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Abstract—This work focuses on the relevance of visual
attention in affordance-inspired robotics. Among all approaches
in robotics related to Gibson’s concept of affordances [1]
the dealing with attention cues is only rudimentary. We are
introducing this concept within the perception layer of our
affordance-inspired robotic framework. In this context we
present a high-performance visual attention system handling
invariants in the optical array. This layer builds the base of
higher-sophisticated tasks, like a “curiosity drive” that helps
a robotic agent to explore its environment. Our attention
system derived from VOCUS [2] utilizes the parallel design
of the graphics processing unit (GPU) and reaches real-time
performance for the processing of online video streams in
VGA resolution on a single computer platform. GPU-VOCUS
is currently the fastest known visual attention system running
on standard personal computers.

I. INTRODUCTION

In the design of robotic agents coping with our real

environment, as attempted in the domain of artificial in-

telligence, vision is a common approach to robotic per-

ception. Typically, an appearance-based recognition stage is

implemented that utilizes a model database. An alternative

approach, which has its seeds in psychology, attempts to

perceive the scene on a functional basis, namely by using

so-called affordance cues.

The concept of affordances has been established by J.J.

Gibson in 1979 [1]. It defines the set of possible actions

accomplishable by an animal in the environment. The cen-

tral idea of the affordance theory is that an animal is in

a bidirectional relation to its environment. In analogy of

Gibson’s original concept of affordances, an agent must be

able to perceive what the environment affords and must have

the capability to act upon these (agent) affordances. Gibson

stated that affordances are perceived directly:

“An affordance is an invariant combination of

variables, and one might guess that it is easier to

perceive such an invariant unit than it is to perceive

all the variables separately.”[1, p. 139]

Thus, perception of affordances is not a sequence of perceiv-

ing all the properties of an object, classifying these properties

into abstract objects, and inferring how these objects could

be employed in certain circumstances. Instead, the invariant

combination of variables are perceived and utilized without

use of any object recognition or labelling stage. In her

book An ecological Approach to Perceptual Learning and

Development [3] E.J. Gibson gives examples for invariants

that are learned by infants, which range from perception

of unity through motion to invariants for locomotion. She

shows that the perception of space is directly coupled to

the development of locomotion. This dependency indicates

that an agent can only perceive affordances that are related

to any of its possible actions. Another example is that an

agent can only perceive whether an object affords lifting

if it is capable to attach to the object and to lift it. This

affordance inspiration is one of the fundamentals in our EU

project MACS [4]. Within this context Paletta et al. presented

a novel framework for cueing and hypothesis verification

of affordances that could play an important role in future

robot control architectures [5]. They also emphasized that it

becomes important to consider visual attention mechanisms.

The relevance of attention in affordance-inspired perception

has first been mentioned by E.J. Gibson who recognized that

attention strategies are learned by the early infant to purpo-

sively select relevant stimuli and processes in interaction with

the environment [3]. In another work from psychology about

wayfinding on foot in cluttered environments Cutting et al.

described also the importance of fixating salient points [6].

Nonetheless, among all works in affordance-inspired robotics

the dealing with attention cues is only rudimentary. The

reason is likely to be the computational effort of calculating

salient cues permanently. As for example, E.J. Gibson shows

in [3] that for biological creatures, it is not enough to

work on a snapshot of the environment. An approach in the

domain of autonomous robotics that explicitly incorporates

the temporal dimension of salient cues attracting attention

is still a challenge. One development in computer graphics

opens up new vistas for this problem: The programmability

and performance increase through parallelism of graphics

rendering devices has reached a high level. CPUs are de-

signed for general purpose, whereas GPUs are designed for

processing as much data as possible per instruction (SIMD

architecture – single instruction multiple data). Especially

the fact that typical models of visual attention are massively

parallelizeable supports our effort. The focus in this paper

lies on the real-time evaluation of attention for affordance-

inspired robotics by the use of graphics rendering devices.

The outline of this paper is as follows: Section II elab-

orates the role of visual attention for perceiving the en-

vironment. Section III describes the current relevance of

affordances in robot control architectures just as of visual

attention. In section IV we put both ideas together and
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focus on the role of attention for affordance perception

and learning. Section V illustrates experimental results that

support our accentuation of attention in affordance-inspired

perception and learning tasks performed by GPU-VOCUS.

Finally, section VI concludes with an outlook on future work.

II. THE ROLE OF VISUAL ATTENTION

Among all human senses the visual sense provides the

most environmental information. Evolution has developed

mechanisms to handle the huge amount of information

gathered by the visual sense, e.g. visual attention. Mostly we

take no notice of the saccadic movement of our eye although

we are using it permanently when we are not asleep. The

intended purpose of visual attention is focusing on a region

of interest for closer investigation. An analysis of the entire

scene would be too time-consuming. This means that an

efficient utilization of visual attention has been turned out

to be advantageous in evolution. The biological inspiration

of visual attention systems has a decisive advantage which

is considered in the following architecture specification.

Visual attention systems are based on many simple features

that can be processed in parallel. The weighting of those

features provides a highlighting mechanism to emphasize

features which are more discriminative to the surrounding

[7]. The high computational effort requires either high speed

sequential or fast massively parallel computation. The latter

can be well utilized on the parallel basis of the biological

fundamentals, e.g. in specialized chip implementations [8].

Itti and Koch divided visual attention into two different

categories [9]: bottom-up and top-down attention. The first

one describes the aspect of salient regions attracting our

attention automatically. This happens when an object is

highlighted from the remaining scene through its conspicuity

in color, intensity or orientation. The processing speed of

bottom-up mechanisms for human beings is according to Itti

and Koch in the order of 25 to 50 ms for each salient item.

The second form of attention, top-down attention, includes

selection criteria in the manner of searching for a specific

cue. The processing speed of top-down attention is reported

to be in the order of 200 ms [9].

Fig. 1. Demonstrator scenario of the EU project MACS [4]. A goal of
MACS is to explore affordance-inspired perception and learning for mobile
robots related to J.J. Gibson’s theory. The shown robotic agent KURT3D
should perceive, learn and utilize its environment in a functional way.

Fig. 2. Visual attention: The most salient region is selected by bottom-up
attention. Regions are determined, which are highlighted from the remaining
scene through their color, brightness or orientation, here the blue can.

(a) Intensity (b) Color

(c) Orientation

Fig. 3. Computed conspicuity maps of Fig. 1. The blue can pops out
dominantly from the color map.

To incorporate the temporal dimension of visual attention

in realistic situations, it is necessary to fulfill these runtime

constraints. Especially for small robotic platforms, it can be

difficult to provide the needed computing power onboard.

Networking resources are often used to this end, which is

not a suitable solution for autonomous robots with the risk

of a broken radio contact. So the difficult task of utilizing the

onboard computing power as efficiently as possible remains.

Up to now there was no visual attention system available,

which could process video streams at VGA resolution on

a standard single computer platform, while leaving enough

computing power for the remaining control programs. In this

context, we present an attention system, that runs completely

on graphics rendering devices for personal computers. This

system is able to process video streams online while keeping

the computing power of the central processing unit nearly un-

touched. Graphics rendering devices are predestined for the

computation of many simple features as typically occurring

in the computation of the feature maps in visual attention

systems. We will further show how visual attention can be

used for affordance cueing of time-series in the manner of an

action-perception cycle with our GPU (Graphics Processing

Unit) version of VOCUS. GPU-VOCUS is currently the

fastest known visual attention system running on a standard

personal computer. It performs more than 30 Hz with a 32
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bit precision on VGA images.

III. RELATED WORK

In the first part of this section practical works on imple-

menting the affordance approach in the field of cognitive

systems are described. In the second part we give an account

on the most significant implementations of visual attention

systems.

A. Affordance-inspired Robotics

Gibson once stated that invariants are directly perceived in

the optical array. This is one of the most controversial aspects

of the affordance theory. In this context cognitive approaches

can be divided into two categories: those which are symbolic

based and those which are not. Seminal approaches like those

of Duchon et al. [10], Warren [11] and Mark [12] showed that

also complex tasks can be solved using a non-symbolic base.

But there is still no non-symbolic approach, which is capable

of learning affordances related to a diverse set of action

possibilities using a variety of sensorimotoric capabilities

and a complex environment. Proposing the necessity of

symbols, MacDorman stressed that Gibson underestimated

the computational complexity of vision [13]. He argued that

the complexity can only be handled on a higher degree of

abstraction. The preprocessing stage in his approach handled

the amount of data by transforming perceived data into

a canonical form while reducing the data to a 64-by-64

grid. The use of a wavelet transform parametrized with two

dimensional Gabor filters has its seeds in neurophysiology.

It is obvious that the computational effort was also an

important reason for the data reduction and filter design.

Thus it supports our argumentation of combining biologically

inspired algorithms with massive parallelism on graphics

rendering devices.

B. Attention in Robot Perception

The use of visual attention in robotics is reported to

be advantageous for many purposes, like automated target

detection, human machine interaction and so on [14][15][2].

It is inspired by the morphology of the human visual system.

Most approaches report a high computational demand. Based

on a popular visual attention system, the Neuromorphic

Vision Toolkit (NVT), Itti et al. presented a parallel im-

plementation performing real-time attention cue computation

on video streams [14]. To reach a sufficient speedup the

system needed to run on a 16-CPU Beowulf cluster. The

attention system of the robot Kismet [15], designed for social

interaction with humans, was also processed on a parallel

computer. It was attached to a DSP (Digital Signal Processor)

network, which computes the saliency maps for color and

motion on different DSP nodes. Comparatively new to above-

named approaches is the system VOCUS (Visual Object

detection with a CompUtational attention System) presented

in [2]. It processes foci of attention (FOA) sequentially in

contrast to the others, but it has been optimized by measures

like the use of integral images. This system was also reported

to be real-time capable [7]. The term “real-time” in each

of above-mentioned contexts implies that the system is fast

enough to satisfy a certain performance constraint. These

systems used either input images with less resolution than

VGA or performed its computation with frame rates lower

than 15 Hz. This performance requirement was the reason

for the decision to redesign VOCUS in terms of utilizing the

parallel computing capabilities of the graphics hardware to

full capacity.

IV. ATTENDING AFFORDANCE CUES IN

REAL-TIME

Since physical laws will sometimes limit the fundamentals

for further performance boosts, e.g. processors cannot keep

going up in clock speed forever, parallelism will gain more

importance in future. This trend can already be observed

for the newest dual-core or quad-core processor generations.

Actually massive parallelism has been available in standard

computers already for quite a while, namely on the GPU.

Using the GPU for speeding up certain algorithms has

recently gained more attention.

A. Potential of processing on GPU

Recent graphics hardware either for personal computers

as well as for notebooks have been enormously enhanced

in their parallel processing capability. The theoretical ratio

of computing power between CPU and GPU for available

PCs is in the order of some tens up to one hundred (e.g.

Intel Pentium 4, 3 GHz: ≈ 3.6 GFlops vs. Pixelshader of

NVidia GeForce 7800 GTX 256MB: ≈ 278.6 GFlops). This

development has been pushed by the game industry for years

and has already attracted attention by the computer vision

community, e.g. [16] or [17]. The performance of graphics

devices is rapidly increasing. During our evaluation of the

capabilities of the GeForce 7 series, the next generation

(GeForce 8 series) appeared with even twice as much tran-

sistors (278 bn vs. 681 bn).

B. GPU-VOCUS

GPU-VOCUS is a biologically inspired visual attention

system based on the “Feature-Integration Theory of Atten-

tion” by Treisman [18]. It is derived from VOCUS [2] which

was originally designed for computation on the CPU of a

single computer platform. VOCUS detects regions of interest

(ROI) that “pop up” from their surrounding, named salient

regions. For comprehensibility reasons we summarize the

computing cascade here (cf. Fig. 4; more details can be found

in [2]). It can be divided into five steps:

1) From the input image six image pyramids are derived

in order to provide scale-invariance: an intensity pyra-

mid convolved by a gaussian blurring, an orientation

pyramid convolved by a Laplacian filter and four color

maps, one for each of the colors red, green, blue and

yellow (LAB color space).

2) The image and the color pyramid then result in scale

maps or scale pyramids, respectively, applying center-

surround filters. For the orientation pyramid a Gabor

filter with four different orientations (0 ◦, 45
◦, 90

◦ and
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Fig. 4. Overview of the attention system GPU-VOCUS. The diagram is
reprinted from [2]

135
◦) is used. Summed up, there are now 48 generated

scale maps as input for the next computation stage.

3) The different scale maps are then rescaled using a

bilinear interpolation and summed up into feature

maps, 10 in total.

4) Next, a weighted sum of the feature maps results in

conspicuity maps.

5) The 3 remaining conspicuity maps are fused into 1

saliency map. The maximum value in this saliency map

refers to the most salient region (MSR). The ROI is

computed by a region growing algorithm determining

the region around the MSR. In order to move the focus

to the next salient region in the image, inhibition of

return is used that inhibits previously attended salient

regions.

Each stage in this sequence cascade has a data flow de-

pendency to its previous stage which makes it necessary to

process the cascade sequentially. Thus, multiple rendering

passes are needed to produce the desired saliency map on a

GPU. The whole “conversion” from colored input images to

saliency maps is kept in charge of the graphics pipeline while

using texture buffers as rendering targets. We have chosen

to use the language GLSL (OpenGL Shading Language)

to implement all necessary filters (shader programs). The

execution model of such shader programs is fundamentally

different from those on a CPU. Each shader program is

executed on each pixel that passes a rendering pipeline.

So, there is no need to use loops for the processing of

each pixel, but there is also less flexibility (an example is

given below). Unfortunately, the transmission of data from

the host memory to the video memory and back as well

as related format conversions constitute overhead. Thus, a

speedup can only be achieved, if the runtime of a CPU

program is longer than the transmission to and from video

memory would take. Hence, there is a data flow dependency

between the maps, but not for the operators themself. The

speedup results exclusively from this parallelization. It has

also been turned out that the center-surround filters cause a

lower computational effort on the GPU than the orientation

filters. The potential in the use of integral images on the

GPU is not high, wherefore we make no use of them in

the first GPU implementation. Further speedup can also be

achieved using multiple rendering devices, one for each map

or even scale, but we leave that for future work. Even on

graphics hardware the precision of data has to be balanced

with performance. The first reason for that is the amount

of data which has to be transmitted via the PCIe bus to

the video memory. A doubling in precision also doubles the

data volume. In computer graphics mostly the transmission

can be reduced by reusing previously stored textures in the

video memory. In computer vision this is different. Each

image, captured by a camera or a different sensor, has to be

transmitted. Mostly the result has also to be read back into

host memory. The read back was a time consuming task on

older graphics devices since they were primarily designed

to communicate in one direction, i.e. from host to video

memory. A test with an AGP version of an ATI Radeon

9800 XT device yielded no performance improvement due

to the read back overhead. Second, the processing speed

also depends on the data format. Current graphic cards

already provide 16 bit and 32 bit floating point precision

but nonetheless with the model we used for our experiments

we noticed an influence on the transmission as well as on

the processing time (cf. table II). All above-mentioned filters

could be ported from the CPU to the GPU. The one and only

difficulty was constituted by the region growing algorithm.

Region growing is typically a serial process that produces

irregularly shaped regions. This type of process is difficult

to compute on a GPU due to its per-pixel execution model.

Since the processing only consumes 1-2 ms on a CPU, we

leave it there as post-processing module.

V. EXPERIMENTS AND RESULTS

Our affordance-inspired framework couples the perception

and learning with a behavior system. The used robot platform

KURT3D is equipped with two cameras, a 3D laser scanner

and a crane arm as manipulator (see fig. 1). The specification

of the demonstrator scenario defines objects of different

morphology, i.e. color, size and shape. Paletta et al. described

how these morphologies can be used to find a proper

handling categorization (liftable/non-liftable, stackable/non-
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stackable, ...) [5]. Laser scanner and cameras are utilized to

explore the environment and to detect conspicuous cues. One

use case defined in our project starts with the activation of

certain behaviors to accomplish the approach of the robot to

the determined position of a salient cue. With trials of lifting

the associated object, the robot should learn the trilateral

relation between affordance-cues, actions and outcomes, in

this example for the affordance “liftability”. The crane of

the robot enables only a few manipulation tasks, but these

tasks can be combined to investigate affordance cues on a

higher level, e.g. the “stackability” of cans. Paletta et al.

also emphasized the importance of timeline series monitoring

while applying an action, thus the attention system utilized

by the robot has to be real-time capable. The attention system

is integrated in the framework as sensor channel and provides

important informations about the trigger of an action and

the changes of saliency cues during the execution of an

action. The first test showed that all objects specified in the

demonstrator scenario were detected as salient without any

model information.

A continuative experiment discloses the achieved speedups.

All given time measurements are comprising needed compu-

tations and transmissions, starting at the time when an image

is available in the main memory and ending at the time when

the final result is located there. That additionally includes for

the GPU implementation the time to transmit data from main

memory to video memory and back. All measurements have

been done on the same machine composed of the components

specified in table I.

CPU Pentium D 3.0 GHz

Main memory 1024 MB DDR2 PC533

Graphics device NVidia GeForce 7800 GT / 8800 GTX

OS SuSE Linux 9.3, Kernel 2.6

OpenGL version 2.0

Cameras Logitech Quickcam Pro 4000 (15 Hz at VGA)

TABLE I

HARDWARE/SOFTWARE SPECIFICATION FOR THE EXPERIMENTAL SETUP

A. Monitoring feature time dimension

The comparison of the runtime of both CPU versions of

VOCUS shows an inherent speedup achieved by the use

of integral images [7] (cf. table II). Hence the additional

speedup of the GPU version is even more impressive taking

the transmission penalty into account. By the way, the

GPU implementation does not deal with integral images.

Orientation maps are calculated only when needed. This

depends on the use case. If the emphasis will be on color and

intensity features, the disabling of orientation features results

in a shorter runtime. It is also worth mentioning that only

the orientation maps need a computation with the precision

of 32 bit. The results of all other maps show only negligible

differences between a computation with 16 bit and 32 bit

precision. Using 16 bit precision was necessary to fulfill

the needed performance constraint of 30 Hz (15 Hz for

each of both cameras) on the tested GeForce 7 device. The

GeForce 8 device fulfilled this constraint even with 32 bit

precision and achieved a speedup of 6 to 9 compared to the

optimized VOCUS version using integral images (cf. table

II). Supportingly the computational load is removed from the

CPU, which only acts as data provider for the GPU and is

now free for remaining recognition and control tasks.

Mean Runtime / ms

Feature orientation yes no

VOCUS (non-integral) 1407.6 969.7

VOCUS (integral) 129.2 89.1

GPU-VOCUS (NV GF 7800 GT / 32-bit) 77.5 34.3

GPU-VOCUS (NV GF 7800 GT / 16-bit) 57.7 25.0

GPU-VOCUS (NV GF 8800 GTX / 32-bit) 21.8 9.6

TABLE II

MEAN RUNTIME OF (GPU-)VOCUS (20 RUNS/VGA RES.)

B. Monitoring the time dimension of a feature’s distance

Since the robot for our demonstrator scenario is equipped

with two cameras, we aimed to determine the distance to

each feature with a triangulation method. We have taken the

bottom-up attention cues of both images and matched them

according to their feature vector. Considering the distance

of features is advantageous especially for the learning task

where an action is involved that entails a chain of outcomes

over the time in the direction of the robot, for instance when

a can is pushed which then rolls away. The used camera

system, which is simply build up of two webcams on a servo

device (see fig. 1) does not allow very precise measurements.

The absolute distance error to attention cues measured in our

demonstrator scenario (4 m in length and 4 m in width) was

smaller than 10 cm at any time (100 measurements varying

10 different objects in different distances). For the use case

of approaching the affordance cue, this accuracy is adequate

when used as estimation for a subsequent localization in a

laser scan. The variation of the measured distance towards a

“non-moving” cue was below a centimeter resolution which

confirms that the desired monitoring of moving attention cues

will work in principle. At the moment we can only give this

qualitative statement on the variation and leave the precise

analysis to future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an application of visual

attention in affordance-inspired robotics. The fundamentals

for the incorporation of attention cues and their temporal

dimension have been accomplished by the implementation

of a real-time capable attention system. This system has

been integrated in our affordance-inspired robotic frame-

work, which couples the perception and learning with a

behavior system. On the images provided by two onboard

cameras real-time attention is used as “curiosity drive” with

the ambition to explore visual cues in the environment. The

distances to these cues are calculated through triangulation.

The activation of certain behaviors should then accomplish

the approach of the robot to the determined position. A

trial of lifting the related object will then complete the

task. The explore behavior can then be activated again. The

implementation of a GPU version of the attention system

VOCUS disclosed two important facts:
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(a) Left cam (b) Right cam

Fig. 5. Feature distance determination: In both images two cans are shown that pop out from the scene. Regions from the left and the right camera are
matched according to their attention feature vector and triangulation is used to determine their distances to the robot.

1) The first porting of the non-optimized version of the

attention system VOCUS results in the best case in a

speedup of approximately 101 (65 for 32 bit precision).

Compared to the VOCUS version using integral images

a speedup of approximately 9 without orientation maps

and 6 with orientation maps could be achieved. The

GPU version is now able to calculate saliency cues

from VGA video streams online even on a single

computer platform. The important fact is that CPU

resources are freed and can now be used for other tasks.

2) Second, the incorporation of the temporal dimension of

salient cues attracting attention is accomplishable. The

important fact is that a visual attention system is used

in this context to tackle “interesting” objects that have

not been stored in a model database. We showed that

even the feature’s distance can be monitored over time.

A triangulation method applied to salient features of

both onboard cameras provided a sufficient accuracy

and stability.

A. Future Work

Saliency cues from both top-down attention and bottom-up

attention will further be dispatched to the learning module of

our framework. Invariants in the saliency cue stream provide

the information about the trigger of an action and changes

of saliency cues during the execution of an action. We also

aim to further decrease the runtime of GPU-VOCUS freeing

more and more resources for robot control tasks. There is

still much optimization potential for the first implementation

presented in this paper, e.g. with the use of multiple graphic

cards.
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