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Abstract: A technique for merging the outputs of many behaviors in a
cooperative way is presented. The study of the correlation between differ-
ent behavioral response vectors and the behavior system’s overall properties
shows that the representation of behavioral response has to be chosen care-
fully. Based upon this insight ideas from fuzzy control theory are used to
develop a general model for behavior cooperation. By an appropriate choice
of the parts involved in this model an algorithm for behavior fusion can be
derived analytically. Simulations show that this approach yields a highly
reactive and robust robot controller.

Keywords: behavior system, behavioral fusion, behavioral response, mo-
bile robot, laserscanner, fuzzy set theory

Zusammenfassung: Es wird eine Methode zur kooperativen Fusion-
ierung der Antworten vieler Verhalten vorgestellt. Die Untersuchung des
Zusammenhanges zwischen unterschiedlichen Antwortvektoren und den
globalen Eigenschaften des Verhaltenssystems zeigt, dass die Reprasentation
der Antwortvektoren mit Bedacht gewédhlt werden muss. Auf dieser
Grundlage wird die Theorie der unscharfen Mengen benutzt, um ein
allgemeines Modell zur Verhaltensmischung zu erstellen. Durch geschickte
Wahl der Komponenten dieses Modells kann ein Algorithmus zur Verhal-
tensiiberlagerung analytisch hergeleitet werden. Simulationen belegen, dass
die vorgestellte Art der Verhaltensiiberlagerung einen hochreaktiven und
gleichzeitig robusten Regler hervorbringt.

Schliisselworter: Verhaltenssystem, Verhaltensfusionierung, Verhal-
tensantwort, mobiler Roboter, Laserscanner, Theorie der unscharfen Mengen






1 Introduction

Complex control can be achieved by decomposing the control task into small
units, each providing the robot with the ability to reach a certain goal. These
units are called behaviors [4] or (motor) schemas [1]. To achieve complex
goals, behaviors and their respective goals have to be assembled in some
way. On the one hand there are competitive methods for behavioral response
coordination ([5], [11], [9]). These methods avoid conflicts between active
behaviors by arbitration, i.e. the selection of one behavior output ignoring
the others. Even though arbitration theoretically ensures that the robot
remains in a stable state all the time (provided that the single behaviors are
designed correctly) the switching between behaviors is problematic. On the
other hand there are cooperative behavior assembling methods ([13], [12], [8],
[1]). These methods use the output of more than one behavior concurrently
at a time. This overcomes the problem of switching between behaviors, but
can result in an unwanted overall response, whenever conflicting behavioral
goals have to be assembled.

In this paper a general approach of merging behavior response vectors
based on the theory of fuzzy sets is described. Algorithms for merging linear
velocities, angular velocities and reference directions are derived from these
general results. We demonstrate, using a paradigmatic behavior system of
a soccer playing robot, that the fusion of angular velocities causes locally
stable equilibria, in which the robot gets trapped. This unwanted behavior
results from conflicting goals of the competing behaviors within the behavior
system. It is shown, that by replacing angular velocities by reference direc-
tions these equilibria vanish, because conflicts can be resolved using the more
far-reaching temporal information carried by directions.

The first Section describes a novel approach for merging behavior re-
sponse. In Section 3 a paradigmatic behavior system is presented in which
the behaviors’ response vectors consist of linear velocities and angular veloc-
ities. The fusion of these response vectors leads to locally stable equilibria.
This problem is solved in Section 4 by replacing angular velocities by refer-
ence directions.






2 Fusion of behavioral response vectors

Most types of autonomous mobile robots move on a flat floor and thus have
two degrees of freedom. The robots used in our work-group have two in-
dependently driven wheels. The wheels’ speed is controlled by a computer
program running on a Siemens C167 micro-controller. This is our low level
motor controller that takes as reference a linear velocity and an angular
velocity. A behavior system that is running on a PC with a 100MHz Intel-
Pentium Processor mounted on the robot is sending these commands to the
low level motor controller. Within the behavior system the designer is free
in choosing any representation of control signals for the translational and
rotational degree of freedom, as long as all behaviors are using the same
representation. In general a behavior generates a control signal ¢; for the
translational degree of freedom and r; for the rotational degree of freedom.
The index ¢ is to distinguish control signals generated by different behaviors.
The t; could be a desired acceleration or velocity of the robot. The 7; could
be chosen as a torque, angular velocity or a direction. The behavior system
has to merge all these values coming from the different behaviors, compute
an overall response and perform a mapping of this overall response to the
motor controller interface. In the following a general approach of merging
the control signals of the single behaviors is presented.

The architecture for designing behavior systems used in our work-group
is Dual-Dynamics [12]. Within this design scheme single behaviors produce
a response vector consisting of the mentioned t; and r; and an activation
value ;. According to perceived stimuli behaviors compute their activation
reflecting the necessity of taking control over the robot. An activation of
zero is generated if the behavior should not influence the robots motion. On
the other hand an activation of one assigns highest priority to the behavior.
The idea of behavioral activation is described in detail in [7]. The behavioral
response vector of the single behavior with index 7 then has the form:

li

r, = T (1)
Q;

t; . translational control signal computed by behavior ¢

r; . rotational control signal computed by behavior ¢

o; : activation of behavior i



To find an algorithm that merges the behavior response vectors appropri-
ately a look on fuzzy set theory can help. Fuzzy sets have the nice property
that operations like intersection (AND) and union (OR) of fuzzy sets are
well defined. Cooperative behavior assembling can be interpreted as an in-
tersection of behavioral response, i.e. the output of the behavior system is
given by the output of behavior 1 AND behavior 2 AND ... AND behavior
N, if the overall number of behaviors is V. The problem is, that this AND
operation is not defined on response vectors. But by interpreting response
vectors as a parameterization of fuzzy membership functions, the well defined
fuzzy intersection operation can be performed. We propose that the response
vector of behavior i defines two fuzzy membership functions, A; referring to
the translational and B; referring to the rotational degree of freedom in robot
motion. These functions describe the membership of the robot’s current con-
figuration to the configuration desired by a single behavior. In this context a

configuration ¢ = ; is a specification of the robot’s acceleration/linear

velocity and torque/angular velocity/orientation, depending on the chosen

representation for the translational and rotational degree of freedom. The
. . D - ti L

desired configuation of behavior ¢ is given by ¢; = T’_ > This yields A;

(3
and B; to be functions of 7 and p respectively, parameterized by «;, t; and

r;. Furthermore A;(7,q4,t;) and B;(p, a;, ;) have to respect the following
constraints.

e Both functions are continuously defined on R? and assign to each ele-
ment z € R a real number in the interval [0, 1].

e A; has its maximum at ¢;, while B; has its maximum at r;. This means
that a control state equivalent to the desired control state has maximum
membership.

e The behaviors activation «; has to influence the membership of control
states unequal to the desired control state. If the behavior’s activation
is zero all possible control states must have maximum membership,
since the behavior does not try to influence the robot’s motion and
therefore has no preferred control state.

e In the case of a maximum activation of the behavior, control states
unequal to ¢; and r; should have rapidly decreasing membership with
increasing distance to the desired control state.



Ai(Ta aiati) (p7 azarz)

R’ —[0,1] — [0,1]
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Table 1: Properties of the membership functions A; and B;.

e If r; is periodic, B; has to be periodic too.

A short form of these properties is listed in Table 1. After this transformation
of the response vectors of the single behaviors into two membership functions,
behavioral fusion can now be performed by a fuzzy intersection process. In
the end the behavior system must produce control signals that reflect the
desires of all behaviors simultaneously. Therefore the intersection must be
a fuzzy AND operation ®. With N being the number of single behaviors
within the behavior system the intersection produces two new membership
function given by:

C = A4134:3...0 Ay (2)
D = Bi®B,®...® By (3)

Since we need a crisp output the information contained in C' and D has to be
compressed. This is done by a defuzzification process A. The control state
produced by the whole behavior system, reflecting the desired control states
of all behaviors simultaneously is then given by:

Trina = A(C) (4)
Pfinal = A(D) (5)

Depending on the chosen unit of the ¢; and 74, Tfing and prina have to be
mapped on the interface of the low level motor controller. It it assumed, that
the low level motor controller takes a desired linear velocity U and a desired



angular velocity €2 as reference. For the case that the ¢; are linear velocities
and the r; are angular velocities this mapping is trivially given by:

U = Tfinal (7)
Q = Pfinal (8)

If the r; are directions measured in the robot’s frame the mapping could be
done by:

Q = —RPfinal (9)
kK € RT
pfinal € ] - T 7T]

In the following chapters a behavior system will be investigated making use
of this mechanism for behavior fusion.
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3 Linear and angular velocity as behavioral
response

A behavior system is designed to demonstrate the ideas presented in the
previous section in detail. The desired configuration of the single behaviors
is given in terms of a linear velocity and an angular velocity. So we may
replace the general variables ¢; and r; by u; and w; which is the desired linear
velocity and desired angular velocity of behavior with index ¢ respectively.
The behavior response vector of behavior ¢ then has the form:

Uy

r, = w; (10)
Q;

u; : desired linear velocity computed by behavior ¢

w; : desired angular velocity computed by behavior i

o; . activation of behavior i

This vector parameterizes two functions A; and B; referring to the transla-
tional and the rotational degree of freedom in robot motion respectively. A
suitable choice of the functions A; and B;, respecting the constraints given
in Table 1 would be:

AT, iy u;) = exp(—ay (T — uy)?) (11)
Bi(p, a;,w;) = exp(—a;(p — w;)?) (12)

The shape of these functions for varying «; is outlined in Figure 1. Both
functions assign a real number in [0,1] to each 7 € R and p € R respectively.
For all a; # 0 the maximum of these functions is at 7 = u; and p = w;. The
behavior’s activation influences the form of these functions by sharpen the
maximum for increasing «;. In the case that the behavior’s activation is zero
both functions are constantly 1 for all 7 and p. Beside the properties, which
are also outlined in Table 1, A; and B; are continuous functions in all their
arguments. This is necessary, since neighboring configurations must have
neighboring membership to the behaviors desires. Otherwise discontinuities
would occur, which lead to a discontinuous flow of control signals produced
by the behavior system. The intersection of the A; and B; can be performed
using the t-norm ¢,, = x X y, which is a fuzzy AND operator. The choice
of this operator is guided by the necessity that the formed functions C' and

11



Figure 1: The behavior response vector r; of behavior 7 parameterizes func-
tions A; and B; which assign a real number in the interval [0, 1] to all possible
configurations of the robot. These functions are fuzzy membership functions
that can be merged using a common fuzzy intersection operation.

D must be continuous functions in all arguments like the A; and B;. The
functions formed by intersection are then given by:

N
¢ = HAi(T;aiaui) (13)
=1
N
=1

Since the behavior system must generate a crisp output that can be fed into
the low level motor controller, the information held by the functions C' and D
has to be compressed. This can be done by a defuzzification process A. The
two most common defuzzification algorithms are the mean of maxima and the
center of gravity algorithm [6]. It is shown in §1 that both algorithms produce
the same output in this special case, so that we can set A(x) = argma. ().
The argument that maximizes C'is the linear velocity that reflects the desired
linear velocities of all behaviors simultaneously. The same holds for the
argument that maximizes D, which is the merged angular velocity. As shown
in §2 there is no need to compute these values numerically. The merged linear
velocity and angular velocity are simply given by:

N
-1 QUG
Tfinal = argmaa:(c) = ZZ% (15)

Zi:l Q;

12



Figure 2: The length of the vector pointing from the robot (triangle) to the
target (circle) is given by e. The angle between the x-axis of the robots frame
and the vector pointing towards the target is given by 7.

Pfinal — argmam(D) = _]\77 (16)

3.1 Experimental results

The behavior system that is used to demonstrate the properties of this
method for behavior fusion contains three behaviors. The first behavior,
which is called “Taxis”, drives the robot to a presented target. This can be
done by a control law like:

Uragis = 100 cos (%) tanh(e) (17)
Wrazis = 7 (18)
v € [-m 7]

For the meaning of v and e see Figure 2. A simulation run with the “Taxis”
behavior being the only behavior within the behavior system is shown is Fig-
ure 3. This behavior works well as long as there are no obstacles, like other
robots, on the playground. To enable the robot to handle situations in which
it must avoid obstacles two behaviors called “AvoidLeft” and “AvoidRight”
are put into the behavior system. Both behaviors make use of sensors mea-
suring the distance from the robot to the next obstacle. The “AvoidLeft”
behavior uses a sensor measuring distances on a line including an angle of
20° with the robot’s frame x-axis. The sensor attached to “AvoidRight”
measures distances on a line including an angle of —20° with the robot’s

13
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Figure 3: The robot (triangle) is initially placed in the lower left quarter
of the playground. The target (circle) is placed in the upper right quarter
of the playground. Nine snapshots of the simulation run are taken. The
first snapshot is taken when the simulation starts. The target moves with
constant velocity from the right to the left and the robot is driven by the
“Taxis” behavior towards the target. Because of the constant movement of
the target the robot cannot reach it, but follows the target in a constant
distance.

frame x-axis. The measured distances are called djof; and d,gn;. These dis-
tance measurements are used to calculate two values that are almost zero
if the distances are large and rise up to one if the measured distances are
decreasing:

. _di?e It
attleft = exp 7 (19)
attyigny = €xp ~drign (20)
rig o2
o € Rf

The parameter o models the obstacles’ size and is set to 170cm in this case.
An obstacle avoidance behavior can the be implemented with “AvoidLeft”
and “AvoidRight” having the following response vectors:

0
I AvoidLeft = —200 (21)
X AvoidLeft

The activation of “AvoidLeft” is computed via a differential equation:

C‘YAvoidLeft — 1O(attLeft - CYAvoidLeft) (22)

14



AvoidRight

rrr

Figure 4: The robot is able to avoid the obstacles (squares) and reaches
the target. At the beginning no obstacles are sensed. At this point in time
“Taxis” has maximum activity, while the activation of the two “Avoid” be-
haviors is zero. At time-step two the right sensor detects an obstacle. The
activation of “AvoidRight” rises, while “Taxis” is suppressed. According to
the behavioral response of “AvoidRight” the robot turns to the left, until the
obstacle is not sensed any more. The activation of “Taxis” rises again and
the robot bypasses the obstacles.

The “AvoidRight” behavior is symmetrical to the “AvoidLeft” behavior:

0
T AvoidRight = 200 (23)
& AvoidRight
Qavoidright = 10(att right — avoidRright) (24)

To ensure that the obstacle avoidance behaviors can take control over the
robot the “Taxis” behavior is suppressed by these behaviors. This can be
achieved by computing the activation of “Taxis” by:

dTam's — 20((1 - aAvoidLeft)(l - CYAvoidI:x’,ight) - aTaxis) (25)

The performance of this behavior system consisting of the three behaviors
“Taxis”, “AvoidLeft” and “AvoidRight” is outlined in Figure 4. In the shown
situation the ensemble of the three behaviors performs well. But two differ-
ent situations will be presented in which the behaviors have conflicting goals
and the robot gets stuck in a locally stable equilibrium. The first situa-
tion is outlined in Figure 5. After time-step four the behaviors “Taxis” and

15



AvoidRight

Figure 5: The robot starts from the lower left quarter of the playground. The
target moves with constant velocity from right to the left. Between time-step
one and two the robot senses the obstacles. The “AvoidRigth” behaviors
activation rises and “Taxis” is suppressed. The robot turns to the left until
the obstacles are not sensed any more. This condition is reached at time-
step two. At time-step four the target and the robot reach the centerline.
The “Taxis” behavior alone would turn the robot towards the target in this
situation (see Figure 3). But the “AvoidLeft” behavior has an activity of
about 0.2 and slightly turns the robot to the right. This is just the opposite
direction the “Taxis” behavior tries to turn to. In the end the robot does
not turn at all and continuous to move straight ahead.

“AvoidLeft” are in conflict. While “Taxis” produces a positive angular veloc-
ity, “AvoidLeft” tries to make a right turn and therefore produces a negative
angular velocity. In the end the two behaviors cancel each other and the
robot does not turn at all. At time-step nine the robot comes to a stand-
still. At this point the angular velocity produced by the behavior system
is computed for different directions with the robot’s direction at time-step
nine as a reference. The result is shown in Figure 6. Due to the negative
gradient of the function the equilibrium is stable. Even strong disturbances
in the robot’s direction cannot free the robot from this situation. A second
situation in which the robot comes to a rest at a local equilibrium point is
shown in Figure 7. The angular velocity produced by the behavior system
at the last time-step shown in Figure 7 is plotted in Figure 8 for different
directions relative to the robots direction. As in the previous example the
robot is trapped in a stable equilibrium point.

When investigating properties of artificial systems, the critical reader will
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Figure 6: The angular velocity at different directions with respect to the
robot’s directions at time-step nine in Figure 5. The plotted function has a
negative gradient at direction 0, i.e. disturbances in the robot’s directions
are compensated and the robot settles at direction 0.

remark, that the failure of these systems depends on errors in design, rather
then on principal hindrances. This kind of critique is always true up to some
point. Due to the enormous number of degrees of freedom in designing a
behavior system, the situations in which the presented behavior system fails,
could be solved by a different one. But all of these different behavior sys-
tems will suffer from the handicap that different behavior response vectors
can cancel each other. This handicap is not only restricted to the presented
algorithm for behavior merging, even though it is very clear in this case from
the formulas. With control signals like desired linear velocity, desired angu-
lar velocity and activation contained in the behavior response vectors there
is always a chance that one behavior tries to drive forward, while another
one tries to drive backwards and the robot will stop. Of course one could
do something like: ”If the overall linear velocity is zero, then drive forward
slowly.” But such principals are not very nice, since they introduce disconti-
nuities to the flow of control signals, and they contain hard-coded unflexible
solutions, how the robot can escape from the equilibrium. The same holds
for the rotational degree of freedom. Omne behavior tries to turn to the left
and another one tries to turn to the right. In the end the robot does not

17
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AvoidLeft

Figure 7: The robot’s initial position is in the lower left quarter of the play-
ground. It is facing the target which is positioned in the lower left corner.
The target moves with constant velocity to the right. Driven by the “Taxis”
behavior the robot approaches the target. As it gets nearer to the corner
the two “Avoid” behaviors get active, since the distance sensors react on the
playgrounds borders. The target moved to the right and “Taxis” tries to
make a left turn. This rotation decreases the distance measured by the left
sensor, so that “AvoidLeft” tries to compensate with a right turn. In the
end both behaviors level each other and the robot does not turn at all.

turn at all, because the turning forces cancel each other. This problem is
well known and designers apply turn-to-left or turn-to-right principals [14]
to escape from this equilibrium.

But why are behaviors not able to cooperate in a convenient way? Why do
conflicts arise in situations that should be managed easily? In the presented
case the robot’s intuition is to approach the the target, while bypassing obsta-

18
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Figure 8: The angular velocity at different directions with respect to the
robot’s directions at the last time-step shown in Figure 7. The plotted func-

tion has a negative gradient at direction 0, i.e. disturbances in the robot’s
directions are compensated and the robot settles at direction 0.

cles if obstacles are sensed. The first goal of approaching the target is present
all the time. The behavior “Taxis” is employed to translate this high level
goal into action, i.e. generate the appropriate motor commands, so that the
robot drives towards the target. Since in this case motor commands are the
robot’s linear velocity and angular velocity, “Taxis” is operating on a much
faster time-scale as its goal is defined on. To reach the target the robot needs
a time of order 10s, but the motor commands vary on a time-scale of order
1073s. As long as “Taxis” is the only behavior within the behavior system
this discrepance does not matter, as it is shown above. By introducing the
obstacle avoidance behaviors the robot has to fulfill a second goal simultane-
ously to the first one. The second goal is to avoid places where obstacles are
detected. On this high level of goal definition the two goals of approaching
the target and avoiding the obstacles are not contradictory to each other,
unless the target would be placed on top of an obstacle which is not the case
here. Any of the many know path planning algorithms (for an overview see
[10]) can solve the presented situations easily. This is because path planning
takes place on the level of abstraction where the goals of “Taxis” and the
obstacle avoidance behaviors are defined. But working on this high level of

19



goal definition means, that path planning operates on the slow time-scale of
order 10s. This does not mean, that path planning algorithms are not able
to compute new paths every few millisecond (which in fact is a matter of
computational on-board power). But it turned out that classical path plan-
ners are not able to coupe with highly dynamic environments [2], because
the notion of a path does not enable the robot to cope with uncertain or sud-
denly changing situations. By generating commands on a time-scale faster
than the one on which the environment changes, a behavior based architec-
ture should be able to ensure appropriate and smooth motions of the robot
even in unforeseen situations. But by working on the fast time-scale one gets
the problems outlined above that are not present when working on the slow
time-scale. The task is to find a time-scale on which behaviors work, that is
fast enough to handle dynamics in the environment and on the other hand
slow enough to represent high level behavior goals. These two constraints
interfere somehow with each other, but a reasonable solution (at least in this
context) will be presented in the next chapter.
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4 Linear velocity and direction as behavioral
response

The kinematics of the mobile robots used in our work-group can be described
by the Cartesian unicycle kinematics:

T = wucos(p)
y = usin(p) (26)
o = w (27)

being x and y the Cartesian coordinates of the robot, u its linear velocity
in direction ¢ and w its angular velocity. In the previous chapter behaviors
generated linear velocities u; and angular velocities w; to control the robot’s
motion. From the model one sees that these quantities define the robot’s
change in orientation via Equation 27 and the robot’s change in position via
Equation 26. But the robot’s orientation and position can also be controlled
by giving the linear velocity u and the orientation ¢. Since w is the time
derivative of the robot’s direction, ¢ changes on a much slower time-scale
than w does. This gives rise to the hope that the combination of linear
velocity and orientation is more suitable for representing high level behavior
goals, while ensuring that the behavior based robot controller still can handle
dynamic environments. When exchanging angular velocities w; generated by
the behaviors with reference orientations ¢;, one needs an algorithm to merge
these reference directions. In this section an algorithm for merging reference
directions generated by behaviors will be presented. This algorithm will be
derived from the general ideas given in Section 2.

In contrast to the previous section the behavior response vector of behav-
ior ¢ now is given by:

Uj

r, = V; (28)
Q;

u; : desired linear velocity computed by behavior ¢

@; + desired direction computed by behavior ¢

«; : activation of behavior i

Instead of angular velocities behaviors produce desired direction to control
the rotational degree of freedom in robot motion. Therefore the membership

21
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Figure 9: The membership function B is harmonic, due to the fact that the
@; are harmonic. This leads to an infinite number of maxima at ¢; 4+ 2n7w
with n =0,+1,£2,....

function B; has to be redesigned. The most important difference between
angular velocities and directions is, that directions are periodic, i.e. ¢; =
©; + 2nm with n = 0,41, +2,.... This means that B; must respect the fifth
property given in Table 1. A suitable form of B; then is:

Bi(p, o, pi) = exp (_ai sin’ (p _2%>> (29)

The shape of this function is shown in Figure 9. The B; are intersected
by the t-norm algebraic product forming D. Due to the fact that the B; are
periodic, D is periodic too. This makes some problems for the defuzzification
of D. The mean of maxima method is undefined, since D has an infinite
number of maxima. The same holds for the center of gravity algorithm,
since [ D(p)dp is undefined. But we can restrict our attention to the
interval | — 7, w]. If we do a mean of maxima defuzzification it is shown in
§3, that the direction desired by the whole behavior system is simply given

by:
N N
Pfinal = atan2 (Z a; sin @;, Z Q; COS gpi> (30)

i=1 =1

being atan2(y,x) €] — m, ] the four quadrant inverse tangent function (see
§4). This formula has the simple geometric interpretation of pyin, being
the angle between the vector resulting from superposition of the behavior
response vectors and the robot’s x-axis (see Figure 10). The final mapping
to the motor controller interface can be performed as shown in Equation 9.
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Figure 10: Two behaviors generate reference directions ¢; and ¢o. The
behaviors’ activation is given by «a; and ay. This yields two vectors with
length oy and aw, including the angle ¢; and ¢ with the robot’s x-axis. The
final reference direction is computed by superimposing these two vectors,
giving the final reference vector (bold drawn arrow). The final reference
Prinal is the angle between the final reference vector and the robot’s x-axis.

4.1 Experimental results

To shown that a behavior system using directions as behavior response and
the presented algorithm for behavior fusion has no chance to get trapped
in local equilibriums any more, the situations investigated in the previous
section are simulated again. The response vectors of the three behaviors
“Taxis”, “AvoidLeft” and “AvoidRight” have to be changed, so that the
angular velocity is replaced by a desired direction. This yields the response
vectors:

UTazis
Iragis = Y (3 1 )
ATagis

The values ura.is and agqqs are calculated exactly like in Section 3.1. For
the meaning of v see Figure 2.

0
I AvoidLeft = —160° (32)
A AvoidLeft

The direction desired by “AvoidLeft” is the direction in which the left sensor
measures distances +20° — 180°. This means, that “AvoidLeft” desires to
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Figure 11: The initial condition of this simulation is similar to the situation
shown in Figure 5. At time-step two the robot senses the obstacles. The
activation of “AvoidRight” rises and the robot makes a turn to the left. Then
the robot approaches the upper boundary of the playground and senses the
barrier with its left sensor. Therefor the activation of “AvoidLeft” rises and
“Taxis” is suppressed. But in contrast to Section 3 the robot continuous
turning towards the target. This is because the reference direction generated
by the behavior system pginq is positive all the time. Between time-step
five and six pfinq reaches a maximum of about 120°, which leads to a fast
left turn. The activation of “AvoidLeft” decreases, while “AvoidRight” gets
active. But the robot continuous turning towards the target and follows it
in a short distance.

turn the robot away from the sensed obstacles. The activation is calculated
as given in Equation 22.

0
T AvoidRight = +160° (33)
X AvoidRight

The second obstacle avoidance behavior desires to turn the robot away from
the obstacles sensed by the right sensor. Therefore the desired direction
is —20° + 180°. The activation is calculated as shown in Equation 24.
Simulations using this modified behavior system are shown in Figure 11 and
Figure 12. These simulations correspond to simulations done with the be-
havior system used in Section 3 shown in Figure 5 and Figure 7. In contrast
to Section 3 now the robot shows the intended behavior. By merging direc-
tions the danger of local equilibriums is prevented, since the robot cannot
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Figure 12: The initial condition of this simulation is identical to the situation
shown in Figure 7. In the beginning the reference direction pyiye is almost
0°, i.e. the robot drives straight ahead towards the target. By approaching
the corner, the two obstacle avoidance behaviors get active and suppress the
“Taxis” behavior. At time-step two the reference starts to oscillate between
—180° and 180°. This is because the atan2 function restricts pysinq to |—m, 7.
The problems that occur due to the discontinuities at the interval borders
are addressed in general in [3]. Due to the target that moved to the left psina
is bend to positive directions. That leads to a left turn, so that the robot
can escape from the corner and reach the target.

come to a standstill anymore. It follows the generated reference direction
Pfinal, cOmputing its angular velocity €2 by Equation 9. This means that an
angular velocity of zero can only be reached if the target is straight ahead
and no obstacles are sensed. This is reasonable, since the robot is expected
to drive straight on only in this very special situation. If obstacles are sensed
the reference direction pfine never can equal zero, because the “Avoid” be-
haviors bend the reference direction to positive or negative values. Even in
the case that obstacles are sensed symmetrically to the left and to the right,
as shown in Figure 12 in the corner situation, the reference direction will
flip to 180°, when the activation of “AvoidLeft” and “AvoidRight” reaches
a certain threshold. The robot turns on the spot and can escape from this
problematic situation.
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5 Conclusion

A novel approach for merging the response of behaviors has been presented
in Section 2. These general results lead to merging algorithms for linear
velocities, angular velocities and directions. The case study of a paradigmatic
behavior system in Section 3 showed that merging angular velocities leads to
locally stable equilibria, in which the robot gets trapped. This problem can
be solved by replacing the angular velocity in the behaviors’ response vectors
by reference directions. In Section 4 a merging algorithm for directions was
presented. The same behavior system that got trapped in certain situations
was simulated again. It turned out that the merging of directions makes it
impossible for the robot to get trapped in local equilibrium points any more.
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A Appendix

8 1 Mean of mazxima equals center of gravity. The functions A; and B; are
both of the form:

filw) = exp(—a;(z — b;)?)

The functions C' and D formed by the intersection process have the form:

Using §7, yields:
g(x) = exp(—a(z — b)* + k)

with a, b and k being constant. Therefore g(x) has only one mazimum at
x =b. Because g(x) is symmetric in x with respect to b the center of gravity
15 at = b.

§ 2 Merging linear and angular velocities give simple expressions for Tfina
and pfina- The functions C' and D formed by the intersection process have

the form:
h(zx)

N

H fi(z) = exp(— Zai(x —b;)?)

1=1

The function g(x) is mazximum when h(x) is minimum
N
b (zg) = 22% xo—b;) =0
=1

N N
& Z a;To — Z a;b; =

1=1 =1

Z a;b;

~ Tg="—"—7—x—

Zz 1aZ

It is shown in §1 that g(x) has only one mazimum and no other ertrema.
That yields that g(z) is mazimum at the point x;.
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8 3 Merging directions. Intersection of the membership functions for the
rotational degree of freedom gives:

g(p)

—a; Sin2(p _ gOZ)
D=]]B=]]e 2
i=1 i=1
Using the relations cosx = (e + ¢ ") and sinz = (e — e '), conclude
L jomer  omes
o) = (L -y
— _i(ei(ﬂ%) _ 2€ip_zw e*i% + e*i(ﬂﬂpi))
1
= —5lcos(p—wi) = 1)
This yields
N
D = H e%ai(cos(p—api)—l)
i=1

h(p)

rN N
RS ST TP

= e 22i=1% ,p i=1

D is mazimum if h(p) is mazimum. The function h(p) can be transformed
into (see §6):

hp) = Y _cicos(p— i)

= (Z Q; cos(gpi)> cos(p) + <Z o Sin(%)) sin(p)

Using the relation acos(x) + bsin(xz) = Va? + b? cos(z — atan2(b, a)), which
s proven in §4, conclude:

h(p) = <ZaiCOS(%)> + (ZaiSin(SOi))
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X  COS <x — atan?2 ((Z o sin(goi)) , <Z Q; COS(%’))))

Since we are interested in the interval | —m, m|, the argument that mazimizes
D s given by:

ar gmaz (D) = atan2 <<Z o sin(gpi)> : (Z Q; cos(apﬁ))

§ 4 Using Fuler’s equation and the trigonometric form of complex numbers,
yields: acosx + bsinz = va? + b? cos (v — atan2(b,a))
Proof:

acosx + bsinx

— 2 (eim + e—im) + % (ei:v o e—i:v)

2
T a b + —ix a + b
el - —iz e —+iz
2 2 2 2
/a2 1 2 e—iatan2(ba) | =iz, [o3 {2 eiatanZ(b,a))
= Va®+b? cos(x — atan2(b,a))
with v/ —1 =1

8§ 5 The definition of the four quadrant inverse tangent function atan?2.

N | =

atan2(y,x) = arctan Lo Y
T

1 ife<0andy>0
v o= 0 ifx>0
-1 ifr<0andy <0

§ 6 SN a;cos(z —b) = (Zi\il a; cos(bi)> cos(z) + (vazl a; sin(bi)> sin(z)

By induction: N=1:

aj cos(x — by)

— % i(x—b1) —i(z—b1)
5 (6 +e )
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ay
2

ay
2

ay
2

Q

1

2

(eime—ibl + e—imeibl)
(eim(cos(bl) —isin(by)) + e " (cos(by) + isin(bl)))

(" cos(by) — i€ sin(by) + e~ cos(by) + ie " sin(by))
2 cos(x) 2isin()

cos(by) (" + e*) —isin(by) (e — ™)

= ay cos(by) cos(x) + ay sin(by) sin(z)

N+1

Z a; cos(x — b;)

=1

N
(Z a; cos(z — bz)> +ani1cos(z — byir)

=1

= (Z a; cos(bi)> cos(x) + (Z a; sin(bi)) sin(z) + ...

i=1 =1

an+108(byi1) cos(x) + an1 sin(byq) sin(z)

= <Z a; cos(bi)> cos(x) + <Z a; sin(bi)> sin(x)

g.e.d.

§ 7 For N > 2, conclude: SN a;(x—b;)2 = Noa) (z— w
=1 i=1

with

=1 =1

Zi:l a;

_ 2
N-1 SN aib;
an o, Gi ( S — by
_ Dis1 @i +k
— N N-1

kn
Zi:l a;

By indution: N = 2:

ar(z — by)* + ag(z — by)?
= a1x2 — 2&1[)1.73 + alb% + azl’z - 2(12[)21‘ + agbg

= [172(CL1 + CLQ) — 2x(a1b1 + a2b2) + alb% + azbg
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2 2
_ @+maeﬁdﬁﬁiﬂgm(?ﬁiﬂﬁ>—(ﬂﬁi&@>>+m@+@@

a; + ao a; + ao a; + ao
ko
a1b1 + a2b2 - 2 2 (a1b1 + a2b2)2\
= (@ +a) |2 — ———— | +a1b} + agbj — ——
(1 2)< a1+a2> e 272 a; + ao

a1b7 (a1 + ap) + azb3(a1 + az) — afbf — 2a1a2b1by — a3b3

a1 + ao

k'QZ

by — by)?
_ @b —b)”
a1 + a9 \76’
N > 2:
N+1
> ailw —b;)”

=1

= <Z a;(z — bi)2> + ant1 (@ — by 1)

c d 2
PR

N N

i1 i

— <Zai) x_z:z?vila +ky +an(z = by +1)°
i1 Dic i

kN 41
N

(cd+ani1bnyr)?

C+ any1

~

Cd+aN+1bN+1 +k
N

c+ang1

N+1 N+1 2
I b)
— a; €Tr — == + kN+1

cayii(d—byy1)?
kyii = tk
Nt C+ an41 Y

2
N S ab;
= N+1 +hky

Zi:l a;

2 7
= (c+ans1) (m - ) +ed +anabyy, —

qg.e.d.
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