning plant. Typically, such mod-
els are based on discrete event simulation. Commercial software packages pro-
vide prespecified objects in logistics for simulating, e.g., conveyors (line objects), 
processing stations, buffers, stores, and sorters. The graphics animation of a 
simulation software shows moving units (MUs) being transported or waiting 
within a larger system constructed from single objects. Typically, various pa-
rameters of a discrete simulation model are stochastically influenced. For in-
stance, processing times may result from random numbers according to an em-
pirically measured distribution of working times. 

Other parameters (independent variables) may be set by a control strategy and 
influence the performance of the simulated plant. For instance, the initial allo-
cation of storage slots and their replenishment strategy affects the processing 
and waiting times of a commissioning system. Therefore, an exploration of the 
effects of (controllable but also uncontrollable) parameters is of high interest. 
This can be done by systematically performing simulation runs. But frequently, 
exact or heuristic optimization techniques for controlling parameters can be 
coupled with the simulation model (see 2.5.3.). 

Software development processes are processes that deal with the generation of 
basically immaterial goods. The organization and sequence of the single proc-
essing steps is less formalized compared with the industrial production of mate-
rial goods. The development of software is essentially a human, intellectual ac-
tivity. Therefore, it is less clear in advance what the quality of a software devel-
opment process is, how much time it needs, and what the costs are. Software 
engineering deals with the application of techniques for formalizing the soft-
ware process in order to make it more manageable. 

Copyright © FhG 2002 10



Work Performed to Date and 
Results 

 
Fig. 2.2:  A complex commissioning system with entrance buffers (A), main strand, and 8 commissioning loops (K1-K8) 

consisting of commissioning stations (working places) and racks  (B) equipped with storage retrieval machines. 

Typically, the process of software development is subdivided into steps such as 
requirements phase, design phase, code generation phase, and testing phase. 
In each of the phases except the testing phase some kinds of artifacts (require-
ment documents, design documents, source code) are generated. Possibly, 
there is an inspection process of an artifact for finding defects in it. Before the 
artifact is used as input for a subsequent phase, detected defects are reworked. 

These development phases and subphases can be represented in a simulation 
model. In each well-defined step, tasks are assigned to staff members. The re-
sults of performing a task, i.e. quality of the artifact, required time, incurred 
costs, are partly stochastically influenced, partly determined by factors specific 
to the artifact (e.g., size), the person working on it (e.g., his/her knowledge), 
and general organizational factors. 

Since the process of software development does not deal with physical objects 
to be moved or stored, concepts from logistics simulation, especially animation, 
can only be applied in a metaphorical sense. For instance, items (artifacts) are 
modeled as MUs and transferred through the various processing steps like ma-
terial products through processing stations. Similarly, staff members could be 

Copyright © FhG 2002 11



Work Performed to Date and 
Results 

modeled as co-factors to be assigned to some items for further processing 
steps. 

Alternatively, personnel could be represented by stationary objects. A fixed 
number of persons might be modeled as working stations performing  jobs 
(with a deterministic or stochastic duration) on MUs, i.e., the artifacts to be 
written or inspected.  

Summarizing, time-discrete event-oriented simulation facilitates detailed model-
ing by explicitly representing objects and focusing on the stochastic nature of 
processes. Compared with system dynamics modeling, these features also allow 
for a better understanding of complex processes. 

2.4 Visualization Requirements and Concepts 

2.4.1 Requirements 

Work started by first obtaining requirements for the visualization and interac-
tion demands. These depend on the particular scenarios, user intentions (train-
ing, internal communication, or decision support), and the nature of the mod-
els and simulation mechanisms employed. 

We have identified the following principle requirements: 

1.) The models themselves need to be understood by the users. 
2.) Simulation results need to be presented comprehensively. 
3.) Simulation effects need to be explored interactively. 

 
One particular requirement in software engineering simulation is that the mod-
els employed are highly abstract. Where physical processes (e.g., for plants) are 
simulated, the objects and processes that are modeled are directly observable in 
reality and thus the model structure is rather obvious. Software engineering is 
an extremely complex human process. The individual actions are not easily visi-
ble, the status of the objects (software modules) manipulated can not be ob-
served directly, and cooperative human processes evade simple modeling and 
control. 

Therefore the first premise for visualization is the strong demand to make the 
models employed explicit, to make them understandable, and to enable users 
to map the model to their perception of the software engineering process in 
their organization. The presentation of the models will also influence that per-
ception. Novices need to be trained to take a particularly effective view of the 
engineering process. In case of process reengineering, a clear view of the cur-

Copyright © FhG 2002 12



Work Performed to Date and 
Results 

rent and future process and its implications are needed to discuss and commu-
nicate changes. 

Visualizing software engineering simulations is complicated by the size of the 
models, which do not completely fit on a single page. The choice of model is 
somewhat arbitrary and multiple models covering different aspects might be 
used. It is a challenge to model human behavior in any non-superficial manner. 

Second, comprehensive visualization of the simulation results is needed. Models 
may incorporate many parameters and many subobjects. It is not sufficient to 
individually inspect particular values. A global view of the process requires par-
allel visualization of a whole subset of variables. 

The visualization needs to cope with mixed continuous and discrete simulations. 
It also needs to cope with models that consist of multiple modules or classes 
(e.g., human performance modeling) that are used in different subsystems. 
Thus, a hierarchical structure can not be assumed. 

And finally, the simulation results need to be interactively explored. To under-
stand dynamic effects or the results of a decision, an immediate feedback is 
most instructive. As many different variables as possible need to be interactive. 
Once a model is understood, it is sufficient to look at selected parameters. 
However, models are expected to evolve as engineering processes evolve. 

One of the problems arising from this requirement is that direct integration be-
tween simulation system and simulation cockpit would be desirable. However, 
as the project does not intend to create a simulation engine, such an interface 
would be proprietary for each simulation engine that is considered. To avoid 
that interfacing overhead, which is not feasible in the project, a more generic 
interface needs to be devised. 

2.4.2 User Models 

To devise appropriate visualization mechanisms in the simulation cockpit, we 
need to identify effective views used by expert software and process engineers. 
Two main investigations have been carried out: 

1.) The analysis of possible ways to visualize model structure comprehensively. 
2.) The investigation of integral and interactive data visualization methods. 

 
First approaches are being tested with users to identify gaps for further devel-
opment. 

The first observation concerning model structure is that a zooming functionality 
is needed. That facility needs to be organized along the individual modules the 

Copyright © FhG 2002 13



Work Performed to Date and 
Results 

simulation model is composed of. Modules may subdivide processes, artifacts or 
resources, but they may also represent aspects used in multiple contexts, such 
as human productivity under time constraints. A number of zooming tech-
niques exist for hierarchical structures [Card99], but special consideration is 
needed for modules used repeatedly. 

The second observation is that in software engineering, in addition to the im-
age of the software process, we need to visualize the structure of the “mate-
rial” (the software components, their status, and their possible reuse) and the 
structure of the “resources” (the development teams and their organization), as 
both structures and dependencies in those structures influence process per-
formance. 

 
Software 
Material 

Process 

Resources

 

Fig. 2.2  Components that need to be visualized. 

By observing and interviewing software engineering experts, effective views on 
a model will be identified (viewpoint analysis). For different purposes, experts 
usually select different aspects or perspectives. Such a selection and composi-
tion of model aspects is called a viewpoint. The viewpoints identified can then 
be translated into a visualization that conveys the rationale for each viewpoint 
(for initial understanding) and that allows quick access to the other viewpoints 
(for exploration). 

To illustrate dynamic transitions in a model visualization, animation effects need 
to be incorporated to enable fluid perception. Discrete simulations need a large 
number of events to comprehensively evaluate model performance, while visu-
alization needs a certain latency to perceive changes. Animation techniques can 
be employed to improve visualization of dynamic behavior. [Gonz96] 

Copyright © FhG 2002 14



Work Performed to Date and 
Results 

(2) To effectively visualize simulation results, in particular the results of continu-
ous simulations, an aggregation mechanism is needed. Aggregation avoids te-
dious inspection of individual simulation items. Data can be exported from 
commercial simulation packages as database files. The InfoZoom system 
[Spen96, see 2.5.4] lets the user explore such files interactively and enables the 
user to zoom in on particular aspects. In this way, batch simulations (varying 
multiple input parameters) can be presented. 

 

Fig 2.3  InfoZoom compressed presentation of simulation results. 

2.5 Tool Support 

Results on ascertaining tools for data analysis, simulation, and optimization to 
be used within the project are presented in the following. 

2.5.1 Data Mining and Knowledge Builder 

As already mentioned, software development is a process that is subdivided 
into different phases such as 1) requirement phase,  2) design phase,3)  code 
generation phase, and 4) testing phase.  In each of the phases 1) –3) a docu-
ment is generated, inspected, reworked before it enters the next phase. A lot of 
factors like experience or fatigue of the developers have an influence on the 
time needed for the phase and the resulting quality of the document.  It is not 
always clear how the different factors that determine the duration and overall 

Copyright © FhG 2002 15



Work Performed to Date and 
Results 

quality are interacting. Therefore, rules have to be developed using historical 
data and the knowledge of software engineers. In other fields of applications, 
data mining tools and knowledge builders are being successfully used. An in-
troduction to data mining can be found for example, in [Lusti99] or [Nauck96].  

2.5.1.1 Data Mining 

Data mining tools are used to discover patterns in historical data. There are  dif-
ferent types of data mining tools available, which can be separated in three 
technologies [Attar].  

1.) Query and reporting tools  
Applying these tools, it is possible to find answers to queries already being 
suspected. In software engineering, “cause effect diagrams” are an effec-
tive way to describe relationships between the different factors.   These 
could be used for the investigation of patterns. 

2.) OLAP tools  
In addition to the previous tools, these tools allow to interrogate multi-
dimensional databases speedily and graphically.   

3.) Data mining tools for pattern recognition 
These tools automate the process of discovering pattern in data. They en-
able business goal driven discovery, which means that, in addition to the 
previous tools, the user can ask for patterns relating to low costs, for ex-
ample.  

 
The tool used in the project is XpertRule Miner from Attar software, which sup-
ports all the features described above. It is possible to import data from Micro-
soft Excel or other OBDC compliant data sources. The tool provides a graphical 
environment for supporting all the stages of the data mining process.  

2.5.1.2 Knowledge Builder 

In addition to the data mining tool, XpertRule KBS and XpertRule Knowledge 
Builder will be used to capture the knowledge of the software developers and 
software engineers to create rules, which are then integrated into the design 
process.     

XpertRule consists of a graphical development environment that makes it easy 
to prototype, build, maintain, and test knowledge based systems.   

2.5.2 Simulation Tools 

Based on two main sources, a survey of state-of-the-art simulation software has 
been performed: An extensive survey on software packages for simulation has 

Copyright © FhG 2002 16



Work Performed to Date and 
Results 

appeared in a recent issue of OR Today [Sw01]. This is a continuation of a for-
mer survey [Sw99] of tools for discrete event systems simulation and related 
products. Furthermore, in 1999 a survey study was performed at ITWM. This 
study includes a detailed comparison of features of the packages eM-Plant, 
ARENA, Taylor II, and Taylor ED, which are suitable for logistics simulation. 
Based on these market surveys, two main results are: 1) Basically, all simulation 
tools considered in these surveys provide interesting features, at least for dis-
crete-event simulation. 2) Some of the packages can be excluded by being too 
specialized and too expensive. For these reasons, we considered the literature 
on software process simulation according to the selection of suitable packages. 

The system dynamics approach is mostly used for “macro-modeling” and sup-
ports feedback loops. The second approach is usually better suited for more 
complex and detailed models. Graphical animation is supported as well as sto-
chastic influences on model data. 

Most software process simulation models discussed in the literature are based 
on the system dynamics approach. Examples are given in [LAS97], [MaTa00], 
[MeCo97], [PfLe00], or [PKR00]. Different software tools are available for sys-
tem dynamics models. Quite often, the commercial software package VENSIM 
is used, e.g., in [PfLe99] and [PfLe00]. This tool includes, among other features, 
a visual modeling interface and an optimization component. We have tested 
VENSIM by applying it to some initial modeling of a continuous software proc-
ess. 

The commercial simulation software package EXTEND provides the possibilities 
of both continuous and discrete modeling. Therefore, it allows for more de-
tailed and stochastic models than a pure system dynamics type software. The 
EXTEND software is quite frequently used for software process simulation: A 
complex continuous EXTEND model has been worked out in [Rus97]. Due to 
the need of using discrete modeling features in a mainly continuous model, 
EXTEND has been used in [RCL99]. A hybrid (continuous and discrete) model is 
developed in [MaRa00]. In [ChSt00], for instance, a simple discrete model of a 
software requirements development process is discussed. 

Other simulation packages used in the literature for software process simulation 
are, for instance, SIMULOG/QNAP2  [DoIa00] (for a hybrid simulation model), 
SESAM, or ITHINK (a system dynamics software). 

Because of the frequent usage in software process modeling and the provision 
of features for discrete and continuous modeling, we decided to focus on the 
application of EXTEND for the project. The well-established tool VENSIM is used 
in the project in a supplemental way. 

Besides that, the optimization department of ITWM has been using the eM-
plant simulation software (and its predecessor Simple++) for various industrial 

Copyright © FhG 2002 17



Work Performed to Date and 
Results 

projects for a couple of years. The utilization of this package, for which several 
licenses are available, is considered as well.  

2.5.3 Optimization Tools 

Both simulation packages chosen for the project, EXTEND and VENSIM, include 
optimization components that might be useful for tuning a simulation model 
(see 2.6.3.). The most common approach at ITWM for combining simulation 
and optimization is, however, as follows: If possible, sub-problems are solved 
prior to the simulation phase using a traditional exact solution method usually 
based on commercial software like CPLEX or XPRESS. If such a priori optimiza-
tion is not possible, online strategies are applied during optimization. Most of-
ten these are heuristic approaches, since an exact solution would consume too 
much computational time. 

2.5.4 Visualization Tools 

Most simulation packages include visualization tools. Recent research has 
shown that focus+context techniques improve the visualization of complex rela-
tionships [Card99]. Furthermore, dynamic queries [Card99] is a mechanism to 
explore a multidimensional space, for example, of simulation results. 

InfoZoom [Spen96] is a tool that combines both techniques to visualize and ex-
plore complex tables. The user can quickly focus in on arbitrary subsets of the 
data and thus get an interactive understanding. Similar to a spreadsheet, Info-
Zoom also includes the capability to generate diagrams. 

In the project, InfoZoom will be used to visualize and explore simulation results 
exported from a simulation package. A direct connection using ODBC will also 
be investigated. 

2.5.5 Other Tools 

As a general purpose tool providing unified modeling language (UML), the "Ra-
tional Rose Data Modeler" is used for supporting the collaborative development 
of documents within the project. 

In addition to the tools of Attar Software, ITWM uses MATHWORKS Matlab in 
combination with the neural network, system identification, fuzzy and simulink 
toolboxes to develop pattern recognition algorithms, fuzzy systems and simula-
tion tools (see for example [Weiß99]). Since 2000, the  ITWM department 
Adaptive Systems has been an official partner of MATHWORKS, Inc. 

Copyright © FhG 2002 18



Work Performed to Date and 
Results 

2.6 Initial Model for Software Inspections 

2.6.1 Purpose of the Model 

This section sketches an initial model for an example key software development 
process, i.e., a software inspection process. The goal of the initial model is to 
understand the relationships between effort, duration, the number of defects 
detected, and their impact factors. 

2.6.2 Process Model of an Inspection-based Process 

In the following, a process model for code inspections is described. A detailed 
description of this inspection process can be found in [EbS93]. The description 
is based on a product-focused V-Model. Figure 2.2 shows a part of the overall 
development process, in particular, the design and implementation of a com-
ponent. This part needs to be instantiated for each component of the product. 

 
Figure 2.2  Design and implementation of a software component 

The inspection of the component design can start if the creation of the compo-
nent design document is completed. Additionally, the component requirements 
are needed as inputs for this inspection process. Output of the component de-
sign inspection process is an inspected component design, which is a version of 
the component design document that is corrected with respect to the defects 
found during the inspection process. The inspection process of the component 
code is analogous. 

Copyright © FhG 2002 19



Work Performed to Date and 
Results 

Figure 2.2 shows the product flow. We differentiate between the documents 
(component design and component code) before and after the inspection to 
emphasize the fact that the document status has changed. This excerpt of the 
development process needs to be instantiated for each component of the sys-
tem to be developed. The initial simulation model focuses on the activity ‘in-
spect component code’. This activity is refined, meaning it is described in 
greater detail in another product flow. Figure 2.3 shows the process of a single 
inspection performed for one code component. In the following, we describe 
the activities and roles in the inspection process. 

 

Figure 2.3  Refinement of the component code inspection activity  

2.6.2.1 Inspection stages 

The goal of the inspection process is to eliminate defects from a work product. 
For this, the following activities are performed. 

1.) Planning: The main objective for the planning activity is to organize the 
subsequent steps of the inspection process. After finishing a work product, 
the author collects all necessary material for the inspection and selects a 
moderator for the inspection. Together they determine the other inspection 
participants and the moderator schedules the following activities with re-
spect to time and staffing. He or she also distributes the inspection materi-
als (e.g., the component code, the inspected component design and other 
inspection material like checklists). 

2.) Overview meeting: If an overview meeting is held, the objective is the 
education of the inspectors (e.g., to explain algorithms or complex rela-

Copyright © FhG 2002 20



Work Performed to Date and 
Results 

tions). The author presents the material to be inspected to the other par-
ticipants. The moderator arranges and moderates the overview session.  

3.) Preparation: The preparation is an individual activity that is performed 
separately by each participant. The participants become thoroughly familiar 
with the material and note any suspected defects they can identify. This ac-
tivity is often also referred to as ‘detection’. 

4.) Inspection meeting: All roles participate in the inspection meeting. The 
moderator conducts the meeting and the roles of the reader and the re-
corder are performed by members of the inspection team. The reader 
paraphrases the product and every inspector mentions the potential defects 
he/she found. The recorder records all defects that are accepted as defects 
in a defect list. This activity is often also referred to as ‘collection’. 

5.) Correction: The objective is to remove all defects found in the artifact. The 
author performs the correction. 

6.) Follow-up: The objective of the follow-up is the verification of the rework 
that was done. The moderator certifies that the corrections have been 
completed and creates an inspection report. 
 

2.6.2.2  The Different Roles in an Inspection Team 

An inspection team is formed by several persons who perform the following 
five roles. Together they inspect a work product to identify the defects in the 
work product.  

1.) Author: The person produced or is responsible for the changes in the prod-
uct to be inspected. The author can not fill the roles of moderator, reader, 
or recorder in the inspection team.  

2.) Moderator: The moderator ensures that the inspection process is followed 
and the members of the inspection team perform their tasks in the inspec-
tion process.  

3.) Reader: The reader is a member of the inspection team who guides the in-
spectors through the work product during the inspection meeting. This role 
can not be performed by the author. 

4.) Recorder: The recorder writes the defect list during the inspection meeting. 
He adds only the defects that are identified as defects by the inspection 
team and classifies the defects with the moderator. 

5.) Inspector: All members of the inspection team can be inspectors, including 
the author. The inspectors should only identify defects and should not 
search for solutions. 

A more detailed description of the roles in a software inspection process can be 
found in [EbS93]. 

Copyright © FhG 2002 21



Work Performed to Date and 
Results 

2.6.3 Identification of Cause–Effect-Relationships 

Before we can build the simulation model, the influencing factors have to be 
identified. Software development  is a human based and highly dynamic proc-
ess and, therefore, difficult to analyze and to simulate. We will apply parts of 
the System Dynamics technique (see Section 2.3.2). Causal diagrams are used 
for analyzing the relationships of the attributes in the inspection process. 

At first, we will describe the influencing attributes of an inspection process. 

In [LaD89] the authors differentiate the core inspection concepts and relation-
ships into five dimensions. This description is used to identify potential impact 
factors on the variables of interest (e.g., effort, duration, and number of de-
tected defects). These five dimensions are the  

• technical dimension, which covers the different methodological variations; 
• managerial dimension, which characterizes the relationships between an in-

spection and project issues; 
• organizational dimension, which characterizes the relationships between an 

inspection and an organization; 
• assessment dimension, which describes how to evaluate an inspection; 
• tool dimension, which deals with tool support for inspections.  

For the initial simulation model we concentrate on the first three dimensions. 
The fourth dimension describes assessment issues. We exclude the tool dimen-
sion for the initial model because [LaD89] describe that the use of tools is lim-
ited. 

2.6.3.1 Impact Factors 

The technical dimension covers the different methodological variations. The fol-
lowing impact factors have been identified: 

• Process: The process describes the different variations and similarities among 
the methods with respect to the selected reference process. 

• Product: It is differentiated which type of product is to be inspected, e.g., a 
code document or a requirements document. Also the maturity, the size, 
and the complexity of a product are important attributes. These attributes 
are the product characteristics. 

• Reading technique: The reading technique describes the technique that is 
used during the preparation phase of the inspection. We concentrate on 
reading techniques, because reading is one of the key activities for individual 
defect detection [Bas97]. Examples for reading techniques are ad-hoc read-
ing or checklist based reading. 

Copyright © FhG 2002 22



Work Performed to Date and 
Results 

• Team size: The team size interrelates with the process, because variations of 
the process influence role definitions and workforce for the inspection. 

The organizational dimension characterizes the relationships between an in-
spection and an organization. If necessary, these influences have to be modeled 
but this requires individual adaptation of the model according to the situation 
found in the organization. Especially the human factors and connected factors 
have to be addressed individually. Some can be clustered as characteristics of 
the team. Besides the number of people and the number of teams involved, the 
number of inspectors and their experience are important impact factors.  

• Experience of inspectors: The experience of the inspectors is an obvious im-
pact factor. It can be divided into three kinds of experience: inspection ex-
perience, development experience, and domain experience. 

• Number of inspectors: There is a relationship between the number of inspec-
tors and the number of defects detected. 

• Number of people in the inspection team: The number of all people involved 
in the inspection process. This also correlates with the team size. 

• Number of teams: Usually only one inspection team performs the inspection. 
More than one team increases the duration and the effort of the inspection 
but also improves the number of defects detected. 

In the following we will use only the experience of the inspectors and the num-
ber of inspectors, because the number of teams only fits in special cases (multi-
ple teams inspect the same document in parallel). The number of people and 
the team size can be seen as the same impact factor. 

In software development projects, time pressure is almost always a factor that 
influences people. The productivity of the team or that of an individual also has 
an influence on the performance of the inspection. For that reason, we define 
new attributes that apply to the team or to each individual person.  

• Time pressure: Time pressure is a cause for overtime and will eventually re-
sult in more fatigue. 

• Fatigue: A high workload and overtime for a longer time period result in fa-
tigue effects. The inspector does not find as many defects as if he/she were 
rested. 

• Productivity: Productivity can be divided into three different kinds of produc-
tivity: the development productivity (for writing the code), inspection or 
reading productivity, and rework or correction productivity.  
 

2.6.3.2 Factors of Interest  

The managerial dimension characterizes the relationships between an inspec-
tion and project issues. These attributes are often the dependant variables. 

Copyright © FhG 2002 23



Work Performed to Date and 
Results 

• Effort: Effort addresses the number of hours spent on an inspection. Costs 
are closely related because an inspection is a human-based activity. 

• Duration: There are two kinds of duration, the duration of a single inspec-
tion (including planning, overview meeting, .... ) and duration with regard to 
all inspections performed in one project. Both are measured in calendar 
time. 

• Number of defects detected: A very important factor that can be improved 
by inspections is the number of defects in a product. Therefore the number 
of defects detected is seen as a factor of interest. 
 

2.6.3.3 Cause Effect Diagram 

A cause effect diagram displays all factors of a mental model and their rela-
tions. “In System dynamics, the term ‘mental model’ includes our believes 
about the network for causes and effects that describe how a system operates, 
along with the boundary of the model and the time horizon we consider rele-
vant.” [Ste00] 

In Table 2-1 the link polarity in a cause effect diagram is defined. The links de-
scribe the mental structure of the model, but they do not describe the exact 
behavior of the variables in the model.  

Symbol Interpretation 
Mathematical  

Definition 

   

 

All else equal*, if X in-
creases (decreases), then Y 
increases (decreases) above 

(below) what it would 
have been. 

In the case of accumula-
tions, X adds to Y 

0/ >∂∂ XY

( )
0

t

t

dsX +∫ K

 
in the case of accumu-

lation 

 
0t
YY +=

 

All else equal*, if X in-
creases (decreases), then Y 
decreases (increases) be-

low (above) what it would 
have been. 

In the case of accumula-
tions, X subtracts to Y 

0/ <∂∂ XY

( )dsX +− K

 
in the case of accumu-

lation 

 

0

0

t

t

t

YY += ∫

X Y
+

X Y
-

Table 2-1 Link polarity: definition [Ste00] 
* All else equal means that if all other variables are kept equal, then X and Y show this behavior. 

Copyright © FhG 2002 24



Work Performed to Date and 
Results 

In [LaD89] the authors present causal models to explain the influencing factors 
on inspection quality, effort and duration. The models are similar to cause ef-
fect diagrams but do not include feedback cycles. In Figure 2.4 the three dia-
grams are incorporated into one diagram. The three variables effort, duration 
of inspection, and number of defects detected in an inspection are the depend-
ent variables. Two groups of independent variables can be identified: product 
characteristics and team characteristics.  

 

Number of
defects

detected in an
Inspection

Reading 
technique 

Size of the
Product

Experience
of Inspectors

Difficulty of
the Product

Effort 

Duration of
Inspection

Number of
Teams

Organization of Defect
Detection Activity

(Process)

+

-

+

Inital Quality of
the Product

Number of
Inspectors

Number of
People in the

Inspection team

Lifecycle
Product

Product 
Characteristics 

Team 
Characteristics 

+ 
+

+ 
+

- 

+

+

+ 
+

-

 

Figure 2.4 Merged Diagrams from [LaD89] 

For the simulation model, some variables will be merged and new variables will 
be introduced to show further dynamic effects such as time pressure. Other 
variables effect only the model architecture, such as the organization of the de-
fect detection activities. 

Figure 2.5 shows the cause effect diagram for the code inspection process. The 
diagram originates from expert interviews and literature (in particular [Lad98]). 
The diagram introduces some new variables that form the dynamics of a simu-
lation model. These variables will be explained in the following paragraphs.  

Copyright © FhG 2002 25



Work Performed to Date and 
Results 

Number of
Defects

Detected in an
Inspection

Reading
technique

Size of the
Product

Experience
of Inspectors

Difficulty of the
Product

Effort

Organization of Defect
Detection Activity

(Process)

+

Inital Quality of
the Product

Number of
Inspectors

+

+

+

+

-

Team Size+

-

-

+

Time Pressure

Human
Effect

-

Development
Experience

Inspection
Experience
Domain

Experience

Inspection
Productivity +

-

+

Number of
Component Code

Modules

Assignment to
Inspection

Assigned
Inspections ToDo

Assigned
Inspections done

Working Time
+

+

+

-

+
+

+

-

+

+

 

Figure 2.5  Cause effect diagram of an inspection process 

Some of the variables from Figure 2.4 are missing. In the cause effect diagram 
the product type or life cycle product is excluded as impact factor because this 
cause effect diagram is for the code inspection process and, therefore, the type 
is constantly code. Also, the ‘number of teams’ and the ‘number of people in 
the inspection team’ are left out because the ‘number of teams’ applies only if 
two or more teams inspect an artifact in parallel and the number of people cor-
relates with the team size. Another important factor, the duration of the in-
spection, is left out because time is a simulation variable. If the time for a single 
inspection or all inspections is needed, it can be determined from the simula-
tion time. In the following, the variables are explained in more detail. 

• Effort: Effort is the overall time spent on the inspection (measured in person 
days or hours). This information is also a good figure for the costs, because 
effort is the main cost driver for inspections. With the number of defects 
found the costs per defect can be computed. 
Measure: Person days (PD) or person hours (PH) 

• Experience: The participants of an inspection have a different level of experi-
ence. The type of experience is also different, e.g., development experience, 
inspection experience, and domain experience. Generally, the more experi-

Copyright © FhG 2002 26



Work Performed to Date and 
Results 

ence a participant or the average team member has, the more defects will 
be found and corrected. For measuring experience, we can introduce a 
measure that defines different levels of experience. 
Measure: Experience level 

• Difficulty of the product: Often this attribute of a product is called product 
complexity. The complexity of a product also influences the number of de-
fects found. On the one hand, a complex product often has more defects 
that can be found. On the other hand, if not enough effort is spent to un-
derstand the product, less defects are found than possible.  
Measure: Complexity (Possibly insert some explanations and references on 
how to measure complexity.) 

• Initial quality of the product: If a mature product is inspected that was 
merely changed, defect density is lower than in a newly created product and 
less defects will be found. Often this product attribute is called product ma-
turity.  
Measure: has to be defined. 

• Size of the product: There is a correlation between the size of a product and 
the number of defects it contains. 
Measure: LOC or Function Points. 

• Reading technique: Depending on the reading technique, more or less de-
fects can be found. In industrial practice three techniques are mainly used, 
Ad hoc, Checklist Based Reading (CBR), and Perspective Based Reading 
(PBR). In [LEH99] the authors compare CBR versus PBR. Generally, about 1/3 
or 1/2 of the defects in a product are found. 
Measure: Integer value, each represents a reading technique.  

• Team size: The number of defects found depends on the number of partici-
pants (This is a nonlinear dependency). [EbS93] recommend seven partici-
pants as the maximum team size and three as the minimum. The team size is 
closely related with the number of inspectors because all inspectors are 
members of the team. 
Measure: Number of team members. 

• Number of inspectors: The number of team members who read the code in 
the role of an inspector. 
Measure: Number of inspectors. 

• Organization of defect detection activity (process): The process has an im-
pact that can not be clearly defined. Depending on changes a model could 
be changed completely or only a parameter will change.  
Measure: None  

• Number of defects detected in an inspection: This is usually the main factor 
of interest. If rework is modeled, the number of defects detected influences 
the rework time for a code component. 
Measure: Number of defects detected 

• Time pressure: Time pressure in a project can lead to overtime for the project 
members to accomplish the work, so the working time per day will increase. 

Copyright © FhG 2002 27



Work Performed to Date and 
Results 

Often, time pressure leads to a go / no go decision for the inspection.  
Measure: to be defined. 

• Working time: The working time are the hours per day that are spent work-
ing on inspections. Here a sophisticated model can simulate the behavior of 
a person. We simply assume 8 hours per day as normal working time. More 
hours will be counted as overtime. 
Measure: Hours per day 

• Fatigue: If the participants endure more working hours per day for a longer 
period of time, fatigue will lessen the usefulness of the inspection. Fatigue is 
a factor that decreases the number of defects found and the inspection pro-
ductivity. 
Measure: To be defined. 

• Inspection productivity: Productivity can be split into three productivity types: 
inspection productivity, development productivity, and rework productivity. 
Productivity can be set for an individual or an average productivity for a 
group. 
Measure: LOC/hour or Function points/day 

• Number of component code modules: The number of modules to be in-
spected. 
Measure: Number of modules 

• Assignment to inspection: Not all components need to be inspected, here 
we can specify the percentage of the components to be inspected. 
Measure: % or an absolute number if known 

• Assigned Inspections To-Do: This is the number of the inspections that really 
has to be done.  
Measure: Number of modules 

• Assigned inspections done: These are the inspections done. This includes the 
rework in the following model.  
Measure: Number of modules 
 

2.6.4 Building a Simulation Model 

Before developing a simulation model, a decision has to be made on whether a 
continuous model or a discrete model should be built. At first we started with a 
continuous model and with the system dynamics (SD) tool Vensim. In the SD 
approach all items are scalar values. This assumption works very well for high 
level models. If more details are necessary, then the differences between the 
items have to be considered. For example, design and code items differ in struc-
tural properties like size, complexity, and modularity. Defects can also have dif-
ferent types and consequences depending on the phase when they are found. 
In accordance with this requirement the simulation tool EXTEND can also han-
dle discrete event models besides the continuous models. Therefore, we used 
EXTEND for the later models. 

Copyright © FhG 2002 28



Work Performed to Date and 
Results 

2.6.4.1 Abstract Model 

The description of the inspection process in Section 2.6.1 illustrates the struc-
ture and the different steps of the inspection process. The cause effect dia-
grams of the software inspection show the expected relationships between the 
different variables (explanatory and dependent variables). In software engineer-
ing, rules are usually developed to improve the overall software development 
process of a company following a Goal Question Metric  (GQM) approach.  
In a simulation model, additional feedback loops should be considered, such as, 
for example, the growth in experience of the developer during the different 
phases of the process. The experience influences the productivity of producing 
a document and the number of defects, especially those generated by the de-
veloper in the coding process, or the time needed for reading a document dur-
ing the inspection process. 
The relationships of all variables have to be determined in order to model and 
simulate the feedback in the software development process. Therefore, data 
mining tools or the Knowledge Builder will be used in a next step to generate 
the missing rules depending on the data or description of the process available.   

Cause effect diagrams of all processes (coding, inspection, rework) of the con-
sidered phase are generated and it becomes quite obvious which of the vari-
ables of the inspection process also play an important role in other processes in 
the considered phase. It seems that especially the feedback relationships in the 
software development process have not been considered in very much detail up 
to now. Additionally, one has to consider that not all variables will be changed 
at the same time step. It is also possible that a team member has to interrupt 
his or her work in the coding process to participate in an inspection process. 
The extra time needed to start programming again could also be modeled de-
pending on the experience of the programmer. Modeling such interrupts can 
be seen as fine tuning of the simulation model, which is not supported in many 
existing simulation tools and which will not be considered in an initial simula-
tion model. 

Every variable usually denotes an attribute of an object. In logistic simulation, 
the objects influenced in different processes were modeled by moving units 
(MU), where every MU has different values for the different variables. The vari-
ables of a moving unit are changed in a working station denoted here as proc-
ess (coding, inspection, rework).   

It seems quite reasonable to split up the variables into different groups. A quite 
natural splitting is: 

1.)  Global variables 
2.)  Item (document) variables 
3.)  Staff variables 
4.)  Software inspection variables  

Copyright © FhG 2002 29



Work Performed to Date and 
Results 

2.6.4.1.1 Global Variables 

These variables are defined by the manager and can be seen as the input of the 
whole software development process. The variables determine, for example, 
the time pressure and the complexity of the different items. In the simulation 
software these variables should be also modeled as inputs.  

1.)  Product complexity 
2.)  Product size (number of items)  
3.)  Time schedule 
4.) Team members (number, qualification) 

2.6.4.1.2  Item Variables 

A piece of code that has to be designed, coded, inspected, and reworked dur-
ing a phase is called Item. All variables that appear in all working units are col-
lected in this group. They can be handled as MUs (see Section 2.3.3). 

1.)  Complexity (input–output functions, database functions,…)  measured,  
e.g., in function points 

2.)  Total size (lines of code) 
3.)  Size of new code  
4.)  Size of inspection code 
5.)  Maturity 
6.)  Defects 

2.6.4.1.3 Staff Variables 

This group simply includes variables one would associate with humans. The val-
ues of the variables are also changed in the different processes (coding, inspec-
tion, rework). Staff members can be modeled as moving units, too. In contrast 
to ITEM variables, these MU pass the different processes several times and are 
therefore feedback components of the considered phase. Additionally, they can 
play different roles in an inspection process (author, moderator, reader,..). 

1.)  Fatigue 
2.)  Experience in 

a.) programming  
b.) programming language 
c.) inspection   

3.)  Personal Productivity 
4.)  Personal error generation factor 

2.6.4.1.4 Inspection Specific Variables 

Copyright © FhG 2002 30



Work Performed to Date and 
Results 

Since one goal of building up the simulation tool is decision support, the simu-
lation tool should allow the use of different inspection techniques. Here only 
those variables are collected that appear in the inspection process and that 
might differ in the various reading techniques. Therefore, in a discrete simula-
tion approach the variables can be seen as attributes of a working station, 
which can be changed interactively by the software manager. 

1.) Team size (inspection) 
2.) Roles (inspection)  
3.) Preparation Time (inspection) 
4.) Meetings (yes/no) (inspection) 

It now becomes clear that a discrete simulation approach should be used for 
the simulation, since the state of the variables for all staff members and for all 
items differs. Additionally, the number of persons involved in an inspection 
process also varies during the process. Staff not involved in the inspection proc-
ess can proceed with other jobs.  

In the next step the relationships between the different (MU) objects at the 
working stations, which are the different processes, have to be determined. 
Therefore, known relationships have to be plugged into the simulation model 
and new rules have to be generated to describe the change of the values of the 
different variables in a working station, which have not been considered up to 
now.  The choice of methods to be used for rule generation depends on the al-
ready existing knowledge or historical data available for the different phases.   
Furthermore, one has to mention that every time a new variable is introduced 
in the inspection process, one should analyze its relationships to the other vari-
ables. 

To the see the drawbacks of a system dynamics approach with respect to the 
goal of simulating a software inspection process, we build an initial time con-
tinuous model. The main disadvantage is that one can not really differentiate 
between the properties of the different staff members. The only possibility in a 
continuous time model would be to use stochastic disturbances of the different 
variables. Most system dynamics simulation tools can not handle such stochas-
tic elements. 

Based on the description above we started designing an initial discrete-event 
simulation model for software development, which will be explained in the next 
subsection. Let us note that various relationships between the different vari-
ables still have to be determined. Therefore, the simulation model should be in-
terpreted as a flow diagram for the different MUs in one phase in the software 
development process, which has to be refined. On the other hand, starting to 
build this model leads to a better understanding of the relationships of the dif-
ferent subsystems (working stations).  

Copyright © FhG 2002 31



Work Performed to Date and 
Results 

2.6.4.2 System Dynamics Model 

For building a model, more information is necessary than given by the attrib-
utes of the software inspection described before. There are entities, factors, 
variables, interactions, and operations to be identified that describe the soft-
ware development process [RCL98]. The entities are mainly  people involved in 
the process, but can also involve facilities, equipment, and tools if these are 
crucial for the process. Factors have a relevance for the general software proc-
ess like application domain, size, schedule, and other information that charac-
terizes the process. The variables are the factors a manager could change, like 
the number of developers and the skill levels of those individuals. Interactions 
and operations increase the complexity of the model. Operations are the tasks 
that need to be performed in order to transfer requirements to a design or a 
design to code, for example. Typical operations are requirements analysis, archi-
tecture development and so on. The most challenging task is to represent the 
interactions among the factors and variables in a software process that are im-
portant for the model. For example: How does the exhaustion of people affect 
their productivity or the quality of their work? Or in the case of inspections: 
How does the reading technique affect the number of defects found during the 
detection phase of an inspection? 

For our first models we used the continuous SD technique. Below the task flow 
of a software process is shown. This model represents one stage in the devel-
opment process (e.g., coding) with an inspection. 

Copyright © FhG 2002 32



Work Performed to Date and 
Results 

Tasks ToDo Tasks Done
Generate Tasks Tasks per Day

WorkflowWorkforce

Tasks per day&
person

Average Worktime
per Day

Overtime

Hours needed for
a task

Fatigue
Exhaustion Recovery

Exhaustion per hour
Overtime

Recovery Delay

Schedule Pressure

Days left

planned Time
elapsed time

Task
inspected

Task
reworked

Tasks insp. per
Day

Tasks reworked
per day

Number of
tasks workflow for

doing workflow for
inspecting workflow for

reworking

Experience of
Staff

Inspection
Productivity

Complexity

Reading
Technique

<Schedule
Pressure>

 

Figure 2.6  System Dynamics model of the Task Flow 

As shown in Figure 2.6, only one value for the complexity of the complete 
product or for the number of participants (workforce) can be set. On the other 
hand, it is easier to model feedback loops. A typical feedback loop is the fa-
tigue of the participants. In Figure 2.7 the diagram for exhaustion, fatigue, and 
recovery of the model in Figure 2.6 is shown.  
There are no differences between the tasks that have to be accomplished. If 
more details are required, a discrete model has to be used. 

Copyright © FhG 2002 33



Work Performed to Date and 
Results 

Exhaustion/ Fatigue and Recovery
0.12

0.096

0.072

0.048

0.024

0
0 20 40 60 80 100 120 140 160 180 200

Time (day)

Exhaustion : test
Fatigue : test
Recovery : test
Recovery Delay : test

 

Figure 2.7  Exhaustion, Fatigue and Recovery of all participants 

2.6.4.3 A Discrete-Event Simulation Model for Software Development 

For developing a discrete model, at first we have to identify the entities, factors, 
and variables. After that the operations and interactions are described with the 
architecture of the model. A cause effect diagram is also useful here to capture 
the mental model.  

As discussed in Section 2.3.3, items and staff members are modeled as moving 
units (MUs).These MUs have attributes that contain the dedicated variables and 
factors of the single items. An MU can match a group of variables of the ab-
stract model.  

A person object represents one person with their skills and personal attributes, 
i.e., the staff variables of the abstract model. An item object represents a part 
of the work that has to be accomplished by the people. This could be a soft-
ware module that has to be implemented or a set of requirements that have to 
be transformed into an architecture design. This type of object contains the 
item variables of the abstract model. 

Copyright © FhG 2002 34



Work Performed to Date and 
Results 

count

event

#
Exit
(4)

CD L W

F U

inspect

1 2 3

Rand

A
∆

Get

defects

Eqn

compute defects

A
∆

Get

complexity

RS

C

Status
O
C
I

49

F

L W

#

demand

N

B
A

Y
a>=b

Start when enough 
items are coded

b?

a

select

A
∆

Get

Size

Eqn

comp insp.time

A
∆

Get

complexity

A
∆

Get

Found Defects

Start when enough 
items are inspected

Set A(5)

reworked defect
Found Defects

A
∆

Get

defects

demand

a b ca
b
c

demand

a
b
c

Eqn

com found def

Eqn

comp esc def

0.7

A
∆

Get

Found Defects

RS

C

found def.

F

L W

#

demand

N

B
A

Y
a>=b

demand

a b c
a
b
c

N

B
A

Y
 a>0

T

R
0

T

R
0

A
∆

Get

Size

A
∆

Get

complexity

A
∆

Get

Found Defects

demand

a
b
c

Eqn

CD L W

F U

rework

A
∆

Get

defects

RS

C

Eqn

100

demand

a b ca
b
c

demand

a
b
c

A
∆

Get

Size

change

#use
u

CD L W

F U

produce

b?

a

select

G

Generate Project

I

S

T

a

b

b?

a

select

A
∆

Get

productivity

0.12

new defects 

a

b

A
∆

Get

Found Defects

A

Change
A
∆

defects

Eqn

new defects

cr

items
Manage

items

a

b

G
I

S

T

A
∆

Get

item no.

Eqn

coding switch

Eqn

compute time 

Eqn

insp. switch

A
∆

Get

reworked defect

Eqn

update defects

RS

C

new defects

RS

C

reworked defect

Count

#r

Set A(5)

defects

Set A(5)

reworked defect

 

coding switch
Items to inspection

waiting for rework

staff for inspection

original defects

found defects

found defects

waiting for inspection

original defects

waiting for coding

staff for inspection

waiting for rework

item block

Items to inspection

staff for rework

inspection switch

staff for rework

Generate staff

remaining items

waiting for coding
coding switchwaiting for inspection inspection switch

waiting for inspection
waiting for rework

C

item block

item block

Figure 2.8  Discrete model of an inspection based process 

In Figure 2.8 the discrete model of an inspection based process is shown. This 
model represents one phase in a software development process, the implemen-
tation of modules with subsequent inspection. The first 100 steps are used to 
generate the items, people and software modules. The upper line represents 
the implementation or production of the module, in the middle line the phases 
for finding and colleting the defects and in the lower line the rework of the de-
fects found are modeled.  

Copyright © FhG 2002 35



Work Performed to Date and 
Results 

 
Figure 2.9  Current, found, reworked, and new defects   

In Figure 2.9 the red line shows the sum of all defects in all modules. This is a 
theoretical value because in reality, the total number of defects is never known. 
The yellow line shows the sum of all identified defects, the green one all re-
worked defects and the pink one all new defects introduced during the rework. 

In the following, we will discus the assumptions of the specific initial simulation 
model for software development, Figure 2.8. The model simulates the genera-
tion of software items (e.g., code fragments) including their inspection and the 
rework of found defects. The model is a discrete event simulation model con-
structed in EXTEND. Since some of the interactions of the different systems and 
variables have not been determined up to now (and can, possibly, never be de-
termined in a deterministic sense), stochastic influences are used in the model. 

The simulation consists of four subphases as discussed below. An item passes 
the subphases 1-3 sequentially. A "batch size" is used for defining how many 
items are passed en bloc from one phase to the next one. Items finished in a 
subphase are stored in a FIFO queue before being transferred to the next one. 

The labor pool is initialized by a given number of staff members. Staff is as-
signed to items during each of the phases 1-3. A person is assigned with higher 
priorities to tasks at earlier projects phases. 

Time is generally measured in hours. 

 

Copyright © FhG 2002 36



Work Performed to Date and 
Results 

Subphase 0: Project generation and staff generation 

• A project consists of a fixed and a priori known number of items, e.g., 100. 
• The size of an item is measured in function points (fp) and assumed to be 

uniformly distributed. 
• The complexity of an item is assumed to be uniformly distributed. 
• The staff consists of a fixed and a priori known number of persons, e.g., 10. 
• The productivity (of workforce) is measured in function points/hour and is 

assumed to be uniformly distributed. 
 

Subphase 1: Item and defect generation 

• The number of defects of an item is generated as size * complexity * ran 
where ran is a [0,1]-uniformly distributed random number. 

• The coding time (=delay) of an item is calculated by size/productivity. 
 

Subphase 2: Inspection 

• One or more persons are batched with an item to be inspected. 
• The efficacy of inspection (portion of found defects) is set as a constant, for 

instance 0.7. 
• The number of found defects of an item is efficacy * no. of defects 
• The inspection time (=delay) of an item is calculated proportionally to its size 

* complexity. 
 

Subphase 3: Rework 

• If defects are detected for an item, it is subject to rework 
• Only a fixed portion of found defects are repaired, i.e. some defects are 

overlooked or new defects are produced 
• The rework time of an item is assumed to be proportional to its size * com-

plexity * number of defects detected. 
 

2.6.5 Potentials for Optimization 

Preliminary experiments with the discrete event simulation model have shown 
some effects of model parameters and stochastic influences on the simulation 
results: the project time (and thus the costs) and the quality of the products 
(number of defects). For instance, it is obvious that an inspection process de-
creases the number of defects while it requires additional working time invok-
ing costs. A trade-off analysis could lead to a simultaneous consideration of 
these effects. Additionally, one would have to consider more time and costs in 
subsequent phases, especially software testing for reducing defects, if inspec-
tions were not performed. 

Copyright © FhG 2002 37



Work Performed to Date and 
Results 

Another aspect already visible in the simple model is the effect of the batch 
size. If, for instance, one requires all items to be finished in one subphase be-
fore the next subphase starts, the overall project time is longer than in the case 
of a small batch size. The first case leads to longer, possibly unproductive wait-
ing times of staff members. 

This result emphasizes the importance of scheduling tasks. This problem could 
be solved by optimization methods in a more complex simulation model. Online 
and offline strategies for solving such a subproblem might be employed and in-
tegrated with the simulation model. The integration of the scheduling and task 
assignment problem also reflects the needs of a project manager.  

2.6.6 Further Plans 

Currently, the discrete model does not reflect the complexity of the real process 
during a single inspection. An improvement of the model requires refinement 
of the organizational processes and a better foundation with empirical data. 
Moreover, interfaces have to be defined for turning the model into a module 
for larger processes. 

Copyright © FhG 2002 38



Dissemination of Results 

3 Dissemination of Results 

3.1 Dissemination Activities 

The objective of the dissemination activities is to promote the commercial and 
scientific exploitation of the project’s results. The plan is expanded in two direc-
tions: towards marketing activities, in order to enhance the commercial poten-
tial of the project results, and towards the dissemination of the project’s results 
in the scientific sector. As a first step towards enhancing the commercial poten-
tial, a business model was developed (see below). Conference and workshop 
participation as well as publishing of results in journals are means towards the 
dissemination in the scientific community. Additionally, a project web site will 
be created. 

3.2 Business Model 

The business model consists of four steps to transfer the know-how gained in 
the project into industry. In the first step, the model is built, and then it is re-
viewed by the customer to check whether it matches the requirements. In the 
third step, the model is initialized with data of the customer. In the last step, 
the model is used.  

1.) Expert interview and building of the model 
The first step consists of three tasks: 
• Clarification of the problem and capturing the structural aspects of the 

process in an expert interview. 
• Modeling of the software process. 
• Use case diagram to capture the mental model. 
• Simulation model of the process. 
 
The involved persons are the simulation expert, the domain expert of the 
customer and the manager of the customer if he or she is interested in 
the results.  
 
The results should include a process model and the use case diagram for 
the qualitative model  
 
It will last approx. two months. 
 

2.) Model review by the customer 

Copyright © FhG 2002 39



Dissemination of Results 

In the second step, the customer reviews the models and the models will 
be revised.  
 
The involved persons are mainly the simulation expert and the domain 
expert. 
 
The result should be the accepted models. 
 
This will last approx. one day up to one week. 
 

3.) Initializing the model with data 
Now the model is initialized with empirical data or with estimates from 
experts if empirical data is not available. 
 
The involved persons are the simulation expert and the quality manager 
of the customer because he or she has to provide the data. 
 
The result is a simulation model that can provide quantitative data. 
 
It will take approx. two or three weeks to add the data into the model. 
 

4.) Usage of the model 
Testing of different fictive scenarios or constellations during a workshop. 
 
The involved persons are the simulation expert, the process or domain 
expert of the customer, and the manager of the customer. 
 
As a result, the customer gets the output of the simulation runs for the 
different scenarios and recommendations on how to change or optimize 
the process. 
 
It will take approx. one day for the workshop and additional time to an-
swer further questions of the customer. 
 

3.2.1 Additional Service  

The following services can be additionally supported: 

• Performing a measurement program beforehand to document the current 
situation. This data can be used to initialize the model and to show the im-
provements. 

• Guiding the process changes to improve the process.  

Copyright © FhG 2002 40



Glossary 

4 Glossary 

Activity (Synonym for →Actual Process) 

An atomic or composite task in the real world that corresponds to a →process 
in the model world. An activity may contain other subactivities. Activities cover 
software development and maintenance activities as well as project manage-
ment or quality assurance activities. An activity has precise starting and ending 
points. 

Actual Process 

The real process that is actually performed within an organization (see also 
→process types) [BFL+95]. 

Agent 

A human or a →tool performing the →activities related to a →role. An agent is 
characterized by skills, cost and availability. 

Artifact 

Anything that is created, produced or modified in a project, either as a desired 
result of the project or as an intermittent result. An Artifact is part of the real 
world. 

consume 

Relationship between →process and →product: The consume relation identifies 
the products that are only used as input to a process and are not modified dur-
ing the process. 

Descriptive Software Process Model 

A →process model describes how software is actually developed. [CKO92] 

Desired Process 

What the →process owner wants the →process to be (see also →process types) 
[BHK96] 

 

Copyright © FhG 2002 41



Glossary 

Life cycle model  

A lifecycle model is the management view of a →process model. All processes 
are structured in different phases (e.g., analysis, design, etc.) that contain the 
related processes. The time management of a project usually uses the life cycle 
model whereas the planning of the effort uses the process model. 

Measure 

The mapping of a value to an attribute of a process, product or resource.  

Model  

Abstract and simplified representation of a real-world object (→ system). A 
model is reduced to those aspects of the real world object modeled that are 
relevant (or its creator believes are relevant) for comprehension and for the in-
tended use of the model. Generally we can distinguish between →product 
models, →process models, and →resource models. 

modify 

Relationship between a →process and a →product: This relationship identifies 
products that are changed within the process. These products are both input 
and output of the process. 

Observed Process 

What an →agent sees and understands from the actual process (see also proc-
ess types) [BHK96]. 

Official Process 

The formalization or documentation of the →desired process (see also process 
types) [BHK96]. 

Optimization  

Identification and solving of an ➠ optimization problem. 

Optimization method 

Algorithm for solving an ➠ optimization problem. 

 

 

Copyright © FhG 2002 42



Glossary 

Optimization problem 

A set of state variables of a ➠ system described by restrictions together with an 
objective function. The solution consists of values for the state variables such 
that a different choice of values does not lead to improvement of the objective 
function. 

Organization 

An organization is an administrative or functional structure. Organizational 
units of human resources are important to analyze the →process. They facilitate 
understanding of communication channels or other social and hierarchical as-
pects. Their disadvantage is that they are very difficult to detect. 

Parameters 

Values for adjusting a ➠ simulation model that do not change during a simula-
tion run. 

Perceived Process 

What an agent thinks the →process should be. The perceived process is based 
upon the understanding of the →official process (see also →process types) 
[BHK96]. 

Prescriptive Software Process Model 

A prescriptive software process model describes how software should be devel-
oped (see also →descriptive software process model). 

Process (Synonym for →Software Process) 

A set of partially ordered steps intended to reach a goal [FH93]. The goal of a 
process is to produce or evolve software. For sake of simplicity, we will use the 
term process instead of software process in this context, unless explicitly stated. 
A process is an instance of a process model. A process is part of the model 
world. 

Process Engineer 

The process engineer’s job is to elicit the process information from the process 
performers and use this knowledge to build a consistent and complete model 
of the process. 

 

Copyright © FhG 2002 43



Glossary 

Process Instance (Synonym for →Process) 

A process instance is the instantiation of a process model. 

Process Model 

An abstract representation of a software →process.[FH93] It describes a class of 
processes. 

Process Modeling Language 

Formal notation used to describe software process models. 

Process Owner 

The person responsible for the software →process under consideration. 

Process Types  

(based upon [BHK96]) 

Actual Process

Process

Process
Agent

Owner

Observed
Process

Perceived
Process

Desired
Process

Stimuli
Opinions
Mistakes

Actual Behaviour

Poor Visibility
and Traceability Poor Comprehension

Imperfect Description

Discrepancies

Trade-Offs

re
su

lts
 in

Official
Process

 

Product (Synonym for Product Instance) 

Representation of an artifact of the real world (e.g., code component, require-
ments specification) in the model world. A Product is part of the model world. 
It is an instantiation of a →product model. 

Copyright © FhG 2002 44



Glossary 

Product Instance (Synonym for →Product)  

Product model  

A product model describes the static properties of a class of →products and 
especially the structure.  

Project  

A project comprises all processes needed to develop and construct a system. 
Each project is characterized by specific goals and a specific development con-
text. 

Project plan  

A project plan integrates instances of productmodels, process models and re-
source models for a specific project context. 

Resource  

A resource is the representation of an →agent in the model world. A resource 
is an instantiation of a →resource model. 

Resource model  

A resource model describes a class of →resources. 

Role  

A set of responsibilities, rights, and skills necessary to enact a specific →activity. 
A Role can be assumed by an agent. 

Simulation  

Reproduction of a ➠ system with its dynamic processes in an experimental ➠ 
simulation model, for obtaining results that can be transferred to reality. It is in-
tended to reproduce the input-output-relationships of the considered system. 
The execution or solution of the simulation model is done with an appropriate 
➠ simulation method. 

Simulation, discrete  

Characterized by a ➠ simulation method with a discrete time axis. The progress 
of time can be simulated by two approaches: by an event-oriented simulation 
(i.e. state transitions within the ➠ simulation model are caused by occuring 
events) and by time controlled simulation (i.e., the simulation time progresses 

Copyright © FhG 2002 45



Glossary 

by an a priori given constant increment of time ∆t. The state transitions within 
the previous interval of time ∆t are calculated just after the incrementing of 
time. Choosing a very small value for ∆t leads to an approximation of ➠ con-
tinuous simulation) 

Simulation, continuous  

Characterized by a ➠ simulation method where the time variable and all state 
variables for describing the model are continuous. The dynamics of the system 
are described by a set of coupled differential equations. 

Simulation method 

Defines the algorithm for calculating the temporal dynamics for the ➠ simula-
tion. Depending on the system and the purpose of application ➠ continuous 
and ➠ discrete simulation are used for progressing the time within a model. 

Simulation model  

A ➠ model for purposes of simulation. It is characteristic for a simulation model 
that it can be used for experiments providing the possibility of a systematic 
variation of ➠ parameters. 

Software Process (Synonym for →Process) 

System  

An excerpt from reality defined by the composition of objects related to each 
other, which can be considered as subsystems. Interactions between the com-
ponents are, e.g., based on flows of energy, material, and information. 

System, dynamic 

A ➠ system that is characterized by its internal state comprising all state vari-
ables necessary for describing it at any point of time. The state of a component 
may influence the states of other components and its own succeeding states. In 
this way, a dynamic system is characterized by a memory effect. 

Tool 

A computer program supporting or automating an →activity or part of it.

Copyright © FhG 2002 46



Glossary 

References 

[ABK+94]  James W. Armitage, Lionel Briand, Marc I. Kellner, James W. Over, 
and Richard W. Phillips. Software process definition guide: Content 
of enactable software process representations. Special Report 
(Draft) CMU/SEI-94-SR-21, Software Engineering Institute, Carnegie 
Mellon University, Pittsburgh, Pennsylvania 15213-3890, December 
1994. Not approved for public release. 

[AK94]  James W. Armitage and Marc I. Kellner. A conceptual schema for 
process definitions and models. In Dewayne E. Perry, editor, Pro-
ceedings of the Third International Conference on the Software 
Process, pages 153–165. IEEE Computer Society Press, October 
1994. 

[Attar]  Attar Software: Reference Manual Xpert Rule Miner, Reference 
Manual XpertRule, http://www.attar.com. 

[Bas97] Basilo V.R., Evolving and Packaging Reading Technologies, Journal 
of Systems and Software, 38(1). 

[BC84]  J. Banks, J. S. Carson, II: Discrete-event system simulation. Engle-
wood Cliffs: Prentice-Hall 1984. 

[BHK96]  Lionel Briand, Dirk Höltje, and Hubert Kempter. Process modelling 
guidelines: Version 1.0. Technical report, Centre de recherche 
informatique de Montréal (CRIM) & Daimler–Benz AG, Montréal, 
Québec, Canada H3A 2N4, February 1996. Daimler–Benz Software 
Quality Project. 

[BHL90]  W. Busse von Colbe, P. Hamann, G. Laßmann: 
Betriebswirtschaftstheorie 2. Absatztheorie.  3rd. Ed. Springer, 
Berlin, 1990. 

[Card99] Card, S.K., J.D. Mackinlay and B. Shneiderman, Eds, Readings in In-
formation Visualization: Using Vision to Think. San Mateo, CA: 
Morgan Kaufmann 1999. 

[ChSt00]  A. M. Christie, M. J. Staley: Organizational and Social Simulation of 
a Software Requirements Development Process, Software Process 
Improvement and Practice 5, 103-110, 2000. 

[CKO92]  Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Com-
munications of the ACM, 35(9):75–90, September 1992. 

Copyright © FhG 2002 47

http://www.attar.com/


Glossary 

[CFFS92]  Reidar Conradi, Christer Fernström, Alfonso Fuggetta, and Robert 
Snowdon. Towards a Reference Framework for Process Concepts. 
In Jean-Claude Derniame, editor, Proceedings of the Third Euro-
pean Workshop on Software Process Technology, pages 3–17. 
Springer–Verlag, 1992. 

[CFF93]  Reidar Conradi, Christer Fernström, and Alfonso Fuggetta. A con-
ceptual framework for evolving software processes. ACM SIGSOFT 
Software Engineering Notes, 18(4):26–35, October 1993. 

[DoIa00]  P. Donzelli, G. Iazeolla: Hybrid Simulation Modelling of the Soft-
ware Process, submitted to ProSim2000 Modeling Workshop, 
2000. 

[DrLu99]  A. Drappa, J. Ludewig: Quantitative Modeling for the Interactive 
Simulation of Software Projects, Journal of Systems and Software, 
46, 113-122, 1999. 

[Dut93]  James E. Dutton. Commonsense approach to process modeling. 
IEEE Software, 10:56–64, July 1993. 

[EbS93] Robert G. Ebenau, Susan H. Strauss, Software Inspection Process,  
McGraw-Hill, Inc. 1993. 

[FH93]  Peter H. Feiler and Watts S. Humphrey. Software process develop-
ment and enactment: Concepts and definitions. In Proceedings of 
the Second International Conference on the Software Process, 
pages 28–40. IEEE Computer Society Press, February 1993. 

[Fo61]  J. W. Forrester: Industrial Dynamics. Cambridge MA: Productivity 
Press 1961. 

[Fo68]  J. W. Forrester: Principles of Systems. Cambridge MA: Productivity 
Press 1968. 

[Gonz96] Gonzalez, C., Does Animation in User Interfaces Improve Decision 
Making? In Proceedings of CHI'96 Conference on Human Factors in 
Computing Systems (Vancouver, Canada, Apr 13-18, 1996), 27-34. 

[Gruh93]  V. Gruhn: Software Process Simulation in Melmac, Systems Analysis 
Modelling Simulation 11, 121-141, 1993. 

[IEE91]  Institute of Electrical and Electronics Engineers. IEEE Standard for 
Developing Software Life Cycle Processes, 1992. IEEE Std. 1074-
1991. 

Copyright © FhG 2002 48



Glossary 

[Kaw91]  Peter Kawalek. The process modelling cookbook: version 1. Techni-
cal report, University of Manchester and British Telecommunica-
tions, September 1991. 

[KS93]  J.R. Katzenbach and D.K. Smith. The Wisdom of Teams. Harvard 
Business School Press, 1993. 

[LaD98] Oliver Laitenberger, Jean-Marc DeBaud, An Encompassing Life-
Cycle Centric Survey of Software Inspection, Fraunhofer Institute for 
Experimental Software Engineering, Germany,  ISERN-98-32, 1998. 

[LAS97]  C. Lin, T. Abdel-Hamid, J. Sherif: Software-Engineering Process 
Simulation Model (SEPS), Journal of Systems Software 38, 263-277, 
1997. 

 [Lon92]  Jacques Lonchamp. Supporting social interaction activities of soft-
ware processes. In J. C. Derniame, editor, Proceedings of the Sec-
ond European Workshop on Software Process Technology, Lecture 
Notes in Computer Science Nr. 635, pages 34–54. Springer–Verlag, 
September 1992. 

[Lon93]  Jaques Lonchamp. A structured conceptual and terminological 
framework for software process engineering. In Proceedings of the 
Second International Conference on the Software Process, pages 
41–53. IEEE Computer Society Press, February 1993. 

[Lusti99]  M. Lusti: Data Warehousing and Data Mining – Eine Einführung in 
entscheidungsunterstützende Systeme, Springer  Verlag, 1999. 

[MaKh97]  R. J. Madachy, B. Khoshnevis: Dynamic Simulation Modeling of an 
Inspection-Based Software Lifecycle Process, Simulation 69, 1, 35-
47, 1997. 

[MaTa00]  R. J. Madachy, D. Tarbet: Case Studies in Software Process Model-
ing with System Dynamics, Software Process Improvement and 
Practice 5, 133-146, 2000. 

[MaRa00]  R. Martin, D. Raffo: A Model of the Software Development Process 
Using Both Continuous and Discrete Models, International Journal 
of Software Process Improvement and Practice 5, 2/3, 147-157, 
2000. 

[MeCo97]  D. Merrill, J. Collofello: Improving Software Project Management 
Skills Using a Software Project Simulator, presented at Frontiers In 
Education Conference (FIE), 1997. 

Copyright © FhG 2002 49



Glossary 

[Nauck96]  D. Nauck, F. Klawonn, R. Kruse: Neuronale Netze und Fuzzy-
Systeme- Grundlagen des Konnektionismus, Neuronaler Fuzzy Sys-
teme und der Kopplung mit wissensbasierten Methoden, vieweg, 
1996. 

[PF91]  L.C. Plunkett and R. Fournier. Participative Management: Imple-
menting Empowerment. Wiley, 1991. 

[PfLe99]  D. Pfahl, K. Lebsanft: Integration of System Dynamics Modelling 
with Descriptive Process Modelling and Goal-Oriented Measure-
ment, The Journal of Systems and Software 46, 135-150, 1999. 

[PfLe00]  D. Pfahl,  K. Lebsanft: Knowledge Acquisition and Process Guid-
ance for Building System Dynamics Simulation Models: An Experi-
ence Report from Software Industry, International Journal of Soft-
ware Engineering and Knowledge Engineering 10, 4, 487-510, 
2000. 

[PKR00]  D. Pfahl, M. Klemm, G. Ruhe: Using System Dynamics Simulation 
Models for Software Project Management Education and Training, 
presented at the Software Process Simulation Modeling Workshop 
(ProSim2000), London, 10-12 July 2000. 

[PMD99]  A. Powell, K. Mander, D. Brown: Strategies for Lifecycle Concur-
rency and Iteration - A System Dynamics Approach, The Journal of 
Systems and Software 46, 151-161, 1999. 

[RCL98] Ioana Rus, James Collofello, Peter Lakey ; Software process simula-
tion for reliability management; The Journal of Systems and Soft-
ware 46, p. 173-182 ; 1999. 

[RCL99]  I. Rus, J. Collofello, P. Lakey: Software Process Simulation for Reli-
ability Management, Journal of Systems and Software 46, 173-182, 
1999. 

[Rus97]  I. Rus; Modeling the Impact on Project Cost and Schedule of Soft-
ware Engineering Practices for Achieving and Assessing Software 
Quality Factors, Ph.D. Dissertation, Arizona State University, 1997. 

[Spen96] Spenke, M., C. Beilken and T. Berlage, FOCUS: The Interactive Ta-
ble for Product Comparison and Selection. In Proceedings of ACM 
Symposium on User Interface Software and Technology (Seattle, 
WA, Nov 6–8, 1996), 41–50. 

[Ste00] John D. Sterman, Business Dynamics, Systems Thinking and Model-
ing for a Complex World, McGraw – Hill, 2000. 

Copyright © FhG 2002 50



Glossary 

[Sw01]  J. J. Swain: Power Tools for Visualization and Decision-Making 
OR/MS Today February 2001. 

[Sw99]  J. J. Swain: Imagine New Worlds. OR/MS Today, February 1999, 38-
41. 

[VM97] Martin Verlage, Jürgen Münch "Formalizing software engineering 
standards" In Proceedings of the 3rd International Symposium and 
Forum on Software Engineering Standards (ISESS '97). Walnut 
Creek, California, USA, March 1997. 

[VBG+95] Martin Verlage, Christian Bunse, Peter Giese, Wolfram Petsch 
"Three Approaches for Formalizing Informal Process Descriptions" 
GI/GMA/IFIP/IFAC 5th International Workshop on Experience with 
the Management of Software Projects (MSP - 95), Karlsruhe, BR 
Deutschland, 27.-29. September 1995. 

[Web84]  Merriam Webster. Webster’s Ninth New Collegiate Dictionary. Mer-
riam-Webster, Springfield, Massachusetts, 1984. 

[Weiß99]  M.G. Weiß: Regulation Thermography and long term ECGs: 
Mathematics for Diagnosis Aiding in Medicine, International Con-
gress of Industrial and Applied Mathematics ICIAM 99, Edinburgh, 
Edinburgh Press. 

Copyright © FhG 2002 51





 

Document Information 

 Title: Simulation-based Evalua-
tion and Improvement of 
Software Development 
Processes 

Date: August 16, 2002 
Report: IESE-048.02/E 
Status: Final 
Distribution: Public 

Copyright 2002, Fraunhofer IESE. 
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes. 

 


	Abstract
	Table of Contents
	Project Objectives
	Work Performed to Date and Results
	Application Scenarios
	Initial Method
	Simulation Requirements and Techniques
	Visualization Requirements and Concepts
	Tool Support
	Initial Model for Software Inspections

	Dissemination of Results
	Dissemination Activities
	Business Model

	Glossary
	References

