
 

Monte Carlo Simulation Using VHDL-AMS 
 

                 Ekkehart-Peter Wagner                                       Joachim Haase 
 Siemens VDO Automotive AG             Fraunhofer-Institut Integrierte Schaltúngen 

                  Regensburg, Germany                          Branch Lab EAS Dresden, Germany 

Abstract 
Monte Carlo simulation is widely used in Spice like circuit simulators. It allows to obtain 
statistical information derived from estimates of the random variability of circuit parameters. 
Multiple simulation runs are carried out with different sets of parameters. VHDL-AMS provides 
flexible possibilities to specify nominal and tolerance values and their distributions. Correlation 
between parameters can easily be taken into account. This is especially important if behavioral 
models are considered. The paper describes requirements and implementation aspects of the 
Monte Carlo simulation using VHDL-AMS. 

1 Introduction 

Within industrial applications the tolerance- and worst-case-analysis considering all known 
influencing factors of design parameters are required very often. Reliability and yield of electronic 
circuits depend on the statistical characteristics of such parameters.    

One method for analyzing the effects of tolerances is simulation using Monte Carlo methods. In a 
Monte Carlo simulation, a mathematical model of a system is repeatedly evaluated. Each run uses 
different values of system parameters. The selection of the parameter values is made randomly with 
respect to given distribution functions [1].  

Monte Carlo simulation is very time consuming. A lot of simulation runs are required to 
investigate the behavior of a system subject to the statistical distribution of parameters. 
Nevertheless, Monte Carlo simulation is very favored simulating electrical circuits and systems. It is 
widely supported by Spice-like simulation engines. Monte Carlo features are usually available for 
frequency and time domain analysis [2]. 

In VHDL-AMS [3] applications it becomes increasingly interesting to make Monte Carlo 
features available. The basic requirements for statistical simulation linked to VHDL-AMS are 
summarized by Christen in [4]. His paper concludes that support for statistical modeling can be 
provided using VHDL packages. He discusses the requirements for Monte Carlo and time series 
simulation support during the phase of the VHDL-AMS language design. However, at the moment, 
eight years later, a uniform standard approach to solve these problems in existing VHDL-AMS 
simulators still does not exist to the knowledge of the authors. Some ideas concerning time series 
simulation were reported in [5].  

In this paper we present first experiences how to implement some of the requirements for Monte 
Carlo simulation [4] 

• Usage of the same model for nominal and Monte Carlo analysis  
• Assignment of different statistical distributions that are parameterizable to each constant 
• Support of continuous and discrete distributions 
• Possibility to specify correlation between constants 

 



 

From a practical point of view the following points should also be mentioned 
• Independent random number generation for any constant 
• Reproducibility of Monte Carlo simulation within the same simulation tool 

Reproducibility of Monte Carlo simulation in different VHDL-AMS simulation tools would be 
desirable. 

We will start with a discussion of the implementation of random number generators for Monte 
Carlo simulation. Afterwards, we will show how to implement these generators in VHDL-AMS. We 
will continue with a simple example and conclude with some remarks about further directions. 

2 Random Number Generators 

2.1 Basic Problems 

Initialization of the Pseudo-Random Number Generator 
One of the basic problems in Monte Carlo simulation is the generation of random numbers. In 

Monte Carlo simulations of electrical circuits pseudo-random numbers are typically used. Different 
approaches to generate such numbers exist. The MATH_REAL package [6] of the IEEE library 
provides a procedure UNIFORM that returns a pseudo-random number with uniform distribution in 
the open interval (0, 1). The procedure is declared in the following way: 

 

procedure UNIFORM(variable SEED1,SEED2:inout POSITIVE; 

                  variable X:out REAL); 
 
 The algorithm is based on the combination of two multiplicative linear congruential generators. 

It was published by L’Ecuyer [7]. An advantage of the L’Ecuyer generator is its long period [8]. The 
VHDL implementation requires the seed values (SEED1, SEED2) to be initialized before the first 
call to UNIFORM. The seed values are modified after each call to UNIFORM. In order to generate a 
chain of pseudo-random numbers, the seed values shall be set only in the first call of the procedure 
(see Annex A.3 of [6]). In the next call the seed values from the previous call have to be used. A 
different chain of numbers is started every time the seed values are set. 

The Ada implementation of the L’Ecuyer generator provides an INITIALIZE procedure that 
sets two global initial seed values that are updated during every call of the random number generator 
[8]. An equivalent procedure is not available in the MATH_REAL package. However, a similar 
functionality is needed in Monte Carlo simulations. Thus, the pseudo-random generator is used to 
initialize constant objects declared in different design units. The state of the generator has to be 
passed from one call to the next one by using seed values from a previous call. This can be done in a 
well-defined way for instance inside a PROCESS statement. The seed values can be held in 
VARIABLE objects. This approach can not be used e.g. during initialization of generic constants or 
constants that are declared in different design units.   

Thus, another approach has to be used. The state of the random number generator can be held 
for example in a 

• SHARED VARIABLE or a 
• FILE. 

IEEE DASC P1076a Shared Variable Working Group specified mutually exclusive access 
semantics for shared variables [9]. If this work could be the base for an extension of the capabilities 
of random number generation in the IEEE packages. The seeds could be global variables, functions 
to initialize their values (INIT_SEED) could be provided, and the UNIFORM procedure would have 
to be modified accordingly. But shared variables are currently not implemented in all available 
VHDL-AMS simulators. 
 



 

Due to these existing limitations concerning shared variables we followed the second approach. 
Seed values are read and written into a file before and after a call of the UNIFORM procedure in the 
context of Monte Carlo simulation. If at the beginning of a Monte Carlo simulation run the same file 
is used then the same results will be produced by the simulator. It is assumed that in the elaboration 
phase (see [3], chapter 12) the calls of the UNIFORM procedure will be carried out in a sequential 
manner. The elaboration is carried out in the same way prior to the execution phase in every 
simulation run. Thus, reproducibility is assured if the elaboration phase starts with the same file. On 
the other hand, every run during Monte Carlo simulation starts with a different file and can work 
with a different parameter set. The next simulation run starts with the updated file of the last run.   

 
 
 
 
 
 
 
 

 
 
 

 
Figure 1: UNIFORM procedure call in the elaboration phase of Monte Carlo simulation 

 
This procedure only sufficiently works in the elaboration phase. It is evident that it is not cycle 

pure. Thus, it can not be applied in the execution phase of a VHDL-AMS simulation. 
 

Transformation of Uniform Random Distribution 
Many process and device model parameters are not (0,1) uniform distributed. Generally applied 

distributions used in Monte Carlo simulation are for example: 
• Uniform distribution between a and b (a < b) 
• Gaussian distribution N(µ,σ) (also called normal distribution) with mean value µ and 

standard deviation σ 
• Bernoulli distribution having two possible outcomes with probability p=0.5. 

Other distributions as triangular and lognormal distributions can also be implemented. 
Furthermore, the support of user-defined discrete and continuous distributions is expected.  

Non-uniform distributed random numbers can be generated using von Neumann’s method of 
generating random samples by evaluating the position of uniform random numbers in a given 
rectangle or by transformation. The first methods generate samples from any distribution whose 
probability density function is piecewise continuous and monotonic [10]. It can be used to take user-
defined continuous distributions into account. In the second approach, a (0,1) uniform distributed 
value is transformed through a function to a new value that follows a non-uniform distribution. How 
this works will be shown in the following examples. 

Let X be a (0,1) uniform random distributed number then 
 
                                       XabaY ⋅−+= )(                                                                               (1) 

 
is a uniform distributed number between a and b. 

Let X1 and X2 be independent (0,1) uniform distributed numbers then 

UNIFORM procedure call 

read seed values write updated seed values 

output (0,1) distributed random number 
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are N(µ,σ) normal distributed numbers [11].  Another way is to start with 12 (0,1) uniform 
distributed numbers Xi (i = 1 … 12) then 
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is also N(µ,σ) normal distributed [12].  
Let X be a (0,1) uniform distributed number then 
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is a Bernoulli distributed number with the two real values v1 and v2 that occur with the same 
probability. We can interpret v1 and v2 as minimum and maximum of a parameter. We use the name 
worst case distribution for this distribution in the following.  

In the same way, random numbers with other distributions can be generated. Figure 2 shows 
how to combine these random number generators in VHDL-AMS. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Principle of non-uniform random number generation based on transformation 
 
The mean value of the random numbers is the nominal value of the random constant that has to be 
initialized during Monte Carlo simulation.  Figure 2 describes the main structure of a function RND 
that can be used to initialize random constants in Monte Carlo simulation runs. The function will be 
introduced in the section 2.2. Figure 2 can be extended by further general distributions.  

branching w.r.t. required distribution  

read seed values from file 

call procedure UNIFORM from IEEE 
package MATH_REAL 

write seed values to file 

RNDUniformDist RNDNormalDist RNDWorstCase 

UNIFORM 

see Fig. 1 



 

 
Correlation between Random Numbers 

In some cases, Statistical circuit simulation requires the consideration of the correlation 
between random variables. This correlation is described by the correlation matrix R. The correlation 
matrix is a symmetric positive (semi-)definite matrix. Only in the case of Gaussian random numbers 
it is easy to generate correlated Gaussian random numbers [13].  

 It is assumed that Y1, Y2, …, Yn shall be Gaussian random numbers with mean values µ1, µ2, …, 
µn and standard deviation σ1, σ2, … σn. R is the correlation matrix. The element rij ( 11 ≤≤− ijr ) 
describes the correlation between Yi and Yj.  

To make Y1, Y2, …, Yn available,  N(0,1) normal distributed independent random numbers X1, X2, 
…, Xn  are generated. A Cholesky decomposition of R is carried out, i.e. GGR T ⋅= . Then it follows 
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That means in the general case, an algorithm that carries out Cholesky decomposition has to be 

implemented. In simple cases (i.e. for small n) the equation (6) can be solved analytically. 
 
Example 

Y1 and Y2 are Gaussian random numbers with mean values µ1 and µ2,and standard deviation σ1 
and σ2. The correlation between Y1 and Y2  is r12. We get 
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and 
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That means 
                                1111 XY ⋅+= σµ                                                                                          (9.1) 

                               2
2
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The equations (9.1) and (9.2) can easily be implemented. 

In practice, non-Gaussian data have to be considered in numerous applications. Their 
probability density function can be expressed in many cases by a truncated Gram-Charlier series 
expansion using central moments. Different algorithms are proposed to generate correlated non-
Gaussian random variables. A special approach that uses the first four central moments is suggested 
in [14].  

The handling of correlated random parameters depends on a lot of requirements that may differ 
from application to application. VHDL-AMS provides a lot of facilities to support these 
requirements. However, it seems to be difficult or requires a high effort to make some general 
methods available to generate correlated non-Gaussian numbers beside trivial cases (e.g. two 
correlated Gaussian variables). This is, we do not consider these methods in the following. 



 

 

2.2 Implementation in VHDL-AMS  

To realize the functionality described in section 2.1 two VHDL-AMS packages were developed: 
• package STATISTIC_GLOBAL 
• package STATISTIC 

Both should be compiled into a logical library symbolically named MONTE_CARLO_LIB. 
 
Package STATISTIC_GLOBAL 

In the header of  the package STATISTIC_GLOBAL two deferred constants are declared 
 

constant GLOBAL_STATISTIC    : GLOBAL_STATISTIC_TYPE; 
    constant GLOBAL_FILE_NAME    : STRING;  

 
The first constant allows to decide whether an analysis with nominal values or a Monte Carlo 

simulation shall be carried out. The enumerated type GLOBAL_STATISTIC_TYPE consists of the 
values GLOBAL_NOMINAL and GLOBAL_MONTE_CARLO. The initialization of the constant is 
done in the package body (see also [4]). The constant GLOBAL_FILE_NAME has to be initialized 
with the relative or full name of the file that carries the seed values (compare Figure 1). The values 
are saved in ASCII format. Prior to the first simulation, the initial values must meet the requirements 
concerning SEED1 and SEED2 that are parameters of the UNIFORM procedure [6]. 

 
Package STATISTIC 

In the package body a function is declared that realizes a random generator with (0,1) 
distribution: 

 
impure function UNIFORM01 

     return REAL is 
       variable RESULT   : REAL; 
       variable SEED     : INTEGER_VECTOR (0 to 1); 
     begin 
       SEED := READ_SEED; 
       UNIFORM (SEED(0), SEED(1), RESULT); 
       WRITE_SEED (SEED); 
    return RESULT; 
    end function UNIFORM01; 

 
READ_SEED and WRITE_SEED are two further functions to read and write from a file 
characterized by the constant GLOBAL_FILE_NAME. The function UNIFORM01 corresponds to 
Figure 1. 

 At the moment, the functions RNDUniformDistDIST, RNDNormalDist, and RNDWorstCase 
that correspond with the equations (1), (4), and (5) resp. are declared. Other distributions will be 
supplemented in the future.  

The code of the function RNDUniformDist demonstrates the implementation of (1). The first 
parameter is NOMINAL_VALUE that corresponds to the mean value µ. The second parameter TOL 
determines )1( TOLa −⋅= µ  and )1( TOLb +⋅= µ  in (1). The third parameter RND01 is transferred 
from the result of a call of the random number generator UNIFORM01: 

 
 
 



 

 
function RNDUniformDist(NOMINAL_VALUE : REAL; TOL : REAL; RND01 : REAL) 

      return REAL is 
        variable A      : REAL; 
        variable B      : REAL; 
        variable RESULT : REAL; 
      begin 
        A      := NOMINAL_VALUE*(1.0 - TOL); 
        B      := NOMINAL_VALUE*(1.0 + TOL); 
        RESULT := A + RND01*(B - A);  
    return RESULT; 
    end function RNDUniformDist; 

 
In the header of the package STATISTIC, the functions SET_TOL_UniformDist, 

SET_TOL_NormalDist , SET_TOL_WorstCase, and RND are made available:        
 
-- Set tolerances for uniform distributed values equ. (1) 
 
   function SET_TOL_UniformDist (   
       TOL : REAL      -- A = NOMINAL_VALUE*(1.0-TOL) 
       )               -- B = NOMINAL_VALUE*(1.0+TOL) 
   return TOL_DATA; 

 
-- Set tolerances for normal distributed values equ. (4) 
 
   function SET_TOL_NormalDist (   
        SIGMA : REAL   -- standard deviation 
        ) 
   return TOL_DATA; 
 
-- Set tolerances for Bernoulli distribution with p=0.5 equ. (5) 
   
   function SET_TOL_WorstCase ( 
        TOL : REAL    -- V1 = NOMINAL_VALUE*(1.0-TOL) 
        )             -- V2 = NOMINAL_VALUE*(1.0+TOL) 
   return TOL_DATA; 
 
 
-- Function that changes  NOMINAL_VALUE w.r.t. tolerances 
    
   function RND  ( 
        NOMINAL_VALUE : REAL; 
        TOL           : TOL_DATA) 

    return REAL; 
 
Using the SET_TOL functions a value can be assigned to a data object of the type TOL_DATA 

that is also declared in the package STATISTIC. By evaluating the data object the type of the 
distribution and the tolerance values can be determined. 

The function RND realizes the flow given by Figure 2. If the constant GLOBAL_STATISTIC 
from the package STATISTIC_GLOBAL is set to GLOBAL_NOMINAL then the function RND 
returns the NOMINAL_VALUE. Otherwise, it generates a random number with a mean value that 
equals the NOMINAL_VALUE and with a distribution given by the second parameter TOL. The 
TOL parameter can be initialized with the SET_TOL functions.  

 
 
 
 



 

Usage of the packages 
 

The functions can be used together with existing models. Let us have a look at the VHDL-AMS 
model of a resistor. P and M are the electrical terminals. The value of the resistance is given by the 
generic parameter R: 

 
library IEEE; 
use IEEE.ELECTRICAL_SYSTEMS.all; 
 
entity RESISTOR is 
    generic (R : REAL); 
 port (terminal P, N : ELECTRICAL); 
end entity RESISTOR; 
 
architecture BASIC of RESISTOR is 
   quantity V across I through P to N; 
begin 
 V == R*I; 
end architecture BASIC; 

 

This model can be instantiated in a VHDL-AMS architecture. The functions that are declared in 
the header of the package STATISTIC can be used to assign random values to the generic parameter 
R. This may look like  
 

library MONTE_CARLO_LIB; 
use MONTE_CARLO_LIB.STATISTIC.all; 
… 
R1: entity RESISTOR (BASIC) 
             generic map (R => RND(5.0E3, SET_TOL_WorstCase(0.01)) 
             port map    (P => …, N => …) 

 
The nominal value of the resistance is 5.0 kΩ. During Monte Carlo Simulation 

5.0 kΩ +/− 1% are used. Following this approach, existing models can be used in Monte Carlo 
simulation. Furthermore, it is also possible to define special architectures that describe elements 
with given tolerances. For instance, the following architecture TEN_PERC describes a resistor with 
10 % tolerance:  

 
library MONTE_CARLO_LIB; 

 use MONTE_CARLO_LIB.STATISTIC.all; 
architecture TEN_PERC of RESISTOR is 
    constant TOL : TOL_TYPE := SET_TOL_WorstCase(0.1); 
 constant RES : REAL     := RND(R, TOL); 
   quantity V across I through P to N; 
begin 
 V == RES*I; 
end architecture TEN_PERC; 

 
This model can then be instantiated without special knowledge of the statistical packages: 
 
  … 
R1: entity RESISTOR (TEN_PERC) 
             generic map (R => 5.0E3) 
             port map    (P => …, N => …) 

… 



 

3 Examples 

One of the advantages of using Monte Carlo simulation with VHDL-AMS is the possibility to 
apply it on mixed-signal circuits. Figure 3 shows a typical example.  
 
 
 
 
 
 
 
 
 
VHDL-AMS model (extract) 
 
-- 1 % tolerance 
constant t1 : TOL_DATA  
   := SET_TOL_WorstCase(0.01) ; 
… 
constant Rload : REAL 
   := RND (1.0E6, t1); 
constant Cload : REAL 
   := RND (1.0E-12, t1); 

 

 
Figure 3: DAC with input signal DIN and voltages at AOUT 

 
Values of load resistor and load capacitor are random parameters. The statistical influence 

of output resistors of the DAC is investigated in the Monte Carlo simulation.  
 
 

 
 

 
 
 
 

 

.  Figure 4: ADC channel and voltages at analog input  
 
 

The circuit represented in Fig. 4 was investigated for a discrete distribution of the lumped 
R and C elements and Gaussian distributed leakage current of the AD converter. 

 
The examples were carried out with the multi-run features of the programs ADVance MS 

and SystemVision of Mentor Graphics [15]. 

DIN 
AOUT DAC 

Rload Cload 



 

4 Further Directions 

We gained first experiences with Monte Carlo simulation using VHDL-AMS. Further work will 
include other probability distributions. We will also include user-defined discrete and piecewise-
linear distributions. We also have to check the quality of the generated numbers. 

To our opinion, it should be checked whether the definition of statistical packages for Monte 
Carlo simulation could be part of further activities of the 1076.1 working group. A problem to be 
solved in a unified and easy way particularly concerns the initialization of UNIFORM or an 
equivalent procedure and the update of the seed values in the Monte Carlo simulation runs. It should 
be assured that Monte Carlo simulation using VHDL-AMS delivers the same results in different 
simulators. 

Simulators should support Monte Carlo simulation of VHDL-AMS descriptions. Some aspects 
are for instance 

• Supplement of multi-run-simulations into the list of available analyses. The simulation 
program should know that the Monte Carlo feature is used. This could avoid 
unnecessary repetition of some of the stages of the evaluation phase as for instance 
reading the netlist. 

• Support of the initialization of (global) seed values in an easy way 
• Implementation of statistical post-processing-tools (for generating histograms, 

calculating envelopes, mean values, variances, ...) 
Furthermore, the usage of Monte Carlo simulation together with the behavioral modeling 

language VHDL-AMS opens a lot of other opportunities. For instance, results from Monte Carlo 
simulation could be used for the generation of response surface models [16]. In this case, parameters 
and selected simulation results of each run should be saved and evaluated afterwards. One could also 
influence the generation of parameters for different simulation runs by some add-on tools. There is no 
limit to other ideas. 
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