

**PROJEKTGRUPPE** 

RESSOURCENEFFIZIENTE MECHATRONISCHE VERARBEITUNGSMASCHINEN

# ADDITIVE FERTIGUNG – INDUSTRIERELEVANTE ANWENDUNGEN IM WERKZEUGBAU UND DER PRODUKTHERSTELLUNG

#### **AGENDA**

1 Fraunhofer IWU

2 Additivstandort Augsburg IWU PG RMV & TUM

3 Anwendungen im Werkzeugbau

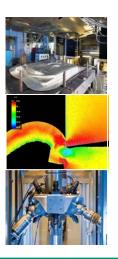
4 BioTRIZ – Innovationen für die Produktentwicklung

5 Zusammenfassung und Ausblick



### FRAUNHOFER IWU

#### **IM PROFIL**


- Gegründet am 1. Juli 1991
- ca. 590 Mitarbeiter
- 37,6 Mio. Euro Jahresetat
- Standorte: Chemnitz, Dresden, Zittau, Augsburg (seit 2009)



#### Forschung unter dem Leitthema »Ressourceneffiziente Produktion«

#### Wissenschaftsbereiche

- Mechatronik und Funktionsleichtbau
- Werkzeugmaschinen und Produktionssysteme
- Umformtechnik und Fügen
- Zerspanungstechnik









# FRAUNHOFER IWU FORSCHUNGSSTANDORTE



Chemnitz



Dresden



**Zittau** 



Augsburg



#### **ADDITIVE FERTIGUNG AM IWU IN DRESDEN**

#### **ANLAGENTECHNIK**

- Laserstrahlschmelzanlage M2 cusing:
- Bearbeitungsbereich (x, y, z):  $250 \times 250 \times 280 \text{ mm}^3$ ,
- 400-Watt-Faserlaser, Schmelzpool-Echtzeitüberwachung, vollautomatische Siebstation



#### ADDITIVE FERTIGUNG AM IWU IN DRESDEN

#### **ANLAGENTECHNIK**

- Strahlschmelzanlage SLM 100:
- 100-Watt-Faserlaser
- Bauraum (øD, z): 125 mm x 100 mm
- Siebstation

#### Peripherie / Werkstoffprüfung:

- 2 Microstrahlanlagen PEENMATIC 620 S
- Wirbelschliffvibrator P30
- Härtesystem
- GOM ATOS III Triple Scan 3D-Scanner
- phoenix v|tome|x s μCT-Scanner
- Werkstofflabor (REM, Dilatometer etc.)





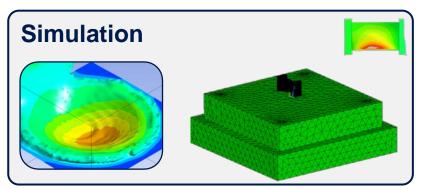
#### **AGENDA**

1 Fraunhofer IWU

2 Additivstandort Augsburg IWU PG RMV & TUM

3 Anwendungen im Werkzeugbau

4 BioTRIZ – Innovationen für die Produktentwicklung


5 Zusammenfassung und Ausblick



### AMLAB – GEMEINSCHAFTSLABOR DES *IWB* DER TU MÜNCHEN UND DER FRAUNHOFER IWU PG RMV

#### **FORSCHUNGSSCHWERPUNKTE**













### AMLAB – GEMEINSCHAFTSLABOR DES IWB DER TU MÜNCHEN UND DER FRAUNHOFER IWU PG RMV

### **ANLAGEN- UND PRÜFTECHNIK**

Laserstrahlschmelzen Concept Laser



Laserstrahlschmelzen Laserstrahlschmelzen



**SLM Solutions** 



Lasersintern **EOS** 



Rauheitsmessung Mitutoyo



Elektronenstrahlschmelzen

Eigenentwicklung







Mechanische Prüfung

Zug, Härte (Zwick Roell)

3-D-Druck Voxeljet



**Fused Deposition Modelling** Stratasys



Digitalisierung Steinbichler



Laserscan-Mikroskopie Keyence



Metallographielabor ATM



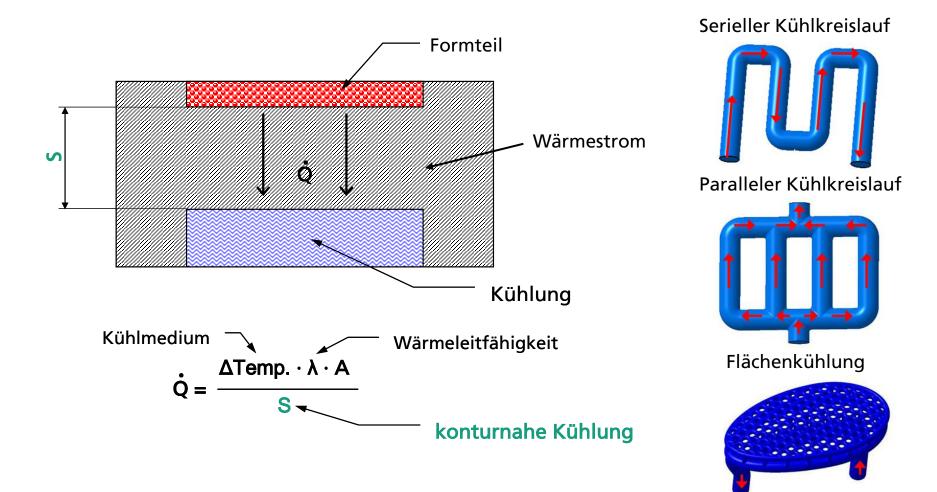
# ADDITIVSTANDORT AUGSBURG ZAHLEN UND FAKTEN



#### **AGENDA**

1 Fraunhofer IWU

2 Additivstandort Augsburg IWU PG RMV & TUM


3 Anwendungen im Werkzeugbau

4 BioTRIZ – Innovationen für die Produktentwicklung

5 Zusammenfassung und Ausblick



# ANWENDUNG IM WERKZEUG- UND FORMENBAU GRUNDLAGEN ZU KONTURNAHEN KÜHLSYSTEMEN



#### **BEISPIEL 1: SPRITZGIEßEN – BESTECKKORB**

#### **Bauteildaten:**

Abmessungen

■ Wandstärke: 1,1 mm

■ Länge: 188 mm

■ Breite: 116 mm

■ Höhe: 143 mm

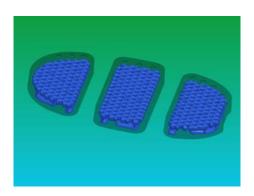
Werkstoff

Bauteil: Polypropylen

Werkzeug: Werkzeugstahl

(1.2343)




| Auswahlkriterium       | Bauteil-Einstufung |        |      |  |  |  |
|------------------------|--------------------|--------|------|--|--|--|
| Komplexität            | niedrig            | mittel | hoch |  |  |  |
| Platz für Kühlung      | groß               | mittel | eng  |  |  |  |
| Qualitätsanforderungen | niedrig            | mittel | hoch |  |  |  |
| Stückzahlen            | niedrig            | mittel | hoch |  |  |  |
| Produkt-Lebenszyklus   | kurz               | mittel | lang |  |  |  |

(Mit freundlicher Genehmigung vom Institute for Advanced Tooling IAT der Stellenbosch University, Südafrika)





#### **BEISPIEL 1: SPRITZGIEßEN – BESTECKKORB**



CAD-Modell der Flächenkühlung



Ausrichten und Fixieren in der Strahlschmelzanlage



gefräster Grundkörper mit Kühlbohrungen (vorgeschruppt)



Strahlschmelzanlage vorbereitet

→ fertig für Bauprozess

#### 1. geschliffen 2

2. gestrahlt



Vorbereitung der Verbindungsfläche



Werkzeugeinsatz mit Flächenkühlung → fertig für die Schlichtbearbeitung

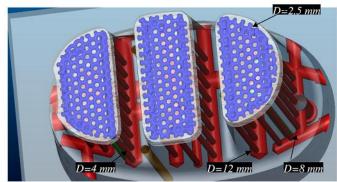
(Mit freundlicher Genehmigung vom Institute for Advanced Tooling IAT der Stellenbosch University, Südafrika)





#### BEISPIEL 1: SPRITZGIEßEN – BESTECKKORB

#### **Zykluszeitenvergleich:**


#### mit herkömmlichen Kühleinsatz 26 s

| Öffnen und Schließen | 6,0 s  |
|----------------------|--------|
| Kühlzeit             | 12,0 s |
| Formfüllung          | 3,0 s  |
| Nachdrücken          | 3,5 s  |
| Auswerfen            | 1,5 s  |

#### mit innovativer Flächenkühlung 18 s

| Öffnen und Schließen | 6,0 s |
|----------------------|-------|
| Kühlzeit             | 6,0 s |
| Formfüllung          | 2,0 s |
| Nachdrücken          | 2,5 s |
| Auswerfen            | 1,5 s |





rot: konventionelle Kühlung, blau: Flächenkühlung

Reduzierung der Zykluszeit um 30,8 %

(Mit freundlicher Genehmigung vom Institute for Advanced Tooling IAT der Stellenbosch University, Südafrika)





#### **BEISPIEL 2: BLECHWARMUMFORMEN**

#### **Ausgangssituation:**

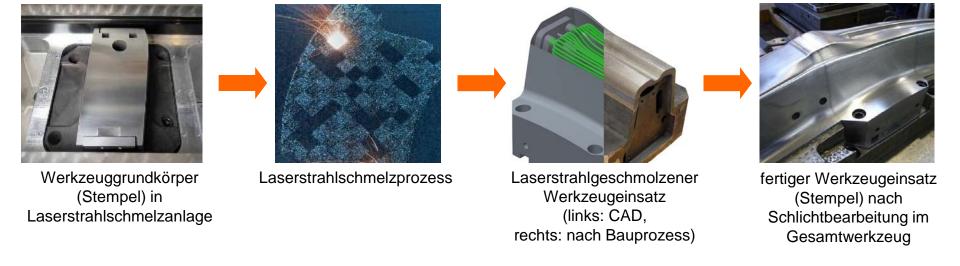
- steigender Bedarf an pressgehärteten Bauteilen in der Karosseriefertigung (im Golf VII 80 % der 245 kg wiegenden Rohkarosse aus hoch- und höchstfesten Stählen)
  - → höhere Festigkeit bei geringerem Gewicht
- gezielte Temperierung bestimmter Bereiche konform zur Werkzeugkontur nur sehr aufwändig und mit Einschränkungen realisierbar

#### Zielstellung:

- optimale Werkzeugtemperatursteuerung
- Reduktion der Zykluszeiten (maßgeblich durch die Haltezeit bestimmt)










#### **BEISPIEL 2: BLECHWARMUMFORMEN**

#### Lösungsweg:

 Generative Fertigung der Werkzeugeinsätze in Hybridbauweise mit konturnaher Flächenkühlung









# ANWENDUNG IM WERKZEUG- UND FORMENBAU ZUSAMMENFASSUNG

- Verbesserung bestehender und Integration neuartiger Funktionen in Werkzeugen und Formen durch Laserstrahlschmelzen
  - konturnahe Temperierung
  - Entlüftungsstrukturen in Integralbauweise
  - Verbesserung tribologischer und thermischer Eigenschaften durch poröse / zellulare Strukturen
  - Integration von Sensorik und Aktorik
- Wirtschaftlichkeit durch Zykluszeiteinsparung und verbesserte Bauteilqualität
- komplexere Bauteile mit konturnaher Temperierung herstellbar
- gezielte Einstellung von Bauteileigenschaften durch Temperierung (Blechwarmumformung)



#### **AGENDA**

1 Fraunhofer IWU

2 Additivstandort Augsburg PG RMV & TUM

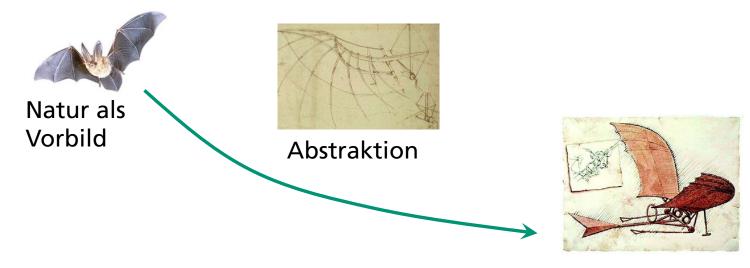
3 Anwendungen im Werkzeugbau

4 BioTRIZ – Innovationen für die Produktentwicklung

5 Zusammenfassung und Ausblick



#### **EXKURS IN DIE BIONIK**


#### LERNEN VON DER NATUR

Biologie → Rionik1: Konstruk

Wissenschaftliche Disziplin, die sich mit der technischen Umsetzung und Anwendung von

Bionik<sup>1</sup>: Konstruktions-, Verfahrens- und Entwicklungsprinzipien biologischer Systeme befasst

Anfänge der Bionik: Erfindungen von Leonardo Da Vinci (1452-1519)



**Technische Anwendung** 

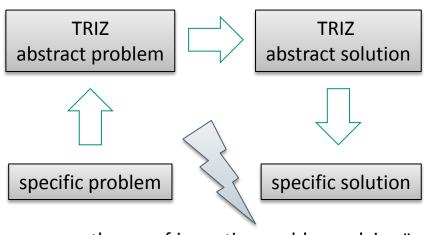
1: VDI, Bildquellen: www.stuttgarter-zeitung.de; kw-siebler.de; www.buckelwalflosse.de



Tech*nik* 

#### **MOTIVATION AND RESEARCH FOCUS**

# HOW TO OPTIMIZE THE DESIGN PROCESS SPECIFICALLY FOR LASER ADDITIVE MANUFACTURING?


#### **DESIGN FOR AM**

**VDI 3405:** part orientation, application of support structures, material properties, post-processing etc.


"designer's mind-sets have to adapt to a different way of production and design"

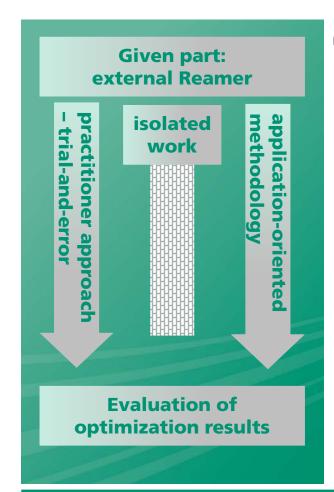
**VDI status report of 2014** 

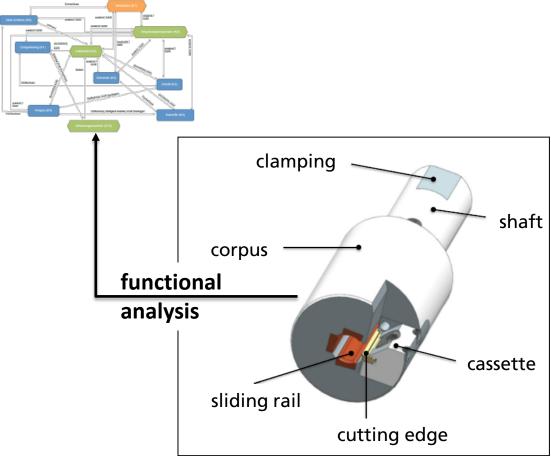
application-oriented methodology



", theory of inventive problem solving" LINDEMANN 2009, 2014; SCHAAL 2011



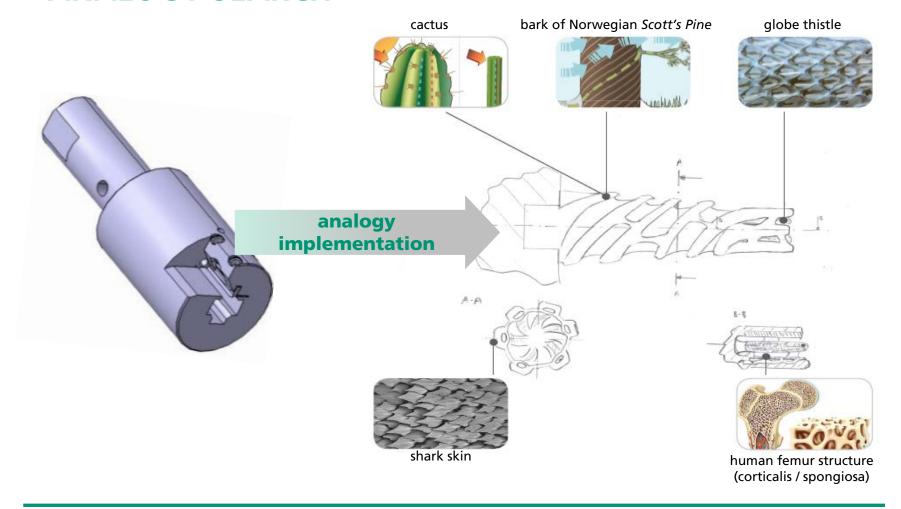

"learning from nature" NACHTIGALL 2002




#### **CASE STUDY**

### EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG

#### - METHODOLOGY



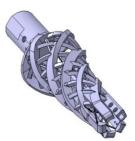



#### **CASE STUDY**

### EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG

#### - ANALOGY SEARCH




#### **CASE STUDY**

### EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG

- RESULTS AND EVALUATION



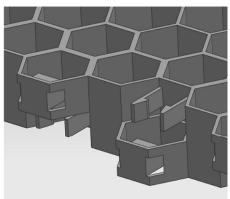




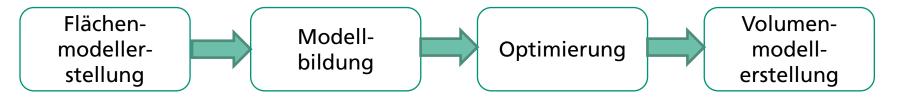
|                                    |                                  | Reamer<br>conventional | Reamer LAM-non-TRIZ- optimized | Reamer TRIZ-<br>optimized |
|------------------------------------|----------------------------------|------------------------|--------------------------------|---------------------------|
| PART-DATA                          |                                  |                        |                                |                           |
| mass (TiAl6V4)                     | <b>m</b> [g]                     | 232                    | 107                            | 86                        |
| volume                             | $ m V_{BT}  m V_{BT}$ [mm $^3$ ] | 52080                  | 23980                          | 19280                     |
| surface                            | $\mathrm{O_{BT}O_{BT}}$ [mm²]    | 15000                  | 33000                          | 36000                     |
| PROCESS-PERFORMANCE                |                                  |                        |                                |                           |
| complexity-index                   | KI                               | 3,28                   | 6,30                           | 7,11                      |
| massivity-index                    | MI                               | 0,82                   | 0,66                           | 0,56                      |
| orientation-index                  | OI                               | 0,63                   | 0,83                           | 1,25                      |
| PART-PERFORMANCE                   |                                  |                        |                                |                           |
| lightweight construction indicator | LCI (normalized)                 | 0,03                   | 0,09                           | 0,49                      |
| mass ratio                         | MA [%]                           | 100                    | 46                             | 37                        |
| safety-index                       | SI                               | 159                    | 131                            | 29                        |

the systematic approach offers better design results regarding process and part performance



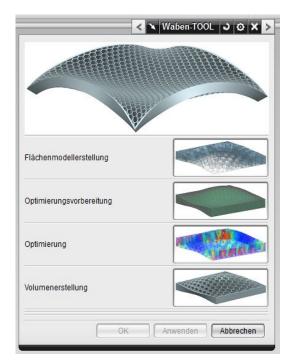

#### MESOSKOPISCHER LEICHTBAU DURCH SECHSECKWABE

- Honigwabenkerne sind aufgrund der Struktur höher belastbar als homogene Kerne.
- Nutzung als Sandwichbauteil vorteilhaft
- Vorteile durch AM:
  - Adaption von Wabenkernen an eine beliebige Freiformfläche
  - Funktionsintegration in Sandwichbauteile (z. B. Integrierte Gewinde oder Steckverbindungen)







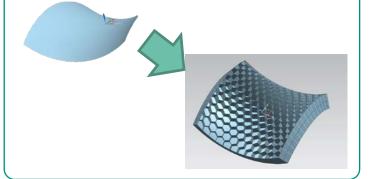




#### MESOSKOPISCHER LEICHTBAU DURCH SECHSECKWABEN



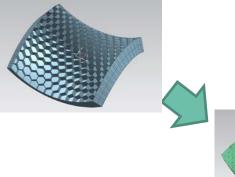
#### Softwaretool des Fraunhofer IWU Augsburg:

- Add-on für Siemens NX
- Verwendung von Part-Dateien
- Grafische Oberfläche
- Umsetzung in C#






#### MESOSKOPISCHER LEICHTBAU DURCH SECHSECKWABEN


#### Flächenmodellerstellung

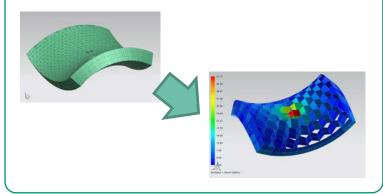
- Erstellung einer Entwurfsfläche
- Eingabe der Parameter
- Generierung der
   Flächenmodelle entlang des lokalen Normalenvektors



#### Modellbildung

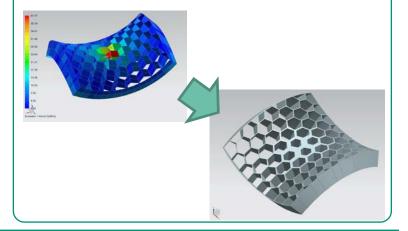
- Vernetzung des Bauteils
- Aufbringen der Decksicht
- Definition der Lasten und Lagerungen








#### MESOSKOPISCHER LEICHTBAU DURCH SECHSECKWABEN




- Bauteiloptimierung in Abhängigkeit der vorgegebenen Zielspannung
- Anpassung der Wandstärken
- Berücksichtigung der AM-Konstruktionsrichtlinien



Volumenmodellerstellung

- Überführung der Flächenmodelle in Volumenmodelle
- Integration von weiteren Funktionen möglich





#### **AGENDA**

1 Fraunhofer IWU

2 Additivstandort Augsburg PG RMV & TUM

3 Anwendungen im Werkzeugbau

4 BioTRIZ – Innovationen für die Produktentwicklung

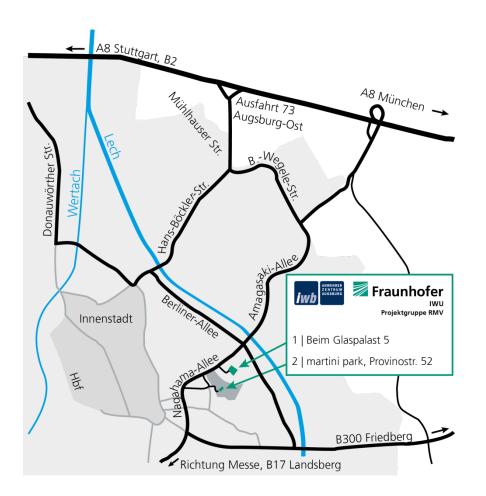
5 Zusammenfassung und Ausblick



## ZUSAMMENFASSUNG UND AUSBLICK ADDITIVE FERTIGUNG ALS KERNKOMPETENZ DES IWU

#### Werkzeugbau @ IWU Dresden

- Innovative Lösungen für den Einsatz der additiven Fertigung im Werkzeugbau
- Verbesserung bestehender und Integration neuartiger Funktionen in Werkzeug und Formen durch Laserstrahlschmelzen
- gezielte Einstellung von Bauteileigenschaften


#### **BioTRIZ @ IWU Augsburg (AMLab)**

- Methodengestützte Bauteiloptimierung hinsichtlich Leichtbau und Funktionsintegration (Topologie, Multimaterialverarbeitung)
- Spezifische Software-Lösungen für das "Design for additive"
- Schulungen und ganzheitliche Implementierungskonzepte

"Design for additive" – Denken in Funktionen – ist DIE Grundvoraussetzung für den wirtschaftlichen Serieneinsatz von AM!



# VIELEN DANK FÜR IHRE AUFMERKSAMKEIT! IHR WEG ZU UNS





Dipl.-Ing. Christian Seidel Abteilungsleiter Komponenten und Prozesse

Projektgruppe Ressourceneffiziente mechatronische Verarbeitungsmaschinen

Beim Glaspalast 5 I 86153 Augsburg Telefon +49 821 56883-44 I Fax -50 christian.seidel@iwu.fraunhofer.de www.iwu.fraunhofer.de/rmv

