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ABSTRACT:

In this paper, a new procedure for individual tree detection and modeling is presented. The input of this procedure consists of a normal-
ized digital surface model NDSM, and a possibly error-prone classification result. The procedure is modular so that the functionality,
the advantages and the disadvantages for every single module will be explained. The most important technical contributions of the
paper are: Employing watershed transformation combined with classification results, applying hotspots detectors for identifying tree-
tops in groups of trees, and correcting NDSM by detecting and geometric reconstruction of small anomalies, such as earth walls. Two
minor contributions are made up by a detailed literature research on available methods for individual tree detection and estimation of
tree-crowns for clearly identified trees in order to reduce arbitrariness by assigning trees to one of the few types in the output model.

1. INTRODUCTION

There are many applications for 3D models of urban terrain, such
as urban planning, navigation, civil security, and others. This
is why scientific communities from all over the world pursue
more accurate, more precise, and more semantic reconstruction
of urban terrain model instances from sensor data. Here, context-
based, semantic models mean that the most common instances
of urban terrain, such as building, trees, roads, etc., are first de-
tected and then reconstructed using soft constraints that charac-
terize these instances. Examples of such constraints are piecewise
planar building roofs or smooth course of roads. The contribution
of this work is to establish a similar workflow for trees. As input
we have an ALS (airborne laser scanning) data sampled into an
elevation map (denoted also as Digital Surface Model, DSM) and
an orthophoto. Starting from a possibly imprecise precise classi-
fication result for the tree class, we make use of a soft constraint
that a local maximum in a smoothed DSM restricted to the tree
class basically corresponds to a tree top. Doing so, we will not
only be able to perform individual detection of trees and obtain
more information on their position, height and diameter, but also
to detect and to correct the systematic errors in the classification
result whereas possible.

Detecting and exact modeling trees is important because of many
application in forestry, life sciences, but also in security-related
issues However, to create a separate model for every tree is com-
putationally expensive, especially if interaction is required. In
addition, we are striving for a fast procedure in which collection
of training data and/or non-local optimization of complicated en-
ergy functions are not desirable. As a consequence, we opt for a
compromise: after performing single tree detection, we estimate
its position, height, and diameter. Then the tree is modeled as
a circular or elliptic region. This is sufficient for many applica-
tions. Finally, we wish to assign it into one of very few types.
For each of these types, a library entry can be created, option-
ally adjusted according the the season and day-time, and, finally,
copy-and-pasted within the model on the relevant positions with
corresponding scales. This goes hand in hand with the state-of-
the-art activities on the semantic representation of urban terrain
(Bulatov et al., 2014) in which the resulting models are usually 1)
visually appealing, 2) well-compressed, because firstly building

roofs and other planar objects can be represented by a few poly-
gons and secondly, because less important objects, such a grass,
can be modeled by a few so-called geo-typical objects (dande-
lions, blades of grass of difference heights, etc.), 3) easy to mod-
ify and 4) inter-operable in the sense that a free model can be
given further important properties, such as collision geometry,
flammability, and many others.

As for the second question, namely, correcting systematic errors,
it is well-known that classification in aerial data is often a chal-
lenging task because overlapping of classes is always given, espe-
cially in the case of trees that occlude other objects: roads, cars,
and even buildings. Besides, the particular interest of this paper
is dedicated to types of objects that are not included in the list of
classes because their appearance is seldom. An example of such
an anomaly is an earth hill. If it is grass- or shrubbery covered, it
is extremely difficult to differentiate it from a group of trees. Al-
ternatively, if such a hill is covered with trees, computation of 3D
positions of these tree trunks becomes a very critical issue with
respect to the task we set in the last paragraph. Hence, it will be
necessary to recognize the anomalies in the terrain and to correct
them.

The paper is organized as follows: In Sec.2 and 3, respectively,
we refer to the related work on tree detection and explain the im-
portant preliminaries on obtaining tree areas from sensor data.
In Sec. 4, four main tools used for individual tree detection are
presented while in Sec.5 we explain how the anomalies in the
terrain can be detected and corrected. In Sec.6, we describe a
simple routine for tree crown classification. Then, Sec.7 sum-
marizes the proposed algorithm. The results for a challenging
dataset are shown in Sec. 8 while for main conclusions and ideas
of future work we refer to Sec. 9.

2. OVERVIEW OF PREVIOUS WORK

There is a large amount of methods on tree detection in the lit-
erature, see surveys due to (Kaartinen et al., 2012, Eysn et al.,
2015). Among contributions analyzed in (Bechtel, 2007), (Pol-
lock, 1996) proposes geometric models (generalized ellipsoid)
and fits it by means of a template matching procedure with dif-
ferent parameters (until the height difference falls under 50%). It
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is a typical top-down method. Because of many parameters, it
is rather unhandy for big data. A sequence of top-hat operators
(Andersen et al., 2001) is applied to extract elevated objects of a
predefined size. The hill-climbing method due to (Persson, 2001)
starts from the classification result. All pixels with height values
over a threshold, which lie in the vegetation mask of a strongly
smoothed elevation map, are considered as starting points for a
local maximum search by moving into the direction of the steep-
est gradient.

The contribution of (Pouliot et al., 2002) is a transect approach
from the local maximum of the elevation map to the supposed
border of tree. Region-growing approach is proposed by (Dalponte
et al., 2014) and (Secord and Zakhor, 2007), where features are
calculated from the laser and image data and the weights are de-
termined by a learning procedure. The work of (Straub, 2003)
mentions watershed transformation of the DSM. Edges detected
in the images are used to specify borders of hypotheses for the
individual tree regions. To assess a hypothesis, he considers geo-
metric (area, eccentricity, and second derivative) and radiometric
properties (near-infrared, texture measures, etc.). The conclusion
is drawn that combining borders of the watershed regions with
edges is only necessary to separate trees and groups of trees from
the background, not from each other. In addition, it is a cum-
bersome process of edge filtering since some edges are usually
within tree crown. Hence, this step is not necessary if we have
a reliable classification result; however, it does bring essential
improvements in the areas where the classification result is not
correct for one of the reason pointed out in the introduction sec-
tion. Also, we see that because of its simplicity and efficiency,
many other authors use watershed transformation (Wang et al.,
2004, Koch et al., 2006, Reitberger, 2010).

3. PRELIMINARIES ON CLASSIFICATION AND
EXTRACTION OF TREE REGIONS

The input of our algorithm consists of a DSM and a digital or-
thophoto. In what follows, a short description of our method on
extraction of tree regions is given. This is important to understand
the origin of systematic errors in the classification result.

First, the Digital Terrain Model (DTM) is computed by means of
the procedure described in Sec. 2.1 of (Bulatov et al., 2014). By
computing the difference between DTM and DSM, we obtain the
normalized DSM (NDSM) with clearly distinguished smaller el-
evated objects: Buildings, trees, fences, street lamps, earth walls,
and others. We perform the classification of the terrain similarly
to (Lafarge and Mallet, 2012). Four measures (relative elevation
measure f,, planarity measure f,, normalized difference vege-
tation index (NDVI) measure f;;, and entropy measure f, of the
orthophoto) are computed for each pixel x to distinguish between
four main classes / € {building, tree, grass and ground}. These
four measures are collected into energy data terms for the four
classes, as described below. A smoothness term penalizing dif-
ferences of labels between neighboring pixels is added to the en-
ergy function. This function is minimized using the semi-global
method of (Hirschmiiller, 2008). The resulting label map is post-
processed by the median filter and particularly for the class tree,
by morphological operations (3 x 3 or 5 x 5 closing and opening).

For example, we show here how the data term is built for trees:
They are characterized by a non-negligible elevation, by a rather
low planarity, a high measure of NDVI, and a high local texture
variation, that is, the entropy. Thus, the data term Ej(y)—tree for a
pixel x to belong to a tree is given by:

El(x):tree:(l_fh)fp(l_fn)(l_fe)7 (n

where f, = fo(x). However, for f we use a sigmoid-like function
asymptotically approaching 0 and 1:

(x) =exp (O(X)T_c) 2

with empirical parameters 6 and k as well as o = {h, p,n, e}, in-
stead of a truncated linear function chosen by (Lafarge and Mal-
let, 2012). The reason is that otherwise an elevated region where
the term (1 — f3,) vanishes would become completely a tree or a
building independently on other measures.

w(x)

fo(x):mﬂ"

4. TOOLS FOR INDIVIDUAL TREE DETECTION

In this section, we describe the four important tools for detection
of isolated trees. One can ask why we apply on our data not
less than four modules. The reason is that we wish to process
large, mostly "smooth and trouble-free" parts of the data by fast,
straight-forward modules. Then we basically put these parts of
data aside. At the same time, there are anomalies in the data
which must be detected and corrected by advanced methods. We
show in Fig. 1, top the flow-chart of the proposed algorithm and
give more details of it in Sec. 7.
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Figure 1: Top: overview of the algorithm with dotted lines de-
picting correction of the anomalies. Bottom: Proof of principle
for individual tree detection with watershed. The height profile
for DSM and DTM are shown by solid grey curve and dashed
black curve, respectively. The result of classification is depicted
by a thick solid green line while centers and borders of different
watershed components are shown by vertical black lines and red
points, respectively.

For some applications, for example, security tasks, it may be suf-
ficient to identify isolated trees as closed, almost circular compo-
nents belonging to the tree class and having a number of pixels in
a predefined range. Therefore labeling of components and their
filtering by eccentricity (0.8 is an empirical value) and area (be-
tween 5 and 150 m?) is a fast and mostly reliable approach. For
compactness, the procedure of single tree identification will be
denoted by . In the illustration of the proof of principle, Fig. 1,
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bottom, we see that applying .§ in the scenario A leads to a cor-
rect detection of tree (which is also the most frequent case). In
the scenario B, it is not immediately clear from the DSM alone
whether we have two trees pretty near to each other or a single
tree with two crowns.

Our default method is the watershed transformation (‘W) applied
on the negative NDSM, but restricted to the class tree of our clas-
sification result. A watershed component has its root in a local
minimum of an image and it ends at the shedding line to the
neighbored component. As mentioned before, the transforma-
tion is very fast and it is suitable to separate trees from each other
while the separation from the background has already taken place
by means of the classification. However, there are two disadvan-
tages of this strategy which either leads to single tree decompo-
sitions or to regions that are too big for a single tree. First, W is
sensitive to noise and hence, superfluous components are formed
around each local minimum of the input image. This is why we
need to perform a median filtering and/or a discretization. As a
consequence, the difference of heights between two crowns may
get over-smoothed and we get components of a larger size than a
usual tree. The other problem stems from classification errors: In
the dataset analyzed in Sec. 8, several earth hills not covered with
grass usually belong to the tree class and, by applying watershed
transformation, we obtain one or more rather big components.
This is visualized in Fig. 1: situations B and C show a successful
while situation D shows an unsuccessful delineation.

In order to bound a component and thus to find an extension of
the tree in x and y direction, (Straub, 2003) proposed combina-
tion of watershed components and edges in the images. However,
the algorithm for Image Segmentation by Optimization of Levels
(ISOL) due to (Anderer et al., 1989) has proved to be a suitable
alternative. ISOL searches for salient regions, that is, those for
which the pixel list does not change significantly after a slightly
increasing or decreasing the threshold for gray values. Thus, it
is the precursor of the well-known MSER (Maximum Stable Ex-
tremal Region) algorithm (Matas et al., 2002), which has pro-
duced worse regions. The procedure for detection of hotspots
based on ISOL and denoted here as # allows distinguishing trees
atop of the hills in scenario D of Fig. 1. In fact, we would ob-
tain three nested components: Two for trees and one for the hill,
which can be immediately filtered out because of its magnitude.
However, because of the nested components, ISOL without post-
processing should be rather taken for identifying groups of trees
(to be able to model hills) rather than for detection of individ-
ual trees. For this latter task, we need a post-processing step in
which the components are analyzed by the variance of elevations,
by eccentricity and by registering their overlap with other com-
ponents (which is time-consuming). Besides computing time, the
necessity of forming a discrete image must be mentioned as a
disadvantage of ISOL method.

After performing extraction of single trees, there can still be com-
ponents which are too big and/or too stretched for a single tree.
Here, groups of trees are extracted by the procedure P (primitive
collection) proposed in (Bulatov et al., 2014): The highest tree
point yields the position of the first tree. Then, all pixels within
a circular region around this point are excluded from the compo-
nent; the radius of the circular region corresponds to the typical
tree radius of 6m. This procedure is repeated until there are no
remaining pixels in the component.

5. CORRECTION OF NDSM BY DETECTING AND
RECONSTRUCTING HILLS

In this section, we want to find out whether the large components
obtained after applying % on the NDSM intersected with the tree

class may originate from filtering/discretization artifacts or from
anomalies in the DTM/classification. In the latter case, we will
perform the reconstruction of the hill surface.

The choice for watershed is made for reasons of speed: We are
aware that if the density of trees atop of a hill is very high, it
would collapse into very many small regions (hence, ISOL ap-
plied on the whole NDSM) would be more suitable); however, in
our dataset earth walls mostly serve exercise purposes and do not
contain too many trees. The situation is thus similar to that exem-
plified in scenario D of Fig. 1, where a component to be analyzed
is formed as a union of three big components with local maxima
on the trees and hill top. Cleaning such components from trees
— which now are outliers and should be excluded from surface
reconstruction — by ISOL and morphological operations (see the
red points in Fig. 2, top right), comprise the first step of compo-
nent analysis.

Next, for all components, we considered four properties. First,
the area of the component should not be too small. Second, we
computed the average of the NDSM values over all pixels within
the component in order not to confuse hills with crop fields etc.
Analogously, we assessed the average of second derivatives that
were calculated by means of the Laplace filter. This is done be-
cause earth walls are more likely to be approximated by planes
than dense groups of trees, as one can see in two height profiles in
Fig. 2, top left and bottom left. The fourth property we took into
consideration was the distribution of relative elevation values.
The reason is that the histogram sampled over a hill-like structure
is expected to resemble a uniform distribution with some peaks.
Hence, after sampling a histogram, we suppressed the bins with
too many and too few entries. Eventually, the property assigned
to the component is the quotient of standard deviation of the en-
tries of remaining bins divided by the total number of points in
the component. This property requires too many parameters and
this is why we decided to omit it in favor of the three earlier men-
tioned measures (area, elevation, and planarity). The thresholds
for these measures are empirical for the current implementation,
but can be made a result of clustering procedure in the future. The
components belonging to hills respectively non-hills are depicted
by orange and cyan color in Fig. 2, top right.

Figure 2: Detection and reconstruction of hills. Top left: Part of
the DSM. Top right: Results of the tree detection by W (green)
and % upon the hills (red) in the corresponding part. The com-
ponents recognized and non-recognized as hills are marked in or-
ange and cyan color, respectively. Bottom left: Anomalies in
the DTM are reconstructed (red and green triangles) and mod-
eled (green triangles). Bottom right: A view of the urban ter-
rain model, with building models computed with the procedure
of (Bulatov et al., 2014), hills, and tree regions.
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The geometric reconstruction of the surface of the hill starts by
collecting points in the bounding box around the hill, though not
members of the class building and tree. A functional considering
the vertical distances of the points to the surface and piecewise
planarity of this surface is minimized. We decided to use the fast
gridfit procedure (D’Errico, 2005) though L;-spline-based opti-
mization (Bulatov and Lavery, 2010) is more suitable for man-
made structures. We apply the constant grid size and receive
as output the 3D coordinates of the vertices. By computing the
canonical triangulation from the interpolation surface and keep-
ing only those triangles that have at least one point belonging to
the hill and their neighbors (that is, at least one common vertex,
see green surface in Fig. 2, bottom left), we create a 3D model for
the hill. This 3D model is textured by means of the orthophoto,
as shown in Fig. 2, bottom right (colors of hills were modified for
a better visualization). The new NDSM is extracted for the pixels
atop and around of the hill surface. At a later stage, it will be
needed for analyzing trees upon the hills.

6. CLASSIFICATION OF TREES

As mentioned before, we wish to assign a tree to one of a few
types. We consider here only those trees that have been collected
either by S or by W module since otherwise point clouds bear
risk to contain points from different trees. Also, keeping in mind
the computing time, it is not the main goal of the paper to de-
termine the tree type for every tree by means of numerous, time-
consuming features since we only wish to make choice of tree
types in the output model less random. We assess the conic shape
in order to carry out the most intuitive subdivision of trees into
two classes: Broad-leafed trees and coniferous trees. According
to (Horn, 1971), a tree crown of a deciduous tree can be approx-
imated with an ellipsoid while in the case of a coniferous, it is a
cylinder or a cone. A 3D point x in homogeneous coordinates is a
4 x 1 vector while a conic is represented by a symmetric 4 x 4 ma-

trix Q with 10 degrees of freedom. For each point x;,i = 1,...,n
belonging to the tree crown parametrized by O, we formulate an
equation in terms of gg,q1,...,q9:

q0 41 92 g3

T q1 494 45 dge
x; 0Ox;=0,0= , 3
i OXi Q @ 95 97 48 )

93 q6 98 99

and obtain an equation system which is over-determined if n >
10. For numerical stability, we normalize the points in the way
they have zero mean and unity standard deviation, and we set
g2 = q5 = 0 to make one of the conic axes to be parallel to the
vertical direction. The resulting equation system is solved with
the Direct Linear Transformation (DLT) method (Abdel-Aziz and
Karara, 1971). The half axes of the ellipse are given by

Ly =/=d\ [da,ly = \/—dy /dy,I. = \/—d3 da, )

where d are the eigenvalues of Q in the "natural" order, that is, the
eigenvector matrix is close to the identity matrix. Our measure of
degeneration of the ellipsoid is

Y=L+l —1;+h, (5)

with /4 the height of the tree. Furthermore, if one of the terms in
(4) has a non-zero imaginary part — which means that an ellipsoid
is not suitable for the point cloud, we declare the ellipsoid as
degenerate as well; for reasons of visualization, a cone is then
estimated from (3) by setting g» = g5 = g7 = 0. In the case of a
degenerate ellipsoid or a cone, we model the tree by a coniferous,
otherwise by a deciduous tree.

7. PROPOSED PROCEDURE

Now we are ready to summarize all the tools of the previous sec-
tions into a procedure for individual tree detection, see Algorithm
1 below. We first collect our trees by two fast modules (S and W),
then by a sophisticated tool (#), and finally by P. For this last
module, it does not make a difference whether a group of pixels
of class tree could be identified as a tree or not. We suppress for
every module all the trees detected by its predecessor. If there are
no coarse errors in the classification, Steps 5-7 of the algorithm
are not necessary. In the case we wish to detect anomalies, we
can apply W in Step 1 only if trees grow scarcely enough upon
the hills; otherwise the module # or watershed with markups
should be chosen. One could think that once hills were detected
and the DTM was modified, it should also be necessary to re-
calculate the class tree and the components % and H at least
in the modified areas. But since DTM does not affect the high-
frequent oscillation of the elevation map, filtering the previously
obtained components in hilly areas by their relative elevations is
already sufficient. Thus, there is almost no loss of computation
time caused by Step 7.

Algorithm 1. Overview of the proposed procedure. See text for
details.

Step 1. Perform § on class tree
Step 2. Perform 7/ on NDSM N class free
Step 3. Collect big components — hill hypotheses
for every big component
Step 4. Use # to delete points upon hypothesis
Step 5. Perform assessment
if hill
Step 6. Geometric reconstruction of hill surface
end if
end for
Step 7. Update DTM and NDSM
Step 8. Perform P and filtering
Step 9. Classification of clearly identified trees

In the output model, the (x,y) position of the trunk is given by the
highest point of the component while the z coordinate is given by
the DTM value. The diameter of the circular region is calculated
from the number of pixels making up the component and the im-
age resolution. Tree heights are extracted from the NDSM. Fi-
nally, the type of a clearly identified tree is assigned as described
in Sec. 6, otherwise it is chosen randomly.

8. RESULTS

The dataset considered here represents the test and training site
of the Technical Center in Meppen, Northern Germany. A DSM
sampled with a resolution of 0.5m from an ALS point cloud to-
gether with a digital orthophoto is the input of our procedure. AS
ALS, Riegl VQ-580 was used with 300 kHz measurement rate
and 60° field of view leading to ca. 4 pts/m2. Optical images
were collected with a hyperspectral camera, AISA Eagle II and
directly geo-referenced using inertial navigation data and an au-
tomatic boresight calibration method. There are two reasons for
choosing this dataset: First, it has a large areal of around 2.5 x 1.5
km? with many trees of different types and difficult situations for
their detection and classification. The second reason is that in se-
lected areas, it was possible to obtain the ground truth for evalu-
ation of our results. In the following three subsection, we present
our results for individual tree detection, correction of DTM by
detecting and modeling hills, as well as classification of trees.
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8.1 Detection of Trees

Since the modules S and P are rather trivial ones, the content
of this section shall concentrate on the comparison between the
modules W and # in groups of trees and in forest regions. We
show in Fig. 3 four situations and six tree groups with available
ground truth results, which will show the differences between
these tools together with the their advantages and disadvantages.
The images 1-9 of Fig. 3 make it clear that mostly, the module
W combined with classification results yields a correct result on
individual tree detection. The reason is that mostly two assump-
tions hold: 1) in the slightly smoothed airborne laser data, a clear
local maximum of the elevation map corresponds to an individ-
ual tree and 2) the region border is given either by the shedding
line between two components or by the classification result. In
the first two rows, groups of trees G1, G3, G4, were successfully
delineated and the configurations correspond to the reality.

However, if the first assumption does not hold, some trees con-
sist of more than one crown and belong to several components.
For example, see a tree in the bottom middle of Fig. 3, 7-9. This
problem has been noted, to a larger extent, in the high-resolution
datasets from multi-view configurations of images. In photogram-
metrically generated point clouds of a high resolution (100 points
per m?), see, for instance, (Rothermel et al., 2014), a footprint of
a big tree usually has many local maxima. To solve this problem,
we will implement the multi-scale method of (Persson, 2001) in
our future work. Cases when the second assumption fails con-
cern the trees that are either occluded completely by other trees
— which happens for groups G2 and G5 of Fig. 3) — or for which
the local maxima have been over-smoothed. For instance, in the
top of images 7-9, Fig. 3, three trees near a building wall were
accurately cut; hence, W found just one component with a suspi-
ciously large eccentricity. Hence, this component has been pro-
cessed with H and two of three trees were detected, see Fig. 3,
image 9. In this special case, also the last tree could be detected
within the primitive collection 2. In Fig. 3, bottom row, we see
how big components are processed with # and single trees are
selected in a repletion of nested regions. The remaining green
components are then analyzed whether they are hills. At this
point, we arrive at the next section about the detection and recon-
struction of hills. It remains to mention that the results presented
in this section are superior to those of (Reitberger, 2010) (< 65%),
(Persson, 2001) ( < 68%) and are slightly below those of the local
maximum refinement and delineation algorithm (LMRDA) due to
(Pouliot et al., 2002) with its best result of 91% of per-pixel de-
tection; though the number of trees in the sample, the complexity
of situation, and the measure for assessment of accuracy certainly
vary in all contributions.

8.2 Detection and Reconstruction of Hills

To perform the verification of small hills and earth walls, we first
need a reliable ground truth. To obtain it, we applied a pixel-
wise supervised classification using hyper-spectral and elevation-
based data as well as a support vector machine (Chang and Lin,
2011). The data and the method could seem like an overkill for
detection of earth walls, but are necessary for verification. The
spectral bands are directly used as hyperspectral features exclud-
ing the ones with bad signal-to-noise ratio. Additionally, 20 mor-
phological profiles are used as elevation-based features (Benedik-
tsson et al., 2005). To combine these features in a meaningful
way, we normalize them by removing the mean and dividing them
by their standard deviation. For several classes like building, tree,
grass and the target class hill, between 400 and 700 pixels are
used to train the classifier. Post classification is used to reduce
the false alarm rate. Connected components are identified and

Figure 3: Detection of individual trees for four subsets of the
dataset Meppen. The corresponding fragments of DSM and wa-
tershed components are shown in images in the first two columns
while the corresponding fragments of the orthophoto are pre-
sented together with the approximate tree positions in images 3,
6. The watershed components are separated from each other by
red lines. The green and yellow components demonstrate, respec-
tively, the tree-like and non-tree-like intersections of classifica-
tion results and watershed components. The large non-tree-like
regions are subject to hotspots detection (images 9 and 11), of
which tree-like and non-tree-like hotspots are shown in red and
green colors, respectively. Image 13 shows the nested compo-
nents. Trees B and C in image 5 are examples used in Sec. 8.3.
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Figure 4: View of a urban terrain reconstruction result for the complete dataset. In the bottom part, on the left: A larger fragment with
results for hills detection (see text for details); on the right: The corresponding fragment of the DSM.

isolated pixels misclassified as hills are removed. The overlap of
the ground truth and our result is depicted in Fig. 4, bottom left.
The blue color indicates the false negatives: hills in the ground
truth but not detected by our procedure. There are three false
negatives: One because of its area and two because of the pla-
narity measure (see Sec.5). Also, there were no false positives.
There are ten true positives, such that the results for completeness
and correctness are 76% and 100%, respectively. For true posi-
tives, we also showed the per-pixels detection results. By dark
red, yellow, and orange colors, respectively, we specify the areas
of accordance, missed part of a hill, and superfluous part of the
hill (which is not a problem, since trees upon the hills are filtered
out anyway).

We can conclude from the figure and from the explanations that
detection of hills is a complicated job if they are occluded by
trees. However, the numbers for completeness and correctness
are encouraging; they can be improved in the future by adjusting
thresholds or a reasonable integration of other features.

As for the hill reconstruction, the grid size for different hills has
remained constant (around 1m), except that for reasons of speed
and numerical precision, the number of grid points should remain
below 100 x 100. The smoothness parameter for the functional in
(Bulatov and Lavery, 2010, D’Errico, 2005) was chosen around
0.5. No big change of the results occur for moderate (£10% to
20%) changes in these parameters. The main difference is caused
by the choice of the reconstruction algorithm. The procedure
based on work of (Bulatov and Lavery, 2010) is better suited for
modeling regions of both slow and rapid smooth change than the
procedure based on (D’Errico, 2005), at cost of computing time.

8.3 First Results on Classification of Trees

We selected 24 trees which were detected as individual trees by
S and W and made following observations, which are also visu-
alized in Table 2 and Fig. 5: With an exception of one deciduous
tree (C) which is very cramped between the building wall and
some other trees, the coniferous are more likely to be modeled by
very narrow ellipses or cones. Several kinds of coniferous trees,
however, exhibit a large value of the measure from (5). The prob-
lem could mostly be observed for trees detected with /. Hence,
one possible explanation could be that the delineation was not
clean enough. However, it is obvious that obtaining reliable re-
sults for classification of trees by using only one characteristics —
tree shape — is hardly possible.

9. CONCLUSIONS AND OUTLOOK

The work presented here is focused on detection of single trees in
challenging scenarios. The procedure starts with the normalized
DSM and a classification result, and goes the way over eventual
correction of DTM, detection and, finally, classification of indi-
vidual trees. The procedure is relatively fast because its most
time-consuming modules (such as detection of hotspots and sur-
face reconstruction) can be omitted or be performed in the ar-
eas of the image where it is really necessary. Additionally, other
modules, such as fitting a conic into tree crown, are easily paral-
lelizable. With respect to the performance evaluation, watershed
transformation, already chosen by many authors, is a suitable tool
to detect tree crown tips and separate trees from each other. How-
ever, unlike many related works, the delineation of trees is carried
out a-priori, by using the classification result. As a consequence,
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Table 1: Behavior for the modules W and # for six example
clusters of trees. The second row shows number of trees in the
group while the second row shows the complexity level of the
situation (trees growing close to each other, under the crones of
other trees etc.): Not very challenging (1), challenging (2), and
very challenging (3). The lines 3-6 show the absolute and relative
numbers of detected individual trees for the methods discussed
above. Unfortunately, no ground truth was obtained for Fig. 3,
10-13. Also, delineation of some single trees was not recorded.

Cluster nr. 1 2 3 4 5 6 Y
# Trees 6 3 4 2 7 3 25

# Complexity 2 3 1 3 3 3 -
#(W) 6 2 3 2 4 1 18
In % 100 | 67 | 75 | 100 | 57 | 33 | 72
#(W+H+P) 6 2 4 2 4 3 21
In % 100 | 67 | 100 | 100 | 57 | 100 | 84

Figure 5: Top row: The first three images show selected trees
which are approximated by conics as shown in the three images
of the bottom row. Top right: Part of the DSM. Bottom right:
Two prototypes for tree models.

Table 2: Preliminary results of tree classification

dec. trees | conif. trees | Y

dec. trees 15 3 18
found by S/ W 6/9 0/3

con. trees 1 5 6
found by S/ W 0/1 3/2

Yy 16 8 24

the situations where this result is not reliable should be recog-
nized and corrected. Recognition (especially with respect to the
component analysis based on hotspots detection with ISOL algo-
rithm) and reconstruction of such anomalies make up the main
contributions of this work. The hotspots detection is applied in
order to identify trees upon hills and in other areas where water-
shed transform has failed. However, ISOL and MSER have both
a number of empiric thresholds. To their further disadvantages
with respect to watershed transformation, computation time and
necessity to analyze nested components can be added.

We are aware that further theoretical concepts are necessary to
analyze and to correct more general cases of misclassification that
may theoretically occur (cavities instead of hills, trees growing
upon building roofs, and many others) and we will consider it
in our future work. Finally, with respect to simulations, even a
few tree types with corresponding texture pictures aggravate the
interaction if the total number of trees is very large. This is the
reason why on the one hand, we want to improve and broaden
the classification of trees, which at the moment is based merely
on parameters of a conic approximating the point cloud, and on
the other hand, we search for a memory-efficient representation
of large forest regions in areas less relevant for simulation.
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