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Abstract. For the numerical simulation of a mechanical multibody system (MBS), dynamical
loads are needed as input data, such as a road profile. With given input quantities, the equations
of motion of the system can be integrated. Output quantities for further investigations are
calculated from the integration results. In this paper, we consider the corresponding inverse
problem: We assume, that a dynamical system and some reference output signals are given. The
general task is to derive an input signal, such that the system simulation produces the desired
reference output. We present the state-of-the-art method in industrial applications, the iterative
learning control method (ILC) and give an application example from automotive industry. Then,
we discuss three alternative methods based on optimal control theory for differential algebraic
equations (DAEs) and give an overview of their general scheme.
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1 INTRODUCTION

Numerical system simulation plays an important role in vehicle engineering. Virtual proto-
typing of mechanical systems can accelerate the development process enormously and reduces
costs.
In order to simulate the motion of a multibody vehicle model, dynamic loads are needed as
input data. Such load data is called invariant, if it is independent of the specific system under
consideration. A convenient example for invariant loads is a digital road profile used for driving
simulation of a vehicle.
Typically, output quantities such as wheel forces, accelerations or relative displacements in the
vehicle are measured. However, those quantities are not invariant but highly dependent on the
specific vehicle variant, that was used for the measurement. The general task is now to derive
and calculate invariant input loads such that they can be used to simulate other vehicle variants,
which may only exist as computer models. Mathematically, this leads to a control problem, see
section 2 for a general formulation.
In this paper we present some approaches for dealing with this problem. State-of-the art in in-
dustrial applications is the so called iterative learning control (ILC) method. We give a descrip-
tion of that approach and an application case from automotive industry. The iterative learning
control is a pure black-box method, only the input/output behaviour of the considered system
is needed. This makes it also applicable to situations, for which it is hard or even impossible
to get an equation, which describes the system properly, such as servo-hydraulic test-rigs in the
laboratory. See [4] for a detailed description and applications. But the method lacks of precise
mathematical justification, i.e. , there are no general statements about important properties like
accuracy, stability, and convergence. Of course, this can be seen as a consequence of the mini-
mal system knowledge requirement.
In contrast to the case of a servo-hydraulic test rig in the laboratory, for virtual test rigs or more
generally speaking for numerical system simulation on a computer, the system is well-known as
multibody system model. Therefore, it seems natural to make use of this information: our aim is
to develop mathematical methods as alternatives to the ILC-approach. The general assumption
is an - at least structural knowledge - of the model equations.
The methods, we are currently working on and we want to present here, are based on the theory
of optimal-control for DAEs. The first approach is known as trajectory prescribed path control
in literature, see [6]. The second method is an approach, using the calculus of variations ([5]).
Both methods augment the system equation and always lead to a differential algebraic equation
(DAE), which has to be solved, even if the system equation is originally an ordinary differantial
equation (ODE). For the numerical solution of a DAE, the (differentiation)- index is an impor-
tant property, see section 2 for a definition. We give results about the index of the resulting DAE
of the first two methods, see Lemmas 4.2 and 4.7.
The third alternative transfers the continous optimal control problem to a finite-dimensional op-
timization problem. In literature it is known as multiple shooting method for optimal control of
DAEs ([11], [12]).
For each approach, we give a short overview of its general scheme, and we apply it to simple
test problem, an N -mass-spring-damper-system. We show, that under some assumption, the
optimal control problem for this system is solvable with the best possible result, see Theorem
4.6.
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2 The optimal control problem for dynamical systems

We formulate the optimal control problem for a general dynamical system: the state of the
system is represented by a vector x(t) ∈ Rnx , let further u(t) ∈ Rnu denote some input or
control quantities for the system. The dynamics of the system are described - most generally
speaking - by a nonlinear differential-algebraic equation (DAE):

F (t, x(t), ẋ(t), u(t)) = 0, t ∈ [0; T ], x(t = 0) = x0, ẋ(t = 0) = v0, (1)

where F : R×Rnx ×Rnx ×Rnu → R
nx is sufficiently often differentiable and ∂F

∂ẋ
is allowed

to be idetically singular. If u is unknown, this equation is underdetermined.

Often, the dynamical system is given in the form of a semi-explicit DAE:

ẋd = fd(t, xd, xa, u)

0 = fa(t, xd, xa, u)
(2)

with differential variables xd and algebraic variables xa. The equations of motion of a (con-
strained) mechanical multibody system (our main interest) is a special case of such a semi-
explicit DAE and has the general form:

q̇ = v

M(q)v̇ = f(t, q, v, u)−GT λ

0 = g(q),

(3)

with position coordinates q, velocities v, inputs u, and Lagrange-multipliers λ, i.e., x = (q, v, λ),

and xd = (q, v), xa = λ respectively, G(q) :=
∂g

∂q
.

We now assume, that the system outputs are given as a function of the state vector and
possibly the input vector:

y(t) := gout(x(t), u(t)) (4)

where gout : Rnx × Rnu −→ R
ny . We further assume, that the desired reference outputs,

typically gained by measurement, are given as functions of time: yref (t) ∈ Rny .

This leads to the following optimal-control problem(OCP):
Minimize the cost functional

J [x, u] := ‖y − yref‖2
L2 =

∫ T

0

(
gout(x(t), u(t))− yref (t)

)2
dt (5)

w.r.t. to the input/control u, subject to Eq. (1), (2), (3) respectively. The L2− norm could also
be replaced by another suitable norm.

In general, all methods, which we describe here, require a numerical solution of a DAE,
(1), (2), (3). Even, if the system equation is given as an ODE, two approaches lead to a DAE,
cf. sec. 4.1 and 4.2. A well-known concept to classify DAEs is the index. In literature,
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various definitions can be found, following [10], we introduce the differentiation-index to be
the minimal number k, such that

F (x(t), ẋ(t), u(t)) = 0

d

dt
F (x(t), ẋ(t), u(t)) = 0

...

dk

dtk
F (x(t), ẋ(t), u(t)) = 0

(6)

can be transformed into an ODE only by algebraic transformations. It is a well-known fact, that
higher-index DAEs, i.e., k ≥ 2 are (numerically) hard to solve.

The system equation of a constrained multibody system, eq. (3), has differentiation index 3,
provided

GM−1GT (7)

exists and is invertible.

A last general assumption for the rest of the paper is, that all functions are sufficiently often
differentiable.

3 Iterative Learning Control

In this section, we describe the state-of-the-art method for industrial applications, the itera-
tive learning control method. The method is widely used to derive drive-signals for durability
test rigs in vehicle industry, cf. [4]. We give an outline of the general procedure followed by
an application case from automotive industry. As stated in the introduction, the ILC does not
use any information about the system equation (1), only the system’s input/output behaviour is
needed.

3.1 The general ILC-procedure

The general ILC-procedure is divided into two steps: First, there is an identification process,
in which the frequency response function, denoted by H , is estimated in the frequency domain.
This is accomplished by a system excitation with white or pink noise as input. Secondly, one
goes through a Newton-kind iteration process, in which the input is updated until the error is
sufficiently small; with each input iterate ui, the system has to be simulated in order to produce
the corresponding system output, yi, with whom in turn the input-update ∆ui is computed:

∆ui = H−1(yref − yi),

ui+1 = ui + ∆ui,

ui+1
sim−→ yi+1, i = 0, 1, 2, ...

(8)

figure (1) gives an schematic overview.

For the estimation process, it is assumed, that there is a linear, time-discrete relationship
between input and output:

y(k∆t) = H(q)u(k∆t) k = 1, 2, . . . (9)
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Figure 1: ILC procedure

where q is the so-called shift operator, i.e., (q−1u)(t) = u(t−1), and H the transfer function:

H(z) :=
∞∑
l=1

g(l)z−l, (10)

with the impulse response g.

Then, by well-known standard routines, the frequency response function, i.e. H(eiω), is es-
timated, see the book of Ljung, ([2]), for a detailed description. In the following section, we
present an application example from industry, where the ILC-method has been applied success-
fully.

3.2 A Daimler truck cabin with frame on a virtual test rig

Figure 2: SIMPACK model

In a project with the Daimler AG, cf. [3],
we have applied the ILC-method to a truck
cabin with frame on a virtual test rig. The
truck cabin, the frame and the virtual test rig
have been modelled as an MBS-system in the
software tool SIMPACK. The frame is mounted
on the test rig, i.e., on four vertical cylin-
ders. Additionally, there are two lateral and
one longitudinal cylinders connected to the
frame. Figure (2) shows the graphics of the
model.

The input quantities u of that MBS model
are the displacements of the seven test rig cylinders, i.e., nu = 7, as outputs we have defined
four spring length, the connections between cabin and frame, i.e., ny = 4. Among others, for
those spring lengths, there were reference outputs available gained by measurement. The SIM-
PACK model has been considered as pure black box model, which produces the corresponding
spring-lengths as outputs. The ILC procedure has been performed via MATLAB-routines.

Fig. (3) shows both the measured reference output and the output, that has been generated
with the calculated input, after four iteration steps.
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Figure 3: Reference and generated output signals

Figure 4: Left: Level crossing diagramm, right: range pair diagramm
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Fig. (4) shows a level crossing diagramm to the left and a range pair diagramm to the right of
the corresponding quantities. One can see, that with a relatively small number of iteration steps,
the calculated ouput signals and the measured ones fit together very well.

4 Alternative Methods

In this section, we present three alternative approaches derived from the optimal control for-
mulation given in section 2.

In order to test the alternative methods, we have choosen a simple mechanical system as
benchmark problem: a linear N−mass-spring-damper system, N−MSD, where the first body
is connected to ground only by a spring. Fig. (5) shows two masses.

Figure 5: 2-MSD

The input of the system is the end-position of the lowest spring,
nu = 1, and the output is the motion of the highest mass, i.e., posi-
tion, velocity or acceleration.
The equations of motion of that simple system are well-known and
have the form:

ẋ = Ax + b · u, x(0) = x0, (11)

where x = (qN , .., q1, vN , .., v1)
T , b = (0, . . . , 0, 1)T ∈ R2N , A ∈

R
2N×2N .

In this case, the system equation is still an ODE.

4.1 Trajectory prescribed path control methods

The first approach is to require the best achievable result, namely J [x, u] = ‖y−yref‖2
L2 ≡ 0,

in case of existence, the corresponding u is a global minimizer. This requirement is equivalent
to

y(t)− yref (t) = gout(x(t), u(t))− yref (t) = 0 ∀t ∈ [0; T ]. (12)

Eq. (12) can either be used to solve for one or more components of the state vector x, which can
be replaced in the model equation. Then, the latter can be solved for the remaining components
and u by a DAE-integrator. This, however, requires complete knowledge of Eq. (1) (white-box-
approach). Another possibility is to simply add Eq. (12) to the model-equation (1) as a further
algebraic constraint-equation, a so called state- or path constraint. The resulting equation is a
DAE (even, if the system equation was an ODE), which is not underdetermined anymore and
again, it can be solved by a DAE-integrator. This approach is known as trajectory prescribed
path control in literature, cf. [6].

The (differentiation-)index of the resulting DAE, however, can be very high, depending on
“where” the input goes into the system and which state variable appears in the output gout.
To make this clear, we consider the general constrained mechanical system, eq. (3) with an
invertible mass matrix. Moreover, we assume that we have one input and one output, nu =
ny = 1. We denote the jth component of the force function multiplied by the inverse mass
matrix by fj:

fj(t, q, v, u) :=
(
M(q)−1f(t, q, v, u)

)
j

(13)
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If there is an interacting force between body j and i, the corresponding force functions can
be split up in

fj = fj,i(qj, qi, vj, vi) + Rj and
fi = fi,j(qj, qi, vj, vi) + Ri = −fj,i(qj, qi, vj, vi) + Ri,

(14)

with ∂Rj

∂qi,vi
= ∂Ri

∂qj ,vj
= 0

We make the following assumption:

Assumption 4.1. • The input acts only on body i, i.e.,
∂fi

∂u
6= 0 and

∂fk

∂u
= 0 ∀k 6= i

• We want to prescribe the acceleration of body j > i, i.e., gout = gout(v̇j).

• There is a connecting chain of bodies, that links bodies j and i. By this formulation, we
mean: there is an interacting force between body j and j − 1, between body j − 1 and
j − 2,..,between body i + 1 and i (possibly after renumeration of the bodies). Of course,
the prototyping example is the N−MSD-system.

• For the interacting forces, i ≤ l ≤ k ≤ j, at least one of the following conditions holds

∂fkl

∂ql

6= 0 (15)

∂fkl

∂vl

6= 0 (16)

• If equation (16) is true for all i ≤ l ≤ k ≤ j, then the following product of Jacobians is
invertible:

∂gout

∂v̇j

∂fj,j−1

∂vj−1

∂fj−1,j−2

∂vj−2

. . .
∂fi+1,i

∂vi

∂fi

∂u
(17)

• If (16) is not true for the force function fk,l, then the Jacobian
∂fk,l

∂vl

in Eq. (17) has to be

replaced by
∂fk,l

∂ql

and the resulting product is assumed to be invertible.

Lemma 4.2. Let Assumption 4.1 be fulfilled. Let N denote the number of bodies of the con-
necting chain, i.e., N := j − i + 1 and L the number of force elements between the bodies of
the chain, for which eq. (16) is not true. If the system equation of the considered system has
differentiation index D ∈ {0, 1, 2, 3} for given input, then the DAE which results by adding the
state constraint equation 0 = gout − yref to eq. (3) has differentiation index

max{D, N + L} (18)

Proof. Without loss of generality, we assume, that the original system equation is an ODE,
i.e., D = 0. We consider the case N = 3 and set i = 1, j = i + 2 = 3. First we assume,
that condition (16) is true for all interacting forces. For the output function we have gout =
gout(v̇3) = gout(f3 = f32 + R3) = ˜gout(q2, v2). We differentiate the additional state constraint
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equation, 0 = gout − yref , a first time and get (in the following, we use R as a generic symbol
sumarizing terms, which are not of interest):

0 =
∂gout

∂v̇2

∂f32

∂v2

v̇2 +
∂gout

∂v̇2

∂f32

∂q2

q̇2 + R =
∂gout

∂v̇2

∂f32

∂v2

f2 +
∂gout

∂v̇2

∂f32

∂q2

v2 + R

=
∂gout

∂v̇2

∂f32

∂v2

f21 +
∂gout

∂v̇2

∂f32

∂q2

v2 + R.

(19)

A second differentiation yields

0 =
∂gout

∂v̇2

∂f32

∂v2

∂f21

∂v1

v̇1 +
∂gout

∂v̇2

∂f32

∂v2

∂f21

∂q1

q̇1 + R

=
∂gout

∂v̇2

∂f32

∂v2

∂f21

∂v1

f1 +
∂gout

∂v̇2

∂f32

∂v2

∂f21

∂q1

v1 + R.

(20)

And a third differentiation reveals u̇:

0 =
∂gout

∂v̇2

∂f32

∂v2

∂f21

∂v1

∂f1

∂u
u̇ + R. (21)

By assumption, this equation can be resolved for u̇, whence, the whole DAE has a differentia-
tion index 3 = 3 + 0.

Additionally, one can see, that for each missing damping term, i.e.,
∂fk,l

∂vl

= 0, one more differ-

entiation is needed.
A simple induction argument proves the Lemma.

Remark 4.3. If we want to prescribe only the velocity of body j, i.e., gout is a function of vj , the
corresponding differentiation index naturally increases by one: max{D, N + L + 1}. If gout is
a function only of the position qj , the index increases by two: max{D, N + L + 2}

Remark 4.4. The Lemma above states, that the differentiation index of the resulting DAE of
the prescribed path trajectory approach is increasing linearly with the number of “involved”
bodies.

Remark 4.5. Applied to our benchmark example, an N−MSD (which is of course the prototype
example of a connecting chain between two bodies), and for gout = v̇N , condition (17) means

dN · dN−1 · . . . d2 6= 0 (22)

meaning, that we have dampers between every two masses. The resulting DAE has Index N . If
there are L dampers missing, each corresponding dl in the equation above has to be replaced
by the corresponding spring stiffness kl, and the DAE has index N +L. Note, that an additional
damper between the first body and ground will not affect the index.

An important property of our benchmark example is the fact, that, with the method of pre-
scribed path trajectory, we can show, that the general task to find an input u, such that the
highest mass moves as desired, i.e. follows a prescribed acceleration, velocity or position, has
a solution. This solution can be written down explicitly, provided that the reference output, is
smooth enough.
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The crucial point is, that the system equation (11) is linear. We can transform the correspond-
ing DAE, the system equation and the state constraint equation gout(qN , vN) − yref (t) = 0, in
the following standard form:

E ˙̃x = Ãx̃ + f(t), (23)

with x̃ = (x, u)T ∈ R2N+1, a singular matrix E and f(t) = (0, . . . , 0,−yref (t))
T ∈ R2N+1.

To guarantee solvability of that DAE, we still have to require the further condition, that the
matrix pair (E, Ã) is regular, i.e., there is a λ ∈ C such that det(Ã− λE) 6= 0.

Theorem 4.6. If (E, Ã) is regular and the reference output f is smooth enough, then DAE (23)
is solvable. The solution can be written down explicitly. The solution-algorithm, given in the
proof, reveals directly the index of the DAE.
As a consequence, the optimal-control problem, we consider for the N−MSD has a solution,
that fulfills J [x, u] ≡ 0.

Proof. The pair (E, Ã) can be transformed to the Weierstraß-canonical form, i.e., there are
regular matrices P, Q, such that

PEQ =

(
Ñ

1

)
PÃQ =

(
1

J

)
(24)

with a nilpotent matrix Ñ and a matrix J in Jordan canonical form.

With the obvious coordinate transformation and a multiplication by P , Eq. (23) splits up into
the two independent equations

Ñ ẋ1 = x1 + (Pf)1

ẋ2 = Jx2 + (Pf)2

(25)

The solution is

x1(t) = −
i∑

ν=0

Ñ i(Pf)
(i)
1 (t),

x2(t) =

∫ t

0

eJ(t−s)(Pf)2(s)ds

(26)

where i is the index of nilpotency of the matrix Ñ , which is obviously also the index of the
DAE. See [8] for details.

For our test-problem, however, we have followed both ways. the following figures show a
comparison. For this test, we have choosen a 3-MSD system, we have prescribed the accel-
eration of the highest mass to be sine-function, i.e., the state-constraint equation added to the
system equation is 0 = gout(v̇3) − yref (t) = v̇3 − sin(t). There are no dampers missing, so,
according to Lemma (4.2), the index of the resulting DAE is 1 + 2 = 3, therefore, it can be
solved numerically by the DAE-Integrator RADAU5, see [7], without any index reduction.

The error-tolerances of RADAU5 were set to 10−4, both relative and absolute, RADAU5 has
taken 118 time steps to solve this simple Index-3-problem.
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Figure 6: Input

Figure 7: Output, acceleration of the highest mass

4.2 Variational Method

The next approach, we want to discuss here, is a variational approach, in literature also often
called indirect optimization. For a detailed overview, see [5], [9].

Recall, that our general task is to minimize the cost functional,

J [x, u] := ‖y − yref‖2
L2 =

∫ T

0

(
gout(x(t), u(t))− yref (t)

)2
dt, (27)

subject to the equation, which describes the dynamics for the multibody system. For this sec-
tion, we assume, that the system equation is an ODE of the form

ẋ = f(t, x, u), x(0) = x0, (28)

again with x = (q, v)T . The idea of the variational approach is to derive a necessary condition
for u to be a minimizer of (27). We briefly sketch the well-known argumentation: we consider
small perturbations of u: u + εδu. If x is a solution of (28) to u, the solution corresponding to
the perturbed input is of the form x + εδx +O(ε2) and therefore

˙δx = fxδx + fuδu. (29)

Linearization of the cost functional yields

J [u + εδu]− J [u] = ε

∫ T

0

(
ϕxδx + ϕuδu

)
dt +O(ε2), (30)

11
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we have set ϕ(t, x, u) := gout(x(t), u(t)) − yref (t). Hence, a necessary condition for u to be a
minimizer is ∫ T

0

(
ϕxδx + ϕuδu

)
dt = 0. (31)

It is easy to show, that this is equivalent to∫ T

0

(
µT fu + ϕu

)
δudt = 0, (32)

provided, that the so called adjoint variable µ fulfills

µ̇ = −fT
x µ− ϕT

x , µ(T ) = 0. (33)

To summarize, a necessary condition for u to be a minimizer is fullfilling the DAE-system:

ẋ = f(t, x, u), x(0) = x0,

µ̇ = −fT
x µ− ϕT

x , µ(T ) = 0,

0 = µT fu + ϕu.

(34)

For a detailed discussion, see [5].

Eq. (34) is a mixed boundary value DAE-problem (of possibly high index). Hence, it is
numerically hard to solve, e.g., one can apply shooting methods, that in turn require derivatives
with respect to the end value µ(T ). These derivatives can be obtained by a finite differences ap-
proximation, by integrating the corresponding sensitivity DAE or by algorithmic differentiation.

We consider our benchmark problem, the N−MSD, see Eq. (11). Again, we want to pre-
scribe the motion of the N−th mass

The variational equations (34) for this problem read as follows:

ẋ = Ax + bu, x(0) = x0, (35)
µ̇ = −AT µ− ϕT

x , µ(T ) = 0, (36)
0 = µT b = µ2Nk1. (37)

For the different output possibilities, we have:

acceleration: ϕ(t, x, u) = (−kN(xN − xN−1)− dN(vN − vN−1)− yref (t))
2,

velocity: ϕ(t, x, u) = (vN − yref (t))
2,

position: ϕ(t, x, u) = (xN − yref (t))
2,

(38)

whence, for the gradient:

acceleration: ϕT
x = (−kN , kN , 0, . . . , 0,−dN , dN , 0, . . . , 0)T

· 2(−kN(xN − xN−1)− dN(vN − vN−1)− yref (t)),

velocity: ϕT
x = (0, . . . , 0, 2(vN − yref (t)), 0, . . . , 0)T ,

position: ϕT
x = (2(xN − yref (t)), 0, . . . , 0)T .

(39)

For the index of the DAE system (35)-(37), we have a similar result as for the index for the
resultig DAE of the previous method, it grows linearly with the number of bodies:
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Lemma 4.7. Consider the variational equations (35)-(37) for the optimal control problem of
the N−MSD. Let L denote the number of spring-damper-elements between the first and the last
mass, for which the damper is missing, then, the differentiation index of the Eqn. (35)-(37) is

acceleration-level: 2(N + L)− 1

velocity-level: 2(N + L) + 1

position-level: 2(N + L) + 3

(40)

Proof. We assume ϕ on acceleration-level and no damper missing. The result relies basically
on the special form of the system matrix A:

A =

(
0 1

K D

)
, (41)

where K and D having the following sparse structure:

K =



−kN kN

kN −(kN + kN−1) kN−1

kN−1 −(kN−1 + kN−2) kN−2

. . .

k2 −(k1 + k2)


(42)

For D, just replace kj by dj . The algebraic equation of the variational equation system is
0 = µ2Nk1. Recall, that the differential equation for µ is:

µ̇ = −AT µ− ϕT
x . (43)

Therefore, we have
µ̇i = −(Ai,1..2N)T µ− ϕx,i. (44)

Using this and the special structure of A, a simple induction argument shows, that with each
time differentiation, one obtains:

0 = C · µ̇i = Cdiµi−1 + R, i = 2N, ..N. (45)

Since the first non-vanishing component, seen from the bottom, in ϕT
x is ϕT

x,N+2, again induc-
tively, one has to perform exactly 2N − (N + 1) + L = N + L− 1 time differentiations to get
the equation

0 = −2CdN

(
−kN(xN − xN−)− dN(vN − vN−1)

)
+ R. (46)

Now, consider this equation together with the system equation of the N -MSD, (35), one can
apply Lemma 4.2, and the differentiation index turns out to be

N + L− 1 + (N − 2) + L + 2 = 2(N + L)− 1. (47)

The cases with ϕ on velocity or position level respectively are proven in the same way.

We have also applied this method to a 2-MSD-system. The results are as good as of the
previous method. However, even for this simple system, a shooting approach for the end-value
of the adjoint variable is necessary.
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4.3 Direct Optimization - a multiple shooting method

The last approach, we want to present here, is based on a direct optimization of the optimal
control problem (5), it is transformed to a finite-dimensional nonlinear programming problem,
see [11], [12].
Here, we assume, that the system equation is a DAE in semi-explicit form:

ẋd = fd(t, xd, xa, u),

0 = fa(xd, xa, u),
(48)

with differential variables xd and algebraic variables xa.

We give a brief overview of the discretization procedure: First, we introduce a control grid,

πu := {t1, .., tM} ⊂ [0; T ] t1 = 0, tM = T, (49)

on which the input u is approximated by splines. E.g., one can think of a piecewise constant or
linear approximation on each subinterval [ti; ti+1]. Let c1, ..cM̃ denote the corresponding spline
coefficients.

The next step is to introduce a state grid

πx := {t̄1, .., t̄L} ⊂ [0; T ], t̄1 = 0, t̄L = T. (50)

On each subinterval [t̄j; t̄j+1], the system equation is solved numerically by a suitable integrator.
An important condition is, that we have consistent “initial” values xj = (xj

d, x
j
a) at each state

grid point. Let
xj

app = xj
app(t; x

j, c) (51)

denote the approximate solution on [t̄j; t̄j+1], depending on the spline coefficients, which will
appear later as a part of the variable to be changed in the optimization process.
The last task is to discretize the cost functional

J [x, u] :=

∫ T

0

ϕ(t, x, u)dt. (52)

To this end, there are mainly two possible ways. The first one is to approximate the integral by
a finite sum, possibly on a third time grid πJ := {t̃1, .., t̃K} ⊃ πx:

J [x, u] :=

∫ T

0

ϕ(t, x, u)dt ≈ J̃ [x, u] :=
K∑

i=0

hiϕ(t̃i, x(t̃i), u(t̃i)) (53)

with suitable weighting factors hi.

To explain the second way, we remark, that the form of our optimal control problem - with
the cost functional being an integral - is said to be in Lagrange form in literature. It can easily be
transformed into a problem in so called Mayer form, in which the cost functional is only function
of the state variable at the end time: J [x, u] = Φ(x(T )). Of course, such a cost functional has
not to be discretized anymore. The transformation is accomplished by introducing an additional
state variable x0 and an additional differential equation

ẋ0 = ϕ(t, x, u), x0(0) = 0. (54)
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Adding this differential equation to the system equation and setting

J̃ [x, u] := x0(T ), (55)

we arrive at an optimal control problem in Mayer form, which is equivalent to our old problem.
Now, we are able to state the discretized, finite-dimensional optimal control problem:

minimize J̃ [x, u]

w.r.t. ζ := (x1
d, .., x

L
d , c1, .., cM̃)

s.t. x1
d,app(t̃2; x

1
d, c) = x2

d

...

xL−1
d,app(t̃L−1; x

L−1
d , c) = xL

d

(56)

Note, that the optimization variable ζ only depends on state grid initial values of the differential
variable. To be consistent, the initial value of the algebraic variable is locally uniquely deter-
mined. The last constraint equations of (56) assure, that the differential part of the approximate
solution is continuous.
The whole method is called direct single shooting method, if L = 1, and direct multiple shoot-
ing method otherwise. The dimension of the optimization variable ζ is finite, but can be very
high, depending on the length of the complete time interval to be considered and on the length of
the discretization time grids. Suitable numerical solution methods for such nonlinear program-
ming problems are sequential quadratic programming methods (SQP), see [14]. Those methods,
however, use the gradient of the objective function and the Jacobian of the constraints, i.e, as in
the variational approach, a sensitivity analysis of the system equation is often necessary.
To reduce the dimension of the optimization variable, so called moving horizon techniques are
proposed in literature, see [13]. The main idea is to consider short sections of the complete
time interval [0; T ] and solve local optimal control problems of smaller dimension. The local
solutions have to be combined by suitable transient conditions.

We have applied this approach to our benchmark problem, this time a 2-MSD, where the
output was the displacement of the highest mass and the reference output was a sine signal
again. The following figures show the results.

Figure 8: Calculated input and the exact solution
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Figure 9: Calculated output and the exact solution, displacement of the highest mass

4.4 Comparison

We have presented three mathematically well-defined approaches for dealing with the opti-
mal control problem described in the introduction. All three methods work very well for our
benchmark system, a N-mass-spring-damper system, with small N .

Both the trajectory presribed path control method and the variational approach augment the
system equation of the considered dynamical system and always lead to a DAE. The two ap-
proaches, however, can suffer from a high differentiation index of the resulting DAE. As we
have shown in the Lemmas 4.2, 4.7, without any modifications, for both methods, the dif-
ferentiation index is increasing with O(N), where N is the number of involved bodies. It is
well-known, that this can lead to severe numerical difficulties or even to a numerical unsolv-
ability of the DAE. The integrator RADAU5 can solve DAEs in semi-explicit form up to index
3. Concerning the variational approach, we have the additional problem, that the underlying
DAE is a mixed boundary value problem, so, e.g., a shooting method has to be applied, which
in turn requires derivatives, i.e., in this case, Hessians of the right-hand side of the system equa-
tion. Note, that one needs Jacobians of the right-hand-side of the system equation only to set
up the variational equatons, eq. (34).

The last approach, the direct optimization, has no such index problems as the previous ones.
Here, the sytem equation is not affected and the differentiation index remains unchanged. The
resulting optimization problem can be solved with a suitable large-scale algorithm, if its di-
mension is not too high. Otherwise, other techniques, such as moving horizon, are necessary.
Additionally, optimization methods usually need gradients of the object function and Jacobians
of the constraints, i.e., in this case Jacobians of the right-hand side of the system equation.

As information about the considered dynamical system, the three methods merely require a
structural knowledge and right-hand-side evaluations as well as evaluations of the right-hand-
side-Jacobians and -Hessians respectively. Hence, an application in connection with a com-
mercial MBS tool could be possible. However, if an index reduction has to be performed for
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one of the first two methods, surely more information about the system equation is necessary.
Concerning the needed information about the system equation, one could tax the first two meth-
ods as grey-box methods, whereas the third approach is “dark-grey”, since only the integration
results of the system equation and the corresponding sensitivity equation are needed.

5 Conclusion

In this paper, we have presented the problem of calulating invariant loads for the simula-
tion of dynamical systems in vehicle engineering. Mathematically, the problem is an optimal
control problem. We have desribed the state-of-the art solution, the iterative learning control,
and have given an application example from the automotive industry, for which the iterative
learning control has been applied successfully. However, this method has many drawbacks and
does not converge for general nonlinear systems. Therefore, we have presented three alternative
approaches, based on the optimal control theory for DAEs. We have successfully applied those
methods to simple benchmarks and investigated some of the problems and numerical difficul-
tites occuring there. Currently, we are working on the refinement and implementation of the
described methods.

.
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