

Engineering Service Level Agreements as an
Integral Part of Software Systems and their
Architectures

Authors:
Taslim Arif
Frank Herold
Thomas Kiesgen
Matthias Naab

IESE-Report No. 057.15/E
Version 1.0
December 2015

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr.-Ing. Peter Liggesmeyer
(Executive Director)
Prof. Dr. Dieter Rombach
(Director Business Development)
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Engineering Service Level Agreements as an Integral

Part of Software Systems and their Architectures

Taslim Arif1, Frank Herold1, Thomas Kiesgen2, Matthias Naab1

1Fraunhofer IESE

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{taslim.arif, frank.herold, matthias.naab}@iese.fraunhofer.de
2vwd GmbH

Stiftsplatz 6/7, 67655 Kaiserslautern, Germany

tkiesgen@vwd.com

Abstract. Service level agreements (SLA) for most software systems which are

offered as services, are usually written in text form only. Thus, they are often

fuzzy and not integrated with the system, i.e., the development activities and ar-

chitecture are independent from the SLAs. Therefore, there is typically no trans-

parency for service consumers regarding the actual service status, while service

providers have no control over the system with respect to the SLAs or are de-

pendent on experts. In this paper, we present a process for systematically inte-

grating SLAs with an interoperable software system and its architecture. We pro-

pose a maturity model for SLA enforcement so that organizations can clearly see

where they are with respect to SLA integration. Formalizing the SLAs with a

Domain-Specific Language and establishing architecture-centric monitoring and

analysis can contribute a lot to the enforcement of SLAs. We share our experi-

ences and key takeaways for SMEs learned from an industrial case study. Our

approach and the takeaways will help service providers to practically guarantee

high quality of SLAs and will make the service providers more trustworthy.

Keywords: Service Level Agreement, Service Oriented Architecture, Monitor-

ing, Maturity Model, Runtime Architecture

1 Introduction

Software systems are offered as services (Software-as-a-Service – SaaS) or interoper-

ated with other software systems quite often. In most cases, the provider and the con-

sumer of those software systems are not from the same organization. They mostly have

a common understanding of the functionality, but unfortunately quality requirements

are often fuzzy. Usually, legal contracts called Service Level Agreements (SLA) are

available on paper, but their wording is rather ambiguous. As a result, consumers often

lack confidence regarding the quality level they are getting. And as the SLAs are not

written in concrete terms, consumers do not have a clue when such an SLA is being

violated. Taking legal actions against the provider is also not possible without evidence.

Moreover, in case of interoperable systems, the quality of composed systems cannot be

Copyright © Fraunhofer IESE 2015 1

mailto:frank.herold,%20matthias.naab%7d@iese.fraunhofer.de
mailto:tkiesgen@vwd.com

guaranteed. On the other hand, from the provider’s perspective, what is missing is the

opportunity to take clear actions to achieve those SLAs and to get competitive ad-

vantages. They are heavily dependent on intuition and experts for making their systems

SLA-aware.

Large organizations are more likely to manage and deliver services and integrate

SLA enforcement following their own proprietary methods and tools. They can even

afford various experts. However, for SMEs it is extremely hard to enhance an existing

system or design a new service-oriented system with regard to SLA integration and

enforcement, as there is a lack of methods and tools supporting SMEs in a lightweight

and efficient manner. Available tools are either too complex or costly and are not tai-

lored to the needs of SMEs. So, the question we address here is: How can software

architects enhance Service-Oriented Systems Engineering for SMEs to an appropriate

level of service level enforcement?

Fig. 1. Positioning “SLA Enforcement” in the Context

Fig. 1 depicts the context software architects need to be aware of in the sense of SLA

enforcement from the perspectives of artifacts and engineering. We identified three

conceptual layers. At the basis is the system world, which is composed of the system

itself and all the resources it uses during runtime – e.g., machines, storage devices,

networks, etc. On top of this, we have the SLA world, which is composed of the SLAs,

monitored data, SLA status, etc. with respect to the services offered by the system

world. The highest level represents the business world – here we consume the services

and create new systems, e.g., ecosystems, interoperable systems – or just access ser-

vices via a web client. For each of these layers, software architects need to be aware of

corresponding engineering activities. For the system layer, they need to identify the

various development activities, which are most often independent of SLAs. For the

SLA layer, these are mainly the SLA enforcement activities aimed at integrating SLAs

into the system. Software architects should try to improve development activities by

providing improvement suggestions with respect to SLA status. As these activities are

Integrating
the System

Enforcing
SLAs on the

System

Developing
Service

Oriented
Systems

Business World

System World

SLA World

Engineering Activities System Artifacts

Client System
Interoperable System

System of Systems Software Ecosystem

Web based Access

SLA

Services

Resources
CPU

Software System

Memory Development Artifacts

Network
Databases

Servers

Application
performance

Infrastructure
performance

Releases and
Modifications

Analysis
Improvements

Predictions

Reports

facilitates

improves

Copyright © Fraunhofer IESE 20152

mostly missing in practice, they are the focus of this paper. Moreover, in the business

layer, we have the integration engineering activities. If SLA engineering has not been

done to a sufficient extent, service selection or composition cannot be done appropri-

ately and quality cannot be predicted on the integration level.

1.1 Case Study and Research Approach

To find out the clear requirements of SLA enforcement, we collaborated with vwd

GmbH (which runs a service-oriented system and offers it as a service) and elaborated

the requirements in consultation with them. We then checked existing approaches and

concepts (both from the literature and the tools perspective) in conjunction with the

industrial settings to identify the gaps in existing approaches. Our concepts were pro-

totypically integrated into their system to prove their feasibility. Moreover, we vali-

dated the results in their context.

1.2 Contributions

1. Maturity model for SLA enforcement: We built a maturity model that shows the

SLA enforcement roadmap for an interoperable software system (3.1). Maturity

models are available for service level management (SLM)[6]. Obviously, service

level enforcement is part of the overall SLM maturity, but to date, no specific and

detailed SLA enforcement maturity model has been available for software systems.

2. Implementation of the maturity model:

(a) Approach to formalizing SLAs: SLAs need to be defined formally and unam-

biguously to benefit from them. We explain how a custom DSL can be created

to formalize SLAs (3.2). There are quite a few DSLs [7, 9, 11] already available,

but to avoid over- or under-formalization, organizations need just enough for-

malization. We show how that can be achieved.

(b) Approach to doing compliance checking: We reveal how software architects

can identify what needs to be monitored to do compliance checking. Monitoring

tools usually provide several monitoring techniques and computing tools help to

analyze the data, but we provide guidance on what needs to be monitored and

how it needs to be analyzed (3.3).

(c) Approach to building runtime architecture: To get the most out of formalized

SLAs, it is necessary to understand the runtime architecture and the context of

the target system and environment. We show how software architects can build

a runtime architecture meta-model for the system (3.4).

2 Business Scenarios for Engineering SLAs for Systems

SLA integration brings along a number of business benefits that we considered as mo-

tivation to do research in this direction. The typical business scenarios are described

below.

Copyright © Fraunhofer IESE 2015 3

 Exploiting Transparency: From the consumers’ point of view, it is important to be

able to select among different services and have evidence of the provided service

level qualities. If there is no choice, the consumers at least want to know what they

are getting because nowadays, more and more business processes are dependent on

software systems and their failures and unexpected behavior (in both functional and

non-functional terms) can easily lead to serious issues at the business level. From

the providers’ point of view, it increases the credibility of an SME to expose the

status of a software system to the outer world. It clearly shows confidence and ma-

turity to fulfill the SLA contracts instead of just expert guessing.

 Ensuring the quality of the system: Integrating SLA formalization and enforce-

ment into their software system will help SMEs to ensure system quality. Instead of

formulating SLAs in a fuzzy and ambiguous way and trying to put SLA enforcement

as something to be done on top of an already designed, implemented, and running

system, an integration mechanism for SLA enforcement during development and

operation time will have a huge impact on the quality of a system. As a result, SMEs

will be able to run and monitor their systems in an SLA-aware manner. Furthermore,

software architects who already consider SLA enforcement explicitly before system

implementation will come up with a positive result in increased system quality.

 Competitive advantage (providers’ view): Being able to provide evidence and

compliance with respect to specific SLAs can create a competitive advantage. Espe-

cially for SMEs, being able to report SLA compliance is crucial. It is becoming ever

more important to make the non-functional aspects of a system explicit in order to

compete with other service providers. Integrating SLA enforcement into the software

system is therefore a key point and worth investing in.

 Possibility of quality interoperation increases: To expose not only the current sta-

tus of a system from an external point of view, but to also provide insights into a

software system to consuming services with respect to SLA enforcement contributes

to an interoperability scenario. Especially in emerging interoperating scenarios such

as Industry 4.0 or the Internet of Things, the importance of interoperating service is

increasing significantly. A formalized and machine-readable SLA definition and sta-

tus are thus an important component and a prerequisite for service composition of

higher quality. Otherwise SLA enforcement in a service bundling setting is not pre-

dictable.

3 Approach for Engineering SLAs for Systems

To help software architects of SMEs integrate SLAs into their system and systems en-

gineering, we have developed a maturity model for SLA enforcement. Before starting

the integration work, the software architect needs to identify the enforcement situation

and also needs to foresee the overall road map. The maturity model will help the soft-

ware architects analyze their context and provide inputs in order to set goals with re-

spect to SLA enforcement. Obviously, there is an existing service level management

maturity model provided by ITIL [6] and service level enforcement is part of it. Within

Copyright © Fraunhofer IESE 20154

the scope of this paper, we focus on the more specific aspect of service level enforce-

ment and have detailed this aspect on several levels.

Once the context is analyzed and goals are set, the software architects need to im-

plement some transitions of the maturity model for their organization. We show three

important cases (Formalization, Compliance, and Building Meta-Model) of transitions

from one level to another in the maturity model. The three cases are also examined in

a case study. As organizational settings might vary drastically, the examples can be

seen as first guidelines and should be tailored to the specific context of the organization

interested in implementing the model.

3.1 Maturity Model

Fig. 2. Maturity Model for Service Level Enforcement

The maturity model (Fig. 2) describes several levels of SLA integration into software

systems from the product and process points of view. The maturity model was devel-

oped by analyzing an organization that builds SLA-aware SOA systems and consoli-

dating our experiences. It also takes into consideration the existing literature. As it

might be possible theoretically to reach any specific level by bypassing a lower level,

it is more likely that companies will upgrade step by step. Each level provides some

benefits but also comes with some cost for the organization. Obviously, it makes sense

to do this step by step to find the optimal trade-off between costs and benefits.

In the following, we describe six levels of the maturity model. Three criteria deter-

mine the level. The first criterion is related to specification – how well the SLAs have

been formalized. The second criterion focuses on dedicated activities (for example

monitoring etc.) for analyzing the situation with respect to SLA enforcement. The third

criterion deals with improving the development and operational activities (supported

Ad hoc
• SLAs are not

defined

Defined
• SLAs are defined

in natural
language

Formalized
• SLAs are described

in
• Formalized
• Unambiguous

and
• Measurable

way

Optimized
• Continuous

service
improvement
•Service
Management

•Formalization
•Compliance

• Prevention
• Development
• Deployment

Analyzed
• Past

•Root Cause
Analysis

• Future
• Prediction

• Building runtime
architecture

Evaluated
• Automatic

compliance
checking

• Goal oriented
monitoring

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

SPECIFY

MONITOR

INNOVATE

Copyright © Fraunhofer IESE 2015 5

by data) with respect to SLA enforcement. The first three levels in the maturity model

mostly focus on the specification and are therefore on the SPECIFY category level. The

fourth and fifth levels are related to dedicated activities performed to analyze the SLA

status. This is why they are on the MONITOR category levels in the model. The sixth

level addresses improving the development and operational activities in a more SLA-

aware manner. It is in the INNOVATE category of the model as it might require several

changes in the organization and in the processes.

Level 1 – SPECIFY: Ad-hoc. SLAs are not defined even in case of necessity. No

dedicated measures are undertaken to analyze the SLA enforcement situation. Measures

for SLA integration from a product point of view and process point of view are ad-hoc,

and in general, only a few measures are taken.

Level 2 – SPECIFY: Defined. SLAs are defined in natural language, but this leaves

much room for interpretation. No dedicated measures are undertaken to analyze the

SLA enforcement situation. Few measures are taken to integrate the SLAs during de-

velopment and operation. Measures are taken based on manual expertise.

Level 3 – SPECIFY: Formalized. SLAs are defined formally in an unambiguous, ma-

chine-readable, and measurable way. No dedicated measures are undertaken to analyze

the SLA enforcement situation. Several measures are taken to integrate the SLAs during

development and operation. There is an established process in accordance with these

measures. However, the measures are still taken based on experience and feedbacks

from the customers.

Level 4 – MONITOR: Evaluated. SLAs are defined formally. Systems are monitored

with respect to SLA fulfillment and automatic compliance checking is performed. Sev-

eral measures are taken to integrate the SLAs during development and operation. The

measures are not totally based on experience anymore but are also supported by com-

pliance checking output.

Level 5 – MONITOR: Analyzed. SLAs are defined formally. Systems are monitored

with respect to SLA fulfillment and SLA enforcement related analysis. In addition to

automatic compliance checking, root cause analysis, prediction of future violations, etc.

is done on this level. Several measures are taken to integrate the SLAs during develop-

ment and operation. The measures are based on various analysis results. In this step

expertise level required to select some measures is significantly less because of the

availability of the analysis results.

Level 6 – INNOVATE: Optimized. SLAs are defined formally. Systems are moni-

tored with respect to SLA fulfillment and SLA enforcement related analysis. In addition

to automatic compliance checking, root cause analysis, prediction of future violation,

Copyright © Fraunhofer IESE 20156

etc. is done on this level. All measures are taken to integrate the SLAs during develop-

ment and operation. Most importantly, the development and operation activities are

integrated optimally. The measures are based on various analysis results. Measures are

also undertaken to continuously improve the SLA enforcement activities (formaliza-

tion, analysis, etc.).

In the following sections, we will describe how transitions can be made from one

level to another. Fig. 3 shows the scope of this paper. We detail the steps for formali-

zation, compliance checking, and building meta-models for various types of analyses.

To date, we only briefly visited the other transitions and will continue to work on them

as part of our future research on this topic.

Fig. 3. Scope of this paper (3 transitions)

3.2 Level 3 - Formalization

SLAs need to be defined formally. This is mostly required to improve the concreteness

and support the automation of SLA realization mechanisms. An SLA specification has

to be able to express the quality requirements of the interoperation unambiguously.

SLAs should define the quality metrics and the acceptance criteria. The formalization

is not an end in itself; rather, formalization is a dynamic task that should be done in

consideration of the future goals. If we include more SLA-relevant aspects, the formal-

ization needs to be enhanced with respect to those goals. Below we describe the steps

that would help architects to formalize SLAs in their specific organizational context.

 Identifying quality attributes: The first point is to identify the quality requirements

from the customer’s point of view. Becha et al. [2] presented a set of quality require-

ments for SOA systems. As the importance of one quality attribute varies from sys-

tem to system, architects need to identify the quality attributes their organization

would like to put into the SLAs, taking into consideration their customers’ demands.

 Characterization of quality attributes: Selecting the quality requirements is not

enough. Software architects need to characterize the quality attributes using archi-

tectural scenarios. This detailing is required to identify metrics that are measurable

on the system boundary level as scenarios usually include triggers of some environ-

mental context of the system and the corresponding responses and response

measures.

1 - Ad hoc

3 - Formalized

2 - Defined

4 - Evaluated

5 - Analyzed

6 - Optimized

Steps for formalizing SLAs

Steps for compliance
checking

Steps for building meta-
model to assist analysis

Copyright © Fraunhofer IESE 2015 7

 Identifying SLA context: Once the quality attributes are characterized, software ar-

chitects need to identify the service level objectives (SLOs). Service level objectives

indicate when some SLA is considered to be violated. This might be dependent on

some context factors as well (for example time interval). Moreover, penalties are

also part of the context.

 Select from existing DSL or create a new one: Once architects have defined their

quality requirements, the metrics that represent those qualities, and the SLOs, they

can check the existing DSLs available to represent these. If the existing DSLs are

suitable, one of them can be selected. Otherwise, a new one should be created based

on the needs. Sometimes existing DSLs can be very heavyweight to start with (even

though it is possible to express everything). On the other hand, existing DSLs might

have tool support that could be used for several SLA management activities.

In the above steps, we just described what has to be formalized with respect to the

customer at the system boundary. For an analysis of the status of SLA, more insight

views about the system are required. To achieve such insights, the metrics that are con-

sidered on the system boundary level need to be mapped to internal metrics or vice

versa. Obviously this depends on the level of enforcement the organization wants to

achieve and on the analysis or the tasks that need to be supported.

3.3 Level 4 - Evaluation: Compliance Checking

What is written in the SLA contract and how the system is really performing needs to

be checked periodically according to the contract. Mostly this is done on a monthly

basis, but it should be possible to do so for any time period. In some cases, a real-time

compliance status is also valuable.

 Analyzing the SLAs: The first step in compliance checking is to analyze the SLAs.

From there, we identify what has to be reported to the customer.

 How to monitor the selected metrics: Once we have identified what has to be moni-

tored, we need to determine the monitoring strategy - how to monitor, how fre-

quently to monitor, which tool to use, and so on. Monitoring should be appropriate

to conclude about the SLAs. Therefore, a mapping between the monitored data and

external metrics (metrics in the SLOs) needs to be established. Moreover, in some

cases, human input might even be necessary.

 Evaluation: Once appropriate monitoring is in place, we need to evaluate or at least

be able to evaluate the compliance of the SLAs. What has to be reported and to whom

needs to be identified. Depending on the complexity of the evaluation, software ar-

chitects need to provide guidance for their organization regarding the tool – whether

to create their own tool or buy an existing one.

3.4 Level 5 - Analysis: Building a Meta-Model as a Foundation for Analysis

If SLA violations take place, the root cause for the violation needs to be identified. This

could be done, for example, with the help of historical data. An even more advanced

Copyright © Fraunhofer IESE 20158

step would be to predict whether certain SLAs will be violated in the near future. In

that case, it might even be possible to take countermeasures in order to prevent such

SLA violations. All these analysis activities require a runtime view on the system. This

view needs to include not only the runtime architecture of the system, but all the envi-

ronmental and associated aspects as well. A meta-model is crucial as a foundation for

all those analyses (see example in Fig. 7). Below we briefly describe the process of

creating such a meta-model.

 Identifying the software elements and their relationships: To build a runtime view of

the system, a software architect needs to identify the software elements and their

relationships. This includes software components, interfaces, dependencies, deploy-

ment artifacts, and mapping of the software components to the deployment artifacts.

 Identifying the runtime context of the software system: The runtime context of the

system is also necessary for evaluation. It includes, for example, the load, the current

SLA status, and environmental aspects.

 Identifying the development artifacts: The development artifacts – for example re-

lease dates, modification dates, code, configuration, etc. – need to be identified, in-

cluding their relationships.

 Mapping software elements to development artifacts: To relate the system to its de-

velopment artifact or process, software architects need to provide a mapping of the

software elements to the development artifacts. This is a prerequisite to allow iden-

tifying what caused problems during development and operation and what has to be

improved.

4 Case Study and Experiences

In order to validate our ideas, we performed a case study with vwd GmbH. The vwd

GmbH mainly functions as a data provider to banks and other financial organizations.

We took one of their SOA systems that provides financial market data to external sys-

tems (owned by their customers). The internal architecture of the system is shown in

Fig. 4.The system has a message broker architecture and uses several services in the

service layer that collect and provide specific types of data. These services can be con-

sumed asynchronously by sending messages to the Message Broker (in the communi-

cation middleware layer). In the application layer, requests from external systems arrive

at the Molecule Composition component. Depending on the request, it creates/instanti-

ates several atom controllers responsible for one specific type of data retrieved from

the services of the service layer. The Display Configurator is used to format the output

based on the configuration of the requesting user once all atom controllers have pro-

vided data to the Molecule composition component. Obviously, the service component

and all other components use resources during runtime and are often replicated to

achieve the desired quality.

We used the maturity model to evaluate the organization’s level and to set goals for

SLA enforcement. The maturity model did indeed help to identify that. The organiza-

tion already had SLAs, but not formalized, along with a standard monitoring system in

place and could therefore be considered about level 2 of the maturity model. They plan

Copyright © Fraunhofer IESE 2015 9

to achieve customer-specific SLA compliance status and to make root cause analysis

faster and less dependent on experts.

Fig. 4. Architecture of the Case Study System

4.1 Level 3 – Formalization

Following the steps in 3.2, we came up with the SLA formalization shown in Fig. 5 as

output of our case study. As a pilot, we considered simpler SLAs for latency and avail-

ability. As the formalization is a gradual process, it will be different when we include

other quality attributes.

Data Manager [xml]

«Layer»

Serv ice Layer

«Layer»

Communication Middleware

«Layer»

Application Layer

«Component»

Molecule Composition

«Component»

Display

Configuration

«Component»

Proxy

«Component»

Message Broker (Rabbit MQ)
«Resou...

Message

Queue

«External System»

Browser / Application

«Component»

Proxy

«Component»

Atom Controller

«Component»

Serv ice

«use»
1..*

«use»

«use»

modify data for display

«use»

1..*
«use»

1

HTTP

«use»

0..*

has

1

1..*«use»
1

Copyright © Fraunhofer IESE 201510

Fig. 5. Formalization of SLAs

Experiences

 Was the approach applicable in the scenario? A prototypical implementation for

formalizing the SLAs worked and validated the approach. The prototype was real-

ized using xsd/xml techniques to define and instantiate the DSL. The formalized

SLAs could also be used to generate text sections to use for the technical/measurable

part of the SLA definition contract paper.

 What were difficult/ easy parts? It was easy to implement a first xml-based definition

of (simple) metrics (as in our prototype), which are interpreted in Java. Existing

SLAs (which were not formalized or evaluated automatically) helped to define a first

version. So it is easier if the company already has experience with SLA reporting in

general.

 How much effort was required? It is easy enough to start with formalization and

compliance checking when standard monitoring is in place. As the effort for creating

a new DSL does not seem to be too high, it is better to start with something than to

search the market for the silver bullet.

4.2 Level 4 - Evaluation: Compliance Checking

Fig. 6 shows the compliance checking system structure. In the case study, we imple-

mented the key part of it. Therefore, the necessary system components were imple-

mented in a prototypical sense using Java. Using the steps described in 3.3, we identi-

fied what has to be monitored and how.

SLA

Serv iceObjectContext

- ComplianceCheckingFrequency

- Customer

- EndDate

- StartDate

Guarantee

Serv iceLev elObjectiv e

SLAParameter

Metric

Function

Schedule Expression

QualityAttribute

SLA Enforcement

RootCause Prediction Prev ention

evaluated in schedule

0..1 11..*

1

1..*

0..*

used in function

0..*

defined by function

1
defined by metric

1

1..*

1..*

used in

1..*

1..*

Copyright © Fraunhofer IESE 2015 11

Fig. 6. SLA Compliance Checking System

Experiences

 Was the approach applicable in the scenario? Yes, the approach worked. Especially

the part of treating the system from a customer perspective helped to get a sharpened

impression of SLA compliance. As our considered (current) SLAs were not too com-

plicated, it was not too difficult to identify the metrics and the monitoring require-

ments and define the mapping to SLOs. For most of the metrics, it was not a big

problem to monitor as standard http log files and a (simple) self-made checking tool

for the customer perspective could be used.

 What were difficult/easy parts? With a general monitoring system in place, it is not

too difficult to further formalize and automate more SLA-relevant aspects. But it

was difficult and has not been solved yet to synchronize external measurements with

internal data (e.g., the external system says “not available”, but internal measurement

says “ok”).

 How much effort was required? First steps towards compliance checking are more

than feasible for an SME.

4.3 Level 5 - Analysis: Building a Meta-Model as a Foundation for Analysis

Fig. 7 shows the meta-model that connects the software elements at runtime, the re-

sources, the development artifacts, and the runtime context. A meta-model is crucial

for a software architect to get a clear picture of the connection and relations between

«System»

Data Manager [xml]

«Component»

Monitoring

System

«User»

Serv ice Prov ider

«Data»

Log Storage

«Component»

SLA Compliance Checker

«Data»

SLA Storage

(DSL)

«User»

Serv ice Consumer

«Component»

SLA Editor

«Component»

SLA Status Visualizer

«Data»

SLA Status Log

«Component»

SLA modification

observ er

«Component»

SLA Parser

«Component»

Calculation

Engine

Rules

«Component»

SLA Compliance

Manager

«Data»

SLA Compliance

Checker::

Configuration

«Data»

SLA

stores/

updates

uses

invokes

monitors

signs

stores SLAs (in DSL)

notifies

observes SLA modification (CUD)

invokes

reads SLAs

signs

uses

reads logs

stores SLA compliance output

observes SLA status

reads status logs

writes SLAs

reads SLA rules

store metrics

observes SLA status

Copyright © Fraunhofer IESE 201512

the runtime, devtime, and operational aspects of a software system. We developed the

meta-model primarily to narrow down our searches for root cause analysis.

Fig. 7. Meta-Model for Connecting Runtime, Devtime, and Operational Aspects

Experience.

 Was the approach applicable in the scenario? The approach was especially useful

as we do have a distributed system that, at least in its runtime configuration, changes

occasionally. It was also helpful to relate software code changes to parts of the sys-

tem with a monitored problem to detect the source of a problem faster (and thus to

find the solution faster). It should be doable once there is a runtime architecture with

specified relationships to the code used by the respective part of the system.

 What were difficult/ easy parts? It was easy to attribute the executed Java code and

the communication infrastructure (which is based on messaging) to automatically

derive information for building the runtime architecture (it is at least possible in

modern platforms like Java (as in our case) or .Net). We have built the meta-model

but we do not have an implementation to build the runtime architecture. So at this

point it is not possible to judge the difficulty.

 How much effort was required? Full implementation of the meta-model building

approach will result in quite some effort.

5 Takeaways for SMEs

 No existing DSL is a silver bullet. There seems to exist no silver bullet DSL,

and overhead for creating your own is not high. Creating a new DSL could serve

your needs exactly and is probably simpler than adapting to and working around

problems with any existing DSL. So create a new one for the prototype and, with a

clearer understanding of the needs, re-evaluate the market afterwards.

Request

Software

Component

Resource

Context

Configuration

Code

Architectural

Decision

Status

(Properties)

Load

Data Amount

Release Date

has

has

has

contains

has

runs

on/

uses
1..*

realizes

has
realizes

has

has

has

has

executed

through

1..*

realized

by

Copyright © Fraunhofer IESE 2015 13

 Do not spend too much time on creating a perfect DSL for formalizing SLAs.

Try to use a dynamic language like groovy to allow for simple definition of evalua-

tion expressions. You may start with an xml definition for quality metrics and con-

ditions and groovy-based evaluation expressions that operate on the raw data pro-

vided by the monitoring system based on the quality metrics used.

 Formalization is key, especially for automation (and automation is a must). It is

relevant for an in-depth look at the SLA status, even in real time, for customer access

and for deriving analysis tools. It is input to monitoring - especially monitor in more

detail internally what you are measuring against externally (for the SLAs).

 Automated/formalized definition of SLA criteria is needed to offer customer-

individual SLAs. The idea of offering customers a tailored SLA with a connection

to what is negotiated in the contract and to the real software system is great (as for

an SME, this is a good opportunity to be better than a larger market competitor).

This can be done using a formalized definition and automated compliance report.

 Just by working on formalization and making it more explicit, there is an im-

provement in the internal qualities of the system.

 Plan for manual interaction. It requires very little effort but is still relevant. For

example, negotiated availability with customer should overrule what is monitored.

Sometimes measurements are not correct and need overruling (e.g., for problems

with the measurement itself).

 Real-time view on SLA status can be valuable for internal planning. For exam-

ple, do not plan a major update (which increases the risk of problems because of

system changes) at the end of SLA reporting phases when the quality metrics are in

danger. It is better to postpone the update to the start of the next reporting period.

 Centralized logging is helpful for distributed systems. Open source components

are available, like redis, logstash, ElasticSearch-based systems, etc.

 Unique request IDs are key to building a runtime meta-model. All loggings by

the software components and the resources should include that ID.

 Use aspect-oriented techniques to automatically collect data (number of re-

quests, latency, throughput, etc.). It will keep the actual code clean.

 Establish “Analyzability” as a relevant non-functional requirement of develop-

ment. Software architects should establish and propagate this relevance, for exam-

ple by integrating a unique request ID into each log statement for each distributed

service involved in request evaluation.

6 State of the Art and State of the Practice

6.1 Research on SLA

Research has been done on SLA enforcement from various perspectives. ITIL [13],

CMMI [14], Oracle [1], and others have presented overall service level management,

governance, and best practices. ITIL also has a service level management (SLM) ma-

turity model [6]. But the focus of those practices and maturity models is on any service

in general; they are not tailored to a software system. Moreover, they discuss overall

Copyright © Fraunhofer IESE 201514

service level management and service level enforcement is just mentioned as a small

part. In our paper, we detailed the enforcement aspects of SLM. SEI’s technical report

[3] presents the main concept of SLA for SOA systems and also points out which met-

rics are measurable. Recently, Becha [2] did research on the qualities that are relevant

from the consumer’s point of view. A number of DSLs have been proposed for SLA

specifications [7–9, 11]. Tang et al. [16][15] describe SLA-aware service computing

techniques, and Pereira et al. [12] and Motta et al. [10] describe SLA enforcement for

large organizations [10]. But the overall holistic approach for SLA enforcement for an

SME’s software system is not covered in the literature. Grzech et al. [5] describe the

translation of SLAs into complex structures [5] and Emeakaroha et al. [4] describe how

low-level metrics could be mapped to high-level metrics [4]. But we definitely need

mapping from high-level metrics to low-level metrics as well. This has not been ad-

dressed thoroughly in our research yet either, but will be part of our future research.

6.2 Industrial Tools

There are plenty of monitoring tools and calculation/reporting engines available. Mon-

itoring tools usually monitor various resources. Nagios, Shinken, etc. are examples of

such kinds of IT infrastructure monitoring tools. Usually these tools are independent of

what is stated in the SLAs, but they can alert to or report infrastructure level anomalies.

We also identified several SLA monitoring tools from the market – for example,

AmberPoint’s SOA, BMC Software’s AppSight, CA’s Willy SOA, Fushion Point’s

BSI, HP’s SOA Manager, IBM’s Tivoli, Progress Software’s Actional, Tidal Soft-

ware’s Interperse, TIBCO’s SOA, WSO2’s Governance Registry, SLA Diator, and so

on. We interviewed two of them. What we discovered is that they are mostly designed

for IT-helpdesk-like SLAs in the sense of tracking and managing SLAs on the support

level. The tools usually include monitoring, calculating, and reporting capabilities. But

they are not tailored for software system SLA management, integration, and enforce-

ment. These tools cannot identify what has to be monitored on the resource level or on

lower levels based on the SLAs, and they are not smart enough to map external metrics

to internal metrics. Therefore, currently available tools lacks the power to come up with

a good mechanism for prediction or root cause analysis as they cannot create the

runtime architecture of the system to discover improvement potential.

7 Conclusion

SLAs and software systems offered as services are not integrated well. The service

provider is supposed to establish measures to enforce the agreements systematically,

but often this is not handled with priority as it is not the main functionality of the sys-

tem. This technical debt makes the provider dependent on highly experienced people.

Therefore, we developed the maturity model to analyze the SLA enforcement situa-

tion and goals. This is a first step towards supporting architects in this direction. This

model needs to be validated in the context of other organizations and needs to be en-

riched and detailed in the future to enable further adoption in industry.

Copyright © Fraunhofer IESE 2015 15

We described three transitions of the maturity model in this paper: formalization,

evaluation, and analysis. Using a case study with an SME, we showed the applicability

of the approaches for latency- and availability-related SLAs. More quality attributes

need to be integrated in the future. There are still a lot of open questions left – for

example: how to efficiently map the external metrics to internal metrics; how to do

predictions of the future; how to narrow down the search for root cause analysis in case

of violations; how to make the development and operation activities SLA-aware. In the

future, our main focus will be on building a runtime architecture of the system that

captures the runtime situation and helps to comply with SLAs as a consequence.

Acknowledgment: We would like to thank the German Ministry of Education and

Research for funding parts of this work under grant number 01IC12S01F.

References

1. Afshar, M. et al.: SOA Governance : Framework and Best Practices SOA Governance :

Framework and Best Practices. Gov. An Int. J. Policy Adm. 6, 3, 1–17 (2007).

2. Becha, H., Amyot, D.: Non-functional properties in service oriented architecture - A con-

sumer’s perspective. J. Softw. 7, 3, 575–587 (2012).

3. Bianco, P., Lewis, G.A.: Service Level Agreements in Service-Oriented Architecture Envi-

ronments. SEI Tech. Note. 2008-TN-02, September 2008, (2008).

4. Emeakaroha, V.C. et al.: Low level metrics to high level SLAs - LoM2HiS framework:

Bridging the gap between monitored metrics and SLA parameters in cloud environments.

Proc. 2010 Int. Conf. High Perform. Comput. Simulation, HPCS 2010. 48–54 (2010).

5. Grzech, A., Rygielski, P.: Translations of service level agreement in systems based on ser-

vice oriented architecture. Knowledge-Based Intell. Inf. Eng. Syst. 6277, 523–532 (2010).

6. Hoc, A.: ITSM Maturity Model, http://www.tarrani.com/pix/ITSMMaturityModel_v3.PDF.

7. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. J. Netw. Syst. Manag. 11, 1, 57–81 (2003).

8. Kübert, R. et al.: A RESTful implementation of the WS-agreement specification. Proc. Sec-

ond Int. Work. RESTful Des. (WS-REST ’11). 67–72 (2011).

9. Lamanna, D.D. et al.: SLAng: a language for defining service level agreements. Ninth IEEE

Work. Futur. Trends Distrib. Comput. Syst. 2003. FTDCS 2003. Proceedings. 34069,

(2003).

10. Motta, G. et al.: IT Service Level Management: Practices in Large Organizations. Commun.

IBIMA. 2011, 1–9 (2011).

11. Paschke, A. et al.: ContractLog: An approach to rule based monitoring and execution of

service level agreements. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics). 3791 LNCS, 209–217 (2005).

12. Pereira, P.R.: Service Level Agreement Enforcement for Differentiated Services. Proc. 2nd

Int. Work. EURO-NGI Netw. Excell. 3883, (2005).

13. Pereira, R., Da Silva, M.M.: A maturity model for implementing ITIL V3 in practice. Proc.

- IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC. 259–268 (2011).

14. Services, C.: CMMI® for Services, Version 1.3 CMMI-SVC, V1.3. (2010).

15. Tang, L. et al.: SLA - Aware Enterprise Service Computing - Part II, (2013).

16. Tang, L.: SLA-Aware Enterprise Service Computing - Part I, (2013).

Copyright © Fraunhofer IESE 201516

Document Information

Copyright 2015 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Engineering Service Level
Agreements as an Integral
Part of Software Systems
and their Architectures

Date: December 2015
Report: IESE-057.15/E
Status: Final
Distribution: Public Unlimited

	1 Header 1
	1.1 Header 2
	1.1.1 Header 3

