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Abstract—High-quality positioning is of fundamental impor-
tance for an increasing variety of advanced driver assistance
systems. GNSS-based systems are predominant outdoors but
usually fail in enclosed areas where a direct line-of-sight to satel-
lites is unavailable. For those scenarios, external infrastructure-
based positioning systems are a promising alternative. However,
external position detections have no identity information as they
may belong to any object, i.e. they are anonymous. Moreover,
the area covered by external sensors may contain gaps where
objects cannot be observed leading to a correspondence problem
between multiple detections and actual objects.

We present a global tracking-by-identification approach as
extension to existing local trackers that uses odometry sensor data
of vehicles to find the corresponding subset of external detections.
Thus, our approach enables the assignment of anonymous exter-
nal detections to a specific vehicular endpoint and the estimation
of its current position without requiring an initial location.

The problem is decomposed resulting in a two step approach.
The first algorithm determines possible track segment combina-
tions which are used as track hypotheses. The track hypothe-
sis generation algorithm considers spatio-temporal relationships
between track segments, thus avoiding exponentially growing
complexity inherent to data association problems. The second
algorithm compares track hypotheses to the relative vehicle
trajectory using pseudo-distance correlation metrics.

In a detailed evaluation, we demonstrate that the proposed
approach is able to reliably perform global tracking and identifi-
cation of camera-observed vehicles in real-time, despite relatively
large coverage gaps of the external sensors.

I. INTRODUCTION

In outdoor areas, global navigation satellite systems (GNSS)
such as global positioning system (GPS) or Galileo are the
predominant positioning technology. However, in enclosed
areas and even urban environments where the line-of-sight to
satellites is interrupted, GNSS-based systems suffer from a
highly degraded performance or become completely inopera-
ble [1], [2]. Nevertheless, modern vehicles are equipped with a
rapidly growing number of advanced driver assistance systems.
Above all, autonomous driving [3] depends on highly accurate
positioning information, especially in challenging urban areas
such as urban canyons or underground carparks. Consequently,
the need for alternative positioning technologies has arisen.
Unlike outdoors where one dominant technology has been

established, many different approaches have been proposed
for indoor positioning [4]. Generally, positioning systems can
be classified according to two criteria: Order and Perspective.

The first classification Order refers to the mathematical
order of the time derivative of the quantities measured by
the positioning system. We will refer to systems measuring
the time derivative of order zero as absolute and systems
measuring time derivatives of order larger than zero as relative.
For instance, a positioning system which measures the position
of a vehicle on a road x(t) (e.g. GPS) is classified as absolute.
On the other hand, a system which measures the velocity ẋ(t)
(e.g. wheel encoder) or acceleration (e.g. inertial measurement
unit (IMU)) ẍ(t) is classified as relative. This classification is
meaningful as relative positioning systems alone are insuffi-
cient without an initial position, i.e. x(t) cannot be inferred
from ẋ(t) without an initial position x(0) (cf. [5]). The
second classification Perspective differentiates sensor readings
acquired from an internal or external perspective. Thereby,
internal means that an object positions itself according to its
environment. Examples for internal positioning systems are
WiFi fingerprinting [6], magneto techniques [7], odometry [8]
and IMUs [9]. On the other hand, external approaches deter-
mine the state of the object from an external perspective, i.e.
the object which needs position information (e.g. pedestrian,
vehicle) is unaware of the detection process. Also, the identity
of externally-observed objects is often unknown, i.e. external
position measurements are anonymous. Hence, in order to
assign and transmit anonymous external position detections
to the correlated object, an additional identification step is
required. Examples are infrastructure visual positioning (e.g.
[10], [11], etc.), stationary laser scanners [12] and traffic speed
cameras [13].

Based on this classification in the two dimensions order
(absolute or relative) and perspective (internal or external),
four different classes can be created, as illustrated in Tab. I.

One promising research field is visual (indoor) positioning
based on infrastructure-based cameras (e.g. surveillance cam-
eras). Above all, the utilization of existing infrastructures as
positioning system is very cost-effective. Moreover, cameras
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have relatively high resolutions translating into high position-
ing accuracy [14]. According to Tab. I, these systems can be
classified as absolute, external systems. Because of the external
perspective, one of the key challenges is to provide the position
information to the appropriate vehicle.

Tracking techniques can be applied to differentiate multiple
objects within single and multiple camera views [15]. Thereby,
each track segment has a local identity denoted by a track
identifier which is independent of the global identity (e.g.
vehicle number plate). However, systems with only a single
camera per view are prone to identity switches in the presence
of obstructions. Moreover, the fact that there are coverage
gaps between the observed areas makes continuous tracking
difficult. As a consequence, it is challenging to decide which
track segments belong to which object over a certain time
period, often referred to as correspondence problem.

In this work, we present a multi-modal global tracking-by-
identification methodology for vehicular environments which
are partially observed by external sensors. Our proposed ap-
proach is based on existing local trackers (i.e. tracking objects
within one camera view) and enables the global association
of anonymous detections to vehicular endpoints as well as
the localization of the vehicles without requiring any initial
location. To achieve this, we use internal relative sensor
modalities of the vehicle (i.e. odometry information from
wheel and steering encoders) to find the subset of external
detections corresponding to the vehicle’s relative trajectory.
More specifically, we first present an algorithm that combines
multiple individual track segments in order to generate a set
of track hypotheses. Finally, we introduce pseudo-distance
correlation metrics for measuring the similarity between the
vehicle’s relative sensor data and the previously generated
track hypotheses.

The paper is organized as follows. In Section 2, a brief
overview of related work is given. A detailed investigation
of the problem and prerequisites is given in Section 3. The
methodology is described in Section 4. In Section 5, we
present the experimental evaluation conducted in our under-
ground carpark test site. A conclusion and future outlook
follow in Section 6.

II. RELATED WORK

There are numerous approaches that merge external visual
positioning systems with sensors at the target, which essen-
tially represents a fusion of internal and external positioning
systems. The majority of approaches uses a combination of
external camera positioning and internal absolute positioning
systems (e.g. WiFi, UWB, ultrasound, RFID, etc.). However,
there are also some approaches based on combining external
camera positioning with internal relative positioning systems
(e.g. IMU, gyro, odometry, etc.).

The first group of techniques is more straightforward as
two sets of absolute positions can be compared directly (e.g.
Euclidean distance between 1 GPS position and N camera-
observed positions). There are a number of works falling
into this group. In [16], infrastructure video cameras are
used to detect pedestrians and WiFi positioning is employed
on the user’s smartphone which in combination enables the
assignment of anonymous camera detections to users and thus
the provisioning of accurate positioning data from the cameras.
A similar approach is presented in [17], which fuses camera
and radio (UWB) infrastructure to locate pedestrians equipped
with UWB sensors.

Regarding the second group of techniques, there is the ben-
efit of being more economic as the sensors are usually cheaper
(e.g. IMU) and do not have to rely on any infrastructure (e.g.
WiFi). But the downside of these techniques is an increased
complexity, as 1) detected objects need to be on the move
(relative sensors only notice the change of the absolute state),
2) there is a complex relationship between camera-observed
and sensor-measured movement which needs to be modelled,
3) measurement errors of relative sensors grow unbounded
over traveled distance (especially for IMUs where double
integration is performed: acceleration-speed-position), 4) these
methods fail if target movement is synchronized (which hap-
pens in crowded areas e.g. subway stations where people walk
in close formations), 5) complexity grows exponentially in
worst case (considering all possible combinations between N
sensors and M camera-observed tracks is O(NM !) [18]).

Despite these challenges, there are some publications falling
into this group. An innovative approach for the fusion of
an infrastructure-based camera positioning system with belt-
mounted accelerometer sensors is presented in [18]. They
proposed a correlation metric for comparing the character-
istic up-and-down movements of pedestrians in the camera
observed area with the measurements of the accelerometer.
Another interesting approach proposed in [19] uses waist-
mounted accelerometers to estimate the person’s kinetic energy
and compare it to the movement silhouettes in the motion
history image (MHI) of the camera positioning system.

All in all, there is only a small number of research work
dealing with the fusion of external absolute and internal rela-
tive positioning systems with the goal of localizing pedestrians
but to the best of our knowledge there are no approaches
doing this for vehicles, especially in enclosed structures such
as underground carparks.
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Fig. 1. Different representations of Track Segments. A Carpark map with camera-observed lane segments (includes camera identifiers κ) and trajectories
of two vehicles (marked in red dashed and green straight resp.). B Graph representation of carpark lanes with identifiers of track segments per vertex. C
Temporal properties of individual track segments of both vehicles.

III. PROBLEM DESCRIPTION

Hereinafter, we will elaborate on the problems our approach
aims to solve. We assume that our proposed global tracking-
by-identification technique is built on top of existing local
trackers operating in non-overlapping views. Although our
approach works with any type of external sensors (e.g. camera,
LiDAR, binary, etc.), we focus on infrastructure cameras,
which are installed in our carpark test site (cf. Fig. 1 A).

Camera-based external positioning technologies have nu-
merous advantages: 1) High camera resolution translate into
high positioning accuracies, 2) High frame rates (e.g. 30 Hz)
enable tracking of relatively fast objects, 3) Image processing
algorithms (e.g. in OpenCV library) are relatively mature and
4) Existing infrastructures yield cost-effective solutions.

Despite all these advantages, there are two main challenges
with external camera-based positioning techniques: 1) Un-
known identity: Detected objects are anonymous, i.e. they have
no identity information. 2) Unobserved areas: Cameras cover
the straight lanes but not the curves (cf. Fig. 1 A), resulting
in coverage gaps where vehicles are invisible.

Furthermore, we assume a simple vehicle movement model
for the movement of common front-steering vehicles as de-
scribed by the following state dynamics [20]:

a(x, y, v, ψ, ω) =


x+ v∆t sin(ψ)
y + v∆t cos(ψ)

v
ψ + ∆t ω

ω

 (1)

where x and y are coordinates on a Cartesian coordinate
system relative to a fixed reference point (e.g. Universal

Transverse Mercator), v is the vehicle’s speed in direction
of travel, ψ is the vehicle’s heading direction (i.e. north=0,
east=π2 , ..) and ω = ψ̇ i.e. the yaw rate of the vehicle.

Moreover, obtained detections of the visual positioning
system are denoted as cn with the following properties:

cn = {tcam, x, y} (2)

where t is the measurement time in seconds, x and y in
Cartesian coordinates. Additionally odometry measurements
om are obtained of vehicular sensor modalities:

om = {todo, v, ω} (3)

where t is the measurement time in seconds, v the vehicle’s
velocity and ω the vehicle’s yaw rate.

For typical carpark environments (cf. Fig. 1 A), the follow-
ing assumptions are valid:
• Vehicle movement is constrained to narrow lane-segments
• Lane-segments are straight and connected by curves

(angle between 70 and 110 degrees)
• Cameras observe only straight lane segments but not

curves between segments
• Maximum speed of vehicles in carparks approx. 5ms
• Vehicle’s movement is limited to a low degree of freedom

due to front steering geometry [20], e.g. vehicles cannot
suddenly change direction within a lane

• Based on the low camera angle, the detection range for
each camera (= max. track length) is max. 25m

Based on these assumptions, individual positions cn are
clustered to coherent track segments Si which represent the
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Fig. 2. System components and data flow overview: Tracking-by-identification approach receives track segments S and vehicle sensor data O, creates
plausible track hypotheses Θ and returns an association of best matching O and Θ.

movement of an individual vehicle within a single view:

Si = {tstart, tend, cstart, cend, {c1, .., cn}, T ID, κ} (4)

where tstart and tend refers to the time of the first and last
detection resp. (i.e. marking track segment lifetime), cstart
and cend refers to the first and last camera-detected position
resp. (i.e. point difference corresponds to track segment
length), {c1, .., cn} is a set of all camera detections. TID
denotes the local track identifier assigned by the tracker and κ
is the ID of the camera which captured the detections in this
track. As we assume that camera views are non-overlapping
all detections in a track are captured by a single camera.

IV. METHODOLOGY

After having elaborated on the specific problems in the
previous section, we will now propose a solution: First, a
generic optimization problem is defined which represents a
holistic solution. However, due to the high complexity, the
problem is split into the two parts track hypothesis generation
and correlation metrics described subsequently.

A. Generic optimization problem

With a given set of track segments S = {S1, S2, . . . , SM}
and a relative trajectory from odometry data O, we can
formulate the track assignment problem as an optimization
problem over the track hypotheses Θ obtained by performing
all possible track segment combinations using a power-set
P(S). Thereby, |Θ| denotes the number of track hypotheses.
The relative trajectory O can be obtained by integrating the
odometry measurements om from Eq. (3) according to the
model in Eq. (1). Also, |O| denotes the total length of the
relative vehicle trajectory, referred to as travelled distance.

In order to define the optimization problem, we introduce
some required notation. Given a track segment Si, let Oi being
the relative track segment from O which consists of those
positions from O which match the detections in Si in time.
Oi is obtained by taking for each triple (x, y, t) of position
and time from Si that triple (x̂, ŷ, t̂) from Oi, such that |t− t̂|
is minimal among all triples in O. Given a set of relative
positions Oi, we may compute a distance function d(Si, Oi)
between the positions in Si and Oi. Also, let T be the operator
which yields the set of time points from any track. Then it can
be stated that a set of time points is less in time than another
set if: T (S1) < T (S2)⇔ maxt∈T (S1) t < minu∈T (S2) u.

Finally, our assumptions, in particular the requirement of
disjoint sensor views, allow us to represent the regions which
are covered by an absolute sensor as a vertex in a graph. Two
vertices in a graph are connected, if a vehicle can reach one
sensor view from another sensor view without crossing a third
sensor view. Figure 1 B shows this graph derived from the
carpark layout given in Figure 1 A. Let then V (Si) be the
graph vertex of track segment Si and D(Si) the set of all direct
neighbors of V (Si) in the graph. Hence, the optimization
problem can be stated as the following:

min
Θ∈P(S)

∑
Si∈Θ

d(Si, Oi) (5)

such that ∀i ≤ |Θ| − 1 : T (Si) < T (Si+1) (6)
and ∀i ≤ |Θ| − 1 : Si+1 ∈ D(Si) ∪ V (Si) (7)

This optimization problem encodes our desired requirements.
Firstly, for each absolute track segment Si ∈ Θ, the spatial
distance d(Si, Oi) to the relative track segment Oi should be
small. The first condition, Eq. (6), enforces temporal consis-
tency: The absolute track segments are ordered in time and



are non-overlapping in time. The second condition, Eq. (7),
encodes graph consistency: The next absolute track segment
lies either in the same graph vertex as its predecessor Si or it
lies in a neighboring vertex.

Note that this optimization problem runs over a set of
size 2|S| = 2N . Another way to formulate the optimization
problem is to consider individual camera detections ci instead
of track segments Si. In this case, the complexity would
increase exponentially with the number of camera detections.
Thus, we introduce an algorithm for an approximate search for
the best combination of track segments, i.e. track hypotheses
generation, in the following.

B. Track hypotheses generation

The track hypotheses generation algorithm solves the first
sub-problem, i.e. the selection of combinations of track seg-
ments likely to represent the trajectory of a single vehicle. The
motivation is to reduce the computational complexity by re-
ducing the number of subsequent calculations (i.e. d(Θi, Oi)).

Given a set of track segments Si, appropriate combinations
(i.e. track hypotheses) Θi need to be determined and matched
to the vehicle’s trajectories Oi recorded by their onboard
sensors. The amount of data in Oi and Si (and also in Θi)
depends on the time window ∆TK , e.g. all data of the last
∆TK = 30s is buffered and considered in the algorithm.

For a small number of Si, it is trivial to try out all
combinations. However, as the complexity is O(2N ) (i.e.
growing exponentially with N ), this becomes quickly un-
manageable. Thus, we propose an algorithm that generates
plausible track hypotheses considering the following spatio-
temporal constraints:
• Spatial neighborhood of camera views (i.e. only track

segments on adjacent views are connected) Eq. (7)
• Track segments cannot have temporal overlap Eq. (6)
• Estimated vehicle speed between tracks cannot surpass

threshold (e.g. 5 m/s)
• Approx. min./max. length of vehicle trajectories deter-

mines number of track segments per hypothesis
Fig. 1 A and C shows an example which illustrates two

vehicle trajectories and their track segments inside the map
and time view resp. In this example, each track segment is
marked in the color according to the vehicle it is associated to
(i.e. red/green in the figure). However in the actual system, all
track segments are anonymous and the goal of this approach
is to determine their correct association.

In order to enforce the spatial neighborhood constraint, a
representation of a reference graph of all carpark lanes is
created as shown in Fig. 1 B. In this case, an undirected
graph representation has been derived from the lane network
layout shown in Fig. 1 A. As carparks often consist of one-
way streets, it is also viable to choose a directed graph
representation. Directed graphs can be processed in a compu-
tationally more efficient way, since edges can be traversed in
only one direction, thus limiting the total number of possible
vertex combinations. For the sake of universality, we select
the undirected graph representation.

Input : A set of track segments {S1, S2, .., Sn} and
a set of odometry data {O1, O2, .., Om}

Output: A set of track hypotheses {Θ1,Θ2, ..,Θo}
1 Scombs ← ∅;
2 Scombs’ ← ∅;
3 minTravDist ← getMinTravDist({O1, .., Om});
4 maxTravDist ← getMaxTravDist({O1, .., Om});
5 minO ← getMinOrder(minTravDist);
6 maxO ← getMaxOrder(maxTravDist);
7 G(V,E) ← GetGref();
8 foreach V in G(V,E) do
9 if V.Φ = {} then

10 G(V,E).remove(V) ;
11 end
12 end
13 connV ← getConnV(G(V,E),minO,maxO);
14 Scombs ← getScombs(connV);
15 foreach comb in Scombs do
16 if isPlausible(comb) then
17 Scombs’ ← Scombs’ ∪ {comb};
18 end
19 end
20 return Scombs’

Algorithm 1: Track hypotheses generation algorithm

The pseudo code of our track hypotheses generation algo-
rithm is displayed in Alg. 1. Comparing with the component
diagram in Fig. 2, the main input of the track hypotheses
generation is a set of track segments {S1, S2, .., Sn} and the
auxiliary input is a set of vehicular sensor data {O1, .., Om}.
The output of the algorithm is a set of track hypotheses
{Θ1,Θ2, ..,Θo}. The single steps are as follows:

First of all, after initializing the sets Scombs and Scombs’
which will hold the output result, the global min. and max.
travelled distance of all vehicles is calculated considering
getMinTravDist() and getMaxTravDist(). These functions cal-
culate min/max(|O1| , ..,|Om|). Subsequently, the result (i.e.
minTravDist, maxTravDist) is used to obtain the min. and max.
order of the track segments per hypothesis, i.e. the number of
track segments per combination (cf. getMinOrder() & getMax-
Order()). This is a simple heuristic which helps minimizing
the computational burden of the subsequent combinatorical
algorithms (i.e. getConnV() and getScombs()). Based on the
carpark layout (cf. Fig. 1 A), the lengths of track segments are
in the range of 5m to 30m. Assuming the travelled distance
of all vehicles is below a certain threshold (e.g. 15m), it
is unlikely that a vehicle has passed more than one camera
view. Thus, only track hypotheses of order one need to be
considered. Similarly, in the case that the travelled distance
of all vehicles is very high (e.g. 50m), it is likely that multiple
camera views have been passed, thus only hypotheses of higher
order (e.g. 2 or 3) are considered.

After that, an instance of the reference graph (cf. Fig. 1
B) is stored in variable G(V,E). Complying with usual graph



notation [21], G(V,E) consists of a set of vertices and edges,
denoted as V and E respectively. However, we modified the
definition of a vertex v in V = {v1, .., vp}:

v = {κ,Φ = {S1, .., Si}} (8)

where κ is the vertex ID corresponding to the lane identifier
(cf. Fig. 1 B) and Φ is a set of track segments that is associated
to the camera view represented by this graph vertex. Following
up in the algorithm, all vertices are iterated and the ones where
Φ is empty are removed (along with all connected edges).

Subsequently, in order to comply with condition Eq. (7)
the modified graph G(V,E) is used to obtain all connected
vertex combinations of the order in the range of minOrder
to maxOrder (cf. getConnV()). Although this step intuitively
appears to be simple, it is computationally very challenging,
especially for large connected graphs. The most straightfor-
ward algorithm for finding all connected vertex combinations
is a brute force algorithm, where all vertex combinations are
iterated through. For each iteration, the connectivity of the
selected combination is checked, thereby discarding uncon-
nected combinations. The downside of the simple brute force
algorithm is its low scalability with O(2N ). A more efficient
algorithm is CONSUBG [21] which exploits the connectivity
of the graph, i.e. only connected vertices are traversed after all.
As shown in [21], CONSUBG is considerably more complex
compared to a brute force algorithm and therefore is only
superior on sparse graphs, i.e. graphs where the average
number of edges per vertex is much smaller than the total
number of vertices.

Finally, each given vertex combination is expanded into a
track segment combination in (cf. getScombs()). For instance,
2 vertices with each 3 track segments will be expanded to
a total of 9 hypotheses. Afterwards, implausible hypotheses
are filtered according to the aforementioned spatio-temporal
constraints. This is accomplished by iterating over Scombs and
only adding plausible hypotheses to the result set Scombs’. A
hypothesis is considered plausible if it is not overlapping in
time Eq. (6) and the estimated velocity between adjacent track
segments is realistic (e.g. < 20ms ).

C. Correlation metrics

At this point, track hypotheses Θj have been generated,
which need to be compared to the vehicle sensor data Oi in
order to find the best match. Therefore, we define a function
ξ(Oi,Θj) which yields a measure for the similarity or pseudo-
distance of Oi and Θj , where smaller values represent a better
correlation. Thus, ξ(Oi,Θj) = 0 indicates a perfect correlation
between Oi and Θj . In the following, two pseudo distance
functions ξ(Oi,Θj) are presented.

1) Kalman filter metric: In our previous work [20], we
derived correlation metrics based on a standard Kalman Filter
Innovation Ni. If both odometry measurements (e.g. v, ω) and
externally-observed detections (x, y) are fed into the Kalman
Filter, then Ni represents the difference between measurement
and prediction for each state variable, thus reflecting the corre-
lation between vehicle odometry and external measurements.

The following equation shows pseudo-distance correlation
metrics with respect to Euclidean distance (D1), averaged over
a time window of K values:

D1(Oi,Θj) =
1

K

K∑
i=1

√
N2
x,i +N2

y,i (9)

The metric D1(Oi,Θj) is applied on every track hypotheses
Θj in conjunction with the vehicle’s odometry sensor data
Oi ={o1,..,om} and represents a pseudo-distance. Thus, a
lower value of D1 indicates a better correlation between the
measured and externally-observed vehicle trajectory.

2) Best fit metric: We introduce a second metric for com-
paring vehicle odometry data Oi with a track hypothesis Θj

referred to as best fit metric D2(Oi,Θj).
Therefore, the best fit algorithm computes the minimal

distance between a set of absolute position measurements in
the track hypothesis Θj to a relative trajectory integrated from
odometry data Oi. The latter is a relative measurement in
the sense that it is given up to an unknown translation and
unknown rotation due to unknown initial heading and starting
position. As a side effect the best fit yields an estimate of the
true initial heading and starting position based on the set of
absolute position measurements.

Thus, we have an absolute trajectory Θj = {(ti, xi, yi)}Ni=1

and a relative trajectory Oi = {(t̂k, x̂k, ŷk)}Mk=1. The best
fit computes the optimal offset vector b and rotation Rα
such that the average Euclidean distance D2(Oi,Θj) between
temporally adjacent points of Θj and Oi is minimal.

D2(Oi,Θj) =
1

K
min
b,α

K∑
i=1

‖(xi, yi)− (b+Rα(x̂i, ŷi))‖2

(10)

Rα(x, y) =

(
cosα sinα
− sinα cosα

)(
x
y

)
(11)

The minimum can be computed in a two-step approach. Firstly,
for given rotation α the offset b = b(α) as a function of the
rotation is computed analytically by differentiation of Eq. (10)
as

b(α) =
1

K

 K∑
i=1

(xi, yi)−Rα(x̂i, ŷi)

 (12)

In the second step, we try out all angles discretized to a
required precision (e.g. 0.3 degrees), selecting the angle that
minimizes the problem Eq. (10). For approximately rotation
symmetric relative trajectory shapes this may result in two
optima. Checking that the timestamps at the ends of Θj and
Oi match allows to select the correct solution.

3) Joint pseudo-distance correlation metrics: Both
D1(Oi,Θj) and D2(Oi,Θj) represent the average pseudo-
distance between the vehicle’s sensor data Oi and the track
hypotheses Θj . However, these metrics do not penalize



length differences of Oi and Θj . For example, considering
Θ1 = {S1, S2, S3} and Θ2 = {S2, S3}, the metrics D1 and
D2 could favor Θ2 over Θ1 although Θ1 is the correct match.
Consequently, we introduce auxiliary metrics for taking the
temporal and spatial overlap into account:

b1(Oi,Θj) =
max(∆T (Oi),∆T (Θj))

min(∆T (Oi),∆T (Θj))
(13)

b2(Oi,Θj) =
max(∆L(Oi),∆L(Θj))

min(∆L(Oi),∆L(Θj))
(14)

as ∆T () and ∆L() denote the temporal and spatial size of a
trajectory of vehicle Oi and track hypothesis Θj , b1(Oi,Θj)
yields the corresponding mismatch ratio of the lifetime and
b2(Oi,Θj) of distance. Consequently, the ideal value for both
metrics is 1.0 in case of identical temporal or spatial length.

Thus, these auxiliary metrics are combined with the pseudo-
distance function resulting in the following joint distance
functions ξ(Oi,Θj):

ξ1(Oi,Θj) = D (15)

ξ2(Oi,Θj) = Dγ1 · b1 · b2 (16)

ξ3(Oi,Θj) = D + γ2 · b1 + γ3 · b2 (17)

ξ1 only contains the pseudo distance metric without con-
sidering the auxiliary metrics b1 and b2. In contrast, ξ2 and
ξ3 incorporate the auxiliary metrics b1 and b2 as product (ξ2)
and sum (ξ3). The factors γ1, γ2 and γ3 can be adjusted to
influence the weighting of the individual terms on the joint
distance function ξ2 and ξ3.

Having derived several joint distance functions ξ(Oi,Θj),
they can be used to find the best match out of a set of track
hypotheses {Θ1,Θ2, ..,Θm} to the vehicle’s sensor data Oi by
selecting that track hypotheses Θj resulting in the minimum
distance value.

D. Practical remarks

Some remarks regarding the practical implementation are
provided in the following.

1) Calculation of current position: So far, our proposed
approach finds the best matching track hypotheses Θj for a
vehicle that represents the absolute trajectory of the vehicle.
In terms of the big picture in the context of a positioning
system, we also need to be able to continuously locate and
track the vehicle’s current position, particularly when moving
through coverage gaps (cf. Fig. 1 A). To achieve this, all
values of Θj and Oi can be fed into a Kalman Filter which
yields the current position even in coverage gaps and is robust
to measurement inaccuracies.

2) Length of time window ∆TK: The time window ∆TK
influences the amount of buffered data in Oi and Si. The
higher this value, the more data is buffered and used for
the generation of track hypotheses Θj as well as calculation
of the pseudo-distance ξ(Oi,Θj). Increasing ∆TK leads

to the consideration of longer trajectories and potentially
more accurate assignments but also significantly increases
the computational complexity as there are more possible
combinations in the track hypotheses generation. Thus, it is
advisable to find a trade-off between assignment accuracy
and correctness depending on the specific environment.

3) Identification of multiple vehicles: At the time of this
writing, we handle multiple vehicles independently of each
other, i.e. each vehicle’s sensor data Oi is compared against
all hypotheses Θj . This is feasible if many unregistered
vehicles are driving through the carpark which are not
participating in the system, i.e. not providing their sensor
data. However, assuming that multiple vehicles participate,
the relative trajectory of every vehicle can be utilized
for the identification. A straightforward approach is to
establish a MxN matrix Ω with M vehicles as rows and
N track hypotheses as columns and fill in the values:
Ωi,j = ξ(Oi,Θj). The goal is then to find those assignments
{i, j} in Ω which result in the minimum sum. This can be
done by applying the Hungarian method [18], which however
requires a squared matrix, i.e. M = N . A workaround would
be the padding of non-existing fields with high values so that
they are disregarded.

V. EVALUATION

In the following evaluation, the performance of the pre-
sented tracking-by-identification methodology and its two
main components track hypotheses generation and pseudo-
distance correlation metrics are quantitatively determined. The
goal is to show how accurate the proposed metrics are able
to assign the correct track hypothesis Θj to the corresponding
vehicle data Oi. Thus, we will first introduce evaluation met-
rics, explain the test scenario and finally show the performance
results of our proposed approach.

A. Evaluation metrics
As mentioned before, our approach is put on top of existing

tracking systems (cf. Fig. 2) in order to identify communi-
cation endpoints, e.g. registered vehicles which receive their
appropriate position information once the global tracking is in
progress. Thus, common evaluation metrics for local tracking
systems (e.g. MOT [22]) are not suitable for our proposed
approach. Instead, we propose three different metrics indicat-
ing the ratio of correct identifications, the length of incorrect
identifications and the ratio of identifier switches.

Given a total time period of correct track hypothesis assign-
ment Tc and one with incorrect assignment Tf , the Correct
Assignment Rate is defined in % as:

CAR =
Tc

Tc + Tf
(18)

Furthermore, the Maximum Incorrect Assignment Duration
is defined as maximum time interval of incorrectly assigned
track hypothesis:

∆Tf,max (19)



Last Track Segment Correct All Track Segments Correct
CAR
in %

∆Tf,max
in sec

IDSWR
in %

CAR
in %

∆Tf,max
in sec

IDSWR
in %

D1 80.96 12 11.4 75.44 21 12.1
ξ1

(D only) D2 76.62 12 13.28 68.63 20 13.98

D1 & D2 87.9 17 3.64 82.37 17 5.76

D1 82.84 12 12.81 76.15 21 14.92
ξ2

(Product with γ1 = 2) D2 80.26 10 13.28 70.98 21 14.92

D1 & D2 88.48 16 3.41 82.37 17 6.7

D1 83.31 11 11.16 76.85 21 13.51
ξ3

(Sum with γ2 = γ3 = 0.062) D2 81.2 15 12.81 72.39 12 14.69

D1 & D2 90.01 17 3.17 83.08 17 6.7

TABLE II
EVALUATION RESULTS OF PSEUDO-DISTANCE CORRELATION METRICS
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Fig. 3. Evaluation results of pseudo-distance correlation metrics (excerpt, first 300s of total 850s experiment, configuration with ξ3 and Last Track Segment
Correct). Top: Identified labels by D1 (Kalman Filter), D2 (Best Fit) and D1&D2 (combined ) approach resp. (correct and false assignments are denoted
by green ’C’ and red ’F’ resp.). Middle: Number of track segments S. Bottom: Number of track hypotheses Θ.

Last but not least, the ID Switch Ratio is defined according
to the number of ID switches Nidsw per total number of
identification steps Nt. Therein, Nt = fid · Tt, i.e. Nt
depends on the frequency of identification fid and the total
time period Tt. An ID switch is defined as change of the
identified endpoint ID per vehicle. For instance, considering
a registered vehicle A which has the correct track hypotheses
A assigned when a misidentification to hypotheses B occurs,
this is counted as a single identity switch.

IDSWR =
Nidsw
Nt

(20)

These three metrics are somewhat complementary as dif-
ferent aspects of the tracking-by-identification system are
evaluated. First of all, the CAR should be as high as possible,

ideally 100% which would indicate a perfect identification, i.e.
Tf = 0. Secondly, ∆Tf,max shows for a given metric how long
the maximum mismatch is and thus indicates the reliability of
a metric under challenging conditions. Lastly, IDSWR is a
helpful metric for measuring the stability of a given metric.
Hence, a high IDSWR indicates that the correct identification
is frequently lost and that the determined positions of the
endpoints tend to fluctuate resulting in potentially large jumps.

B. Test setup and procedures

For the evaluation, we recorded a total of 21 test drives on
arbitrary paths through the camera-observed carpark lanes (cf.
Fig. 1 A) in our carpark test site (infrastructure described in
detail in [10]). Each test drive has a duration between 60s and
140s and contains the vehicle’s odometry data and externally



observed camera detections. The sampling rate of the vehicle’s
odometry is 10Hz. Moreover, the speed of the drives varies
between 1.5ms and 5.0ms . The drives contain realistic patterns,
e.g. the vehicle is in some places slowing down (looking for
a free parking spot) but then accelerates to drive to another
one.

In order to execute different test scenarios, we have devel-
oped a testing framework which allows to replay the recorded
data into the system at a specified time. Thus, variable com-
binations of different odometry and camera detections can be
replayed. Also, the replayed data is labelled with the actual
identifiers (e.g. vehicleA, vehicleB, etc.), which enables us
to systematically and reproducibly assess CAR, Tf,max and
IDSWR of the proposed metrics. Another helpful feature of
the testing framework is a visualization of the identification
results which facilitates the real-time debugging of challenging
highly dynamic test cases.

The software is implemented in Java (v1.8.0-05-b13) on a
64 Bit Windows 8.1 OS and runs on a computer with Intel
(R) Core (TM) i7-4700MQ (2.4GHz), 16 GB RAM and SSD
hard disk.

C. Identification of one out of up to 5 vehicles (1:N)

In the following experiment, between 3 and 5 vehicles are
driving through the carpark for a total duration of 14 minutes.
According to Fig. 2, a single vehicle is providing its sensor
data in order to be identified by the system. Hence, this ex-
periment can be considered as 1 : N (registered vehicle : total
vehicles) example for global tracking and identification. The
tracking-by-identification process is executed every second
(i.e. fid = 1Hz), which yields a total of 853 assignments.
The time window size ∆TK is set to 30s.

In each identification step, the metrics D1, D2 as well as
b1 and b2 are logged so that different parameters of the joint
metrics ξ1, ξ2 and ξ3 can be evaluated on the same reference
data set. Thus, based on this reference data set the optimal
weighting of parameters can be obtained that results in the
best performance in terms of CAR, Tf,max and IDSWR.

The test results are presented in Tab. II: Each previously
introduced joint distance function ξ1, ξ2 and ξ3 is applied
with D1 (based on Kalman Filter), D2 (Best Fit) or D1 &
D2 (combination of Kalman Filter and Best Fit). We evaluate
the evaluation metrics CAR, Tf,max and IDSWR twice
by differentiating which association is counted as correct:
For Last Track Segment Correct it is sufficient if the last
(i.e. most recent) track segment is correctly assigned whereas
for All Track Segment Correct every single track segment
in the hypotheses needs to be assigned correctly. The first
case is introduced because even if a track hypothesis contains
a mismatch but the final track segment is correct, then the
vehicle’s current position is correctly estimated.

Regarding the combined metric D1 & D2, the assignment
is only changed if both D1 and D2 have identified the same
track hypothesis Θi (we assume identical last track segment to
be sufficient). Otherwise, if D1 and D2 point to different track
hypotheses, then the previous assignment is retained. In Fig. 3,

a timeline of the assignment results for the first 90s of the test
is displayed (ξ3 and Last Track Segment Correct). The timeline
shows periods of correct and false assignment (marked as C
and F resp.) and illustrates that the D1 and D2 in combination
are more accurate (we expect higher CAR) as well as more
stable (we expect lower IDSWR) as D1 and D2 need to
concur to change the assignment of a track hypothesis. This is
confirmed by the results in Tab. II: The combined metric D1

& D2 generally outperforms the individual metrics D1, D2 in
terms of CAR and IDSWR. However, this also leads to a
longer time interval of incorrect assignment Tf,max.

Moreover, D1 (Kalman Filter) performs better than D2

(Best Fit) in this particular test case. The best joint distance
function is the sum ξ3 which performs better than the product
ξ2 and the individual distance function ξ1.

Thus, the best result in terms of CAR is 90% for ξ3 with
D1 & D2. In this case, Tf,max is 17s which is a relatively
long continuous time interval for the incorrect assignment.
Upon further investigation, we discovered that this is caused
by multiple vehicles driving on circular paths at similar speeds
as shown in Fig. 4. This leads to the generation of track
hypotheses in different views that are very similar and match
equally well to the vehicle’s relative trajectory.
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Fig. 4. Example for a difficult scenario where trajectories of two vehicles
are very similar (plotted as green straight and red dashed lines resp.).

This example illustrates the limitations of the proposed
approach which we expect to have a low performance if all
vehicles move in a synchronized manner on identical paths
and at similar speeds. This could be the case in crowded
environments or traffic jams, where the movements of all
vehicles are very similar.

D. Real-time operation

As stated previously, the proposed tracking-by-identification
approach is executed once per second in the experiment (i.e.
fid = 1Hz). However, in many cases a continuous execution
is not necessary. Instead, a vehicle can use the system once
to obtain an initial starting position which is then updated
using odometry and nearby external detections. Nevertheless,
our approach can be applied periodically to reinitialize the
vehicle’s location which helps to correct errors such as ID
switches of trackers, drift of odometry measurements, etc.



The average processing time per track hypothesis (and
standard deviation) is for D1 9.8ms (2.3ms) and for D2 8.4ms
(3.1ms). Hence, using both D1 and D2 would take 18.2ms
(3.86ms) per track hypothesis. In Fig. 3, the maximum number
of hypotheses Θ is about 130. Consequently, applying both
D1 and D2 takes a total of about 2.4s. During the remaining
experiment, the number of hypotheses never exceeds 50, so
the calculation is completed in less than 1s.

VI. CONCLUSION AND OUTLOOK

We have introduced a tracking-by-identification approach
which can be integrated on top of existing tracking systems
for globally tracking and identifying vehicles based on relative
sensor data. This approach enables to assign a set of external
detections to the corresponding vehicle and thus also yields the
vehicle’s current location without requiring any initialization.

To achieve this, we partitioned the complex data associa-
tion problem into the two parts track hypotheses generation
and correlation metrics. The first algorithm generates track
hypotheses of track segments that are compared with the ve-
hicle’s relative trajectory by our proposed correlation metrics
in the second part, in order to find the best match.

In a detailed evaluation in a realistic testing environment
with a challenging data set, we have shown that our proposed
approach achieves a correct assignment rate of at least 90%
and operates in real-time. Moreover, we investigated test cases
of low performance in order to explore the limitations of the
approach. For instance, in scenarios where multiple vehicles
move in a circular manner at similar speeds, there are long
intervals of misassignments of up to 17s. This is due to the
fact that multiple generated track hypotheses are of similar
shape and fit equally well to the vehicle’s relative trajectory.

In conclusion, the proposed approach is ideally suited for
environments where vehicle movement is arbitrary and subject
to high variations in speed and travelled paths such as carparks.
The fact that only relative sensor modalities at the vehicle are
required and that surveillance camera infrastructures are often
readily available yields a cost-effective positioning solution.

Future research directions include the exploration of ad-
ditional sensor modalities at the vehicle. Firstly, absolute
sensor modalities (e.g. WiFi or Bluetooth positioning) can
be employed for situations where the vehicle movements are
synchronized. Secondly, as odometry data needs to be accessed
at the vehicle’s CAN bus, a solution that only works with
smartphone sensors would be a promising alternative.
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