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Chapter 1

Introduction

One of the biggest challenges humanity has to face in the information age is how to deal with the
enormous growth of information. Between 2010 and 2011, 48 hours of content were uploaded to
Youtube every minute. Between 2011 and 2013, it were already 72 hours, and looking at the time
span from 2013 to 2015, we have reached 300 hours per minute [Jam15]. This is a general trend
that can be observed in every type of online media.

Proportionally to the growth of available data, the retrieval of relevant information becomes
increasingly time consuming. Although many people are affected by this, journalists are among
those whom this concerns the most. Their job is to aggregate relevant information and put facts
into context, so that their readers can understand and be informed about the ongoings of the
world. They are on tight schedules and usually cannot afford to spend hours on research.

To filter out relevant information from this sea of data, search engines provide invaluable help
by offering powerful text-based filtering. However, the problem still remains for binary data like
audio and video recordings, which cannot be directly accessed by text-based search engines. When
dealing with very recent events, interviews are the most current and therefore possibly the most
important pieces of information. Making this kind of data searchable is therefore highly desirable.

At this stage automatic speech recognition (ASR) comes into play. By automatically creating a
transcript, the spoken word becomes accessible to text search, and queries for keywords are made
possible. While this is an important improvement for accessibility, a lot of crucial information
contained in the recording is still not captured. For example, the word „immigrant“ can have
a very different connotation and gravity if used by a populist right-wing rally speaker or by a
foreign minister. If a political scandal is happening, one might only be interested in statements
made by the politicians involved. In case of an upcoming election, all statements of the candidates,
regardless of topic, may be of interest. To provide that information, SID must be performed. While
this can be done manually, resulting in very robust transcripts, this approach does not scale well.
Tackling the challenge of exponentially growing data is not feasible without an automated process.
SID is a research topic that has seen substantial gains in accuracy and robustness over last years,
but it has not yet established itself as a helpful, large-scale tool outside the research community.

This thesis sets out to establish a workflow to provide automatic speaker identification. It’s ap-
plication is to help journalists searching on speeches given in the German parliament (Bundestag).
This is a contribution to the News-Stream 3.0 project [new14], a BMBF1 funded research project
that addresses accessibility of various data sources for journalists.

1.1 Problem statement
While automatic speech recognition is now widely deployed in media archives and even on Youtube,
SID is still not widely available. The Fraunhofer Institute for Intelligent Analysis and Information
Systems (IAIS) has already implemented a SID system, which is currently in use in the News-
Stream 3.0 project, but it uses an old approach that has been outperformed by newer strategies
in both execution speed and recognition rate. The goal is to establish a new SID workflow using
state of the art algorithms that improve recognition speed and quality using real world data and
maintains compatibility with the rest of the News-Stream 3.0 framework.

This requires finding implementations of top performing algorithms, which have to be usable in
the News-Stream 3.0 project both from a legal and technical point of view. Annotated training and

1Bundesministerium für Bildung und Forschung
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testing data has to be available so that the required models can be trained and tested. The available
algorithms have to be evaluated so a well suited workflow configuration can be determined.

Since the set of people in the focus of the media and public interest changes over time, it is
required that new speakers can be introduced to the running system. It is desirable to incorporated
new speakers into the recognition process without having to make manual adjustments to the
system or to retrain existing models.

1.2 Solution approach
The workflow will be based on the i-vector approach since recent publications reported substantially
decreased error rates compared to previous reports [KDS+14, GRM14, LR14]. Due to its model
representation, it offers fast and flexible scoring functions [DKD+11].

In order to assemble a prototypical workflow, different available SID toolkits will be evaluated
based on the technical and legal requirements of the News-Stream 3.0 project. State of the art
algorithms applicable to i-vectors have to be provided, so the most promising approaches published
in the literature can be compared. Algorithms of interest can be categorized into normalization
and scoring methods: normalization algorithms of interest are EFR, WCCN and LDA. Scoring
functions of interest are cosine scoring and PLDA.

In order to develop a workflow optimized for low error rate, an initial fully-function workflow will
be established based on successful configurations in the literature. Using this as a starting point,
the following steps will be performed: First, different size for the i-vectors and the background
model will be compared. Second, different i-vector normalization methods will be compared, using
the same scoring function. Third, cosine scoring and PLDA will be studied. Finally, execution
speed measurements will be taken and all results are compared against the existing workflow.

All tests will be executed on representative data, containing 235 manually labeled speakers and
33 hours of speech taken from the german parliament. For model training, additional data from
the NIST SRE 2008 corpus [Gro08] corpus is included.

Finally, a scheme will be outlined on how to implement the workflow to provide for simple
introduction of new speaker models without having to manually retrain existing models.

1.3 Major outcome
A prototypical i-vector based speaker identification workflow was established using the ALIZE
toolkit. The models which are required to perform speaker identification were trained using gen-
eral, multilanguage speech and domain specific speech in german. The universal background model
and the total variability matrix were trained on the NIST SRE 2008 training corpus and a labeled
set of speeches from the German parliament. Then, different algorithms and parameters were sys-
tematically evaluated on a development data set with the goal of minimizing the classification error
on the development set. This was done in parallel for cosine scoring and PLDA scoring, since both
scoring functions have shown to perform well in the literature. The final workflow configuration
was chosen using an independent test data set. By comparing the previous implementation to
the new workflow, it was then shown that the new workflow provides both a faster classification
runtime and a lower error rate than the existing implementation. Finally, a scheme for extending
the set of known speakers is presented.

2



1.4 Structure of this document
This document is structured as following:

Chapter 2 outlines the project that this thesis is embedded in and details the requirements on
the new workflow.

Chapter 3 gives an introduction to speech analysis and explains the important properties of speech
and speakers.

Chapter 4 gives a thorough introduction into the SID workflow and introduces the algorithms
used in the experiments.

Chapter 5 presents the results of the performed experiments, and compares them to the existing
workflow.

Finally, chapter 6 summarizes the findings and gives an outlook on future work.

3



Chapter 2

News-Stream 3.0

This chapter introduces the News-Stream 3.0 project and lists project related requirements for
this work. The project is a collaborative effort of Fraunhofer IAIS, Neofonie, DPA and Deutsche
Welle, and it is funded by the BMBF. News-Stream 3.0 aims at providing tools for journalists
to help them access and gather relevant information from heterogeneous data sources like blogs,
twitter, news streams and media archives. The user might for example search for „financial crisis“
and „Angela Merkel“, and gets returned news articles reporting on Merkels position, blog entries
discussing her statements, and speeches given by her on the topic.

Both current information, published on the internet, as well as archived material is made
accessible to semantic search. The tool consist of a search engine, which contains indexed metadata
and responds to search queries, and a metadata extraction pipeline which is processing archive
content and online data streams. The gathered metadata is cross-references using linked open
data (for example information on the speakers) which is provided by the DBpedia1.

The architecture consists of analysis pipelines which extract metadata from data sources and
a user front end which provides the interface for journalists to interact with the system. The task
of extracting the metadata from audio and video files is addressed by Fraunhofer IAIS. A custom
speech analysis toolkit called iFinder is used to provide transcripts using ASR and speaker ids
using SID. The transcript allows for fulltext search on the spoken word, and speaker identification
enables filtering for specific speakers.

IFinder is a software development toolkit (SDK) written in C++, which implements audio
feature extraction, audio segmentation, ASR and SID among other features. These features are
implemented as web services which are orchestrated by a custom middleware called AudioMining.

Both the transcript and the speaker ids are provided by the iFinder SDK. Whereas the ASR im-
plementation was recently ported from the classical GMM-hidden Markov model (HMM) paradigm
to the state of the art i-vector approach, the SID implementation is still GMM based. I-vectors not
only promise increased recognition accuracy and faster processing, but the data model allows the
speaker models to be updated easily. The GMM models on the other hand have to be relearned
from scratch. It is therefore desirable to also port the SID workflow to the i-vector paradigm. In or-
der to assemble a new SID workflow that can be implemented in this context, several requirements
have to be met:

• The algorithms have to be implemented in C or C++ so that the code can be integrated into
iFinder.

• All external libraries and toolkits have to provide a license that allows for commercial usage.

• Since the ASR implementation already uses i-vectors, it is desirable to reuse these vectors,
so the workflow has to accept the feature file format used by iFinder.

• Although stream processing is not jet possible, it is intended to be implemented in the future.
The new workflow should allow real time processing on the intended hardware environment.
This also means that ASR and SID are performed in parallel, so the transcript is not available
in before speaker identification.

A more detailed description of the iFinder SDK can be found in Chapter 4.9.

1http://wiki.dbpedia.org/
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Chapter 3

Speaker identification

This chapter gives an introduction to the foundations of speaker identification. First, the scope
of speaker identification is defined and put into context to related areas of research. The most
prevalent application scenarios are presented and the general workflow, shared by all approaches
to SID, is discussed. Then, the physiological basis of speech is explained in order to explain why
utterances of different speakers sound different. Based on this, relevant properties for speaker
identification are derived and interfering influences are described. In order to find both useful and
compact representations of recorded speech, the human acoustic perception is described and com-
mon audio representations, used for both speaker identification and automatic speech recognition,
are derived.

3.1 Differentiation
For this thesis, the analysis of speech recordings is divided into three areas: speech detection (SD),
automatic speech recognition (ASR) and speaker identification (SID). Both SD and SID can be
further divided into text-dependent and text-independent approaches, depending on whether a
transcript of the recording is utilized or not. The combination of speaker aware speech detection
(SD) and SID is referred to as Speaker Diarization. The ASR is not described in more detail since
it is not relevant for this work except for its historical importance for the development of speech
analysis. The term utterance is used to denote a segment of recorded speech which belongs to only
one speaker.

3.1.1 Speech detection
Research on SD is driven by the question „Where does a recording contain speech?“. An audio
recording has to be partitioned into segments, so that a segment border is placed whenever at least
one speaker starts or stops talking. In a second step, each segment has to be labeled as speech or
non-speech. When dealing with recordings that contains silence, noise, music, or multiple speakers,
SD has to be performed before applying further analysis.

In text-independent SD, either a heuristic or a statistical model is used to identify speech
[KEWP11]. In a heuristic model, the parameters are manually configured, while in a statistical
model, the parameters are derived from training data. The latter are commonly represented
by a GMM, while the transition probabilities of the „speech“ and „non-speech“-labels are either
described by simple thresholds or a HMM. The features commonly used are:

• Frame energy, which is thresholded in order to remove silence and stationary noise.

• The zero crossing rate, where noise is considered to have a higher crossing rate than speech
[BSS+97, TO00].

• The energy distribution across the full spectrum which is used for classification [YYDS11].

The zero crossing rate measures how often the audio waveform crosses the x axis in a fixed time
frame. While SD can be addressed directly using speech and non-speech models, it can also be seen
as a combination of the more general audio segmentation (AS), followed by a speech identification
step. The established strategy for finding changes in the audio signal is to use the Bayesian
information criterion (BIC) [CVR05]. A variable-sized window is slid across the audio stream and
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a metric for signal variability is applied on the covered segment. If the variability increases, the
window is shrunk until the exact position of the signal change is found and a segment border
is placed. The speech identification then discards segments that contain no speech, and fuses
segments that have the same label assigned. In case of SID, it is not only required to separate
speech from non-speech, but also to cluster speech from different speakers. Note that this is not a
prerequisite for tasks like ASR since speech recognition does not require information on the speaker
identity.

When using test-dependent SD, the transcript can be used in conjunction with a phonetizer
(which converts written text to a series of phones) to locate each syllable in the audio stream and
thus produce a highly accurate segmentation. This process is called forced alignment (FA) and has
been implemented using iterative refinement [MJVTG98], GMM-HMM models [YL08] or neural
networks [SSR+15]. If the transcript contains the speaker names, the whole speaker identification
task can be resolved by text mining and FA.

3.1.2 Speaker identification
The goal of speaker identification (SID) is to determine, who, out of a set of known speakers, spoke
a given utterance. Approaches can be grouped into text-dependent versus text-independent as well
as open-set versus closed-set categories.

Text-dependent SID either solely relies on the transcript to identify speakers based on wording
and unique phrases, or it uses the transcript in addition to the recording. That way, specialized
speaker models can be chosen depending on the phonemes contained in the utterance [LLML14].
Text-independent identification, which is by far the dominant category, does not use any additional
information besides the audio recording. Although text-dependent SID can be superior to test-
dependent approaches because the impact of the actual wording can be reduced in the channel
normalization, in most applications no transcript is available.

Open-set identification means that the system is able to classify a given utterance as unknown.
Closed-set identification will assign one of the known speakers to each utterance, even if the actual
speaker is unknown to the system. Chapter 4.5.3 provides a more detailed explanation of the
open-set and closed-set classification.

3.2 Application fields
This section introduces the mayor areas of application for SID. Since SID as a research field is
relatively new compared to ASR, the mayor application fields were established by research on
ASR.

As stated by Anguery et al. [AWH05], the focus of SID and speaker diarization has been largely
dictated by funded research projects. Because of that, research has focused on three mayor fields
of application: The first applications were focused on telephone speech. During the ’90, attention
shifted towards radio and television broadcast, and by the early ’00 it focused on conference record-
ings. Each of these domain shifts introduced new challenges for segmentation and identification.
The meeting scenario is considered „speech recognition complete“: all difficulties that can arise
before and during ASR can be encountered and have to be dealt with. The diversification of noise
and side channel influences affect both segmentation and recognition accuracy. [MBE+12]

3.2.1 Landline telephone
Speech originating from a telephone conversation provides data with very controlled modalities:
the sample rate is constant, the microphone characteristics are standardized and the influence of
surrounding noises and room acoustics are minimal because of the microphone placement. Tele-
phone data has been of interest because it was the only available channel for remote conversations
before the advent of Voice Over IP. A lot of research on telephone data has been done prior to the
year 2000, e.g. [LH89, RR+95, RQD00].
Popular data sets are the switchboard corpus [GHM92] and the NIST SRE corpora, which all
contain telephone conversations [Gro08, Gro12]. Telephone data is still part of current speaker
identification challenges, with its most important application today being forensic analysis [KL10].
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3.2.2 Broadcast news
Broadcast news are recorded in a studio using high quality microphones with little or no overlapping
speech, so this kind of data is still very constrained and predictable. In contrast to telephone speech
it can also contain segments of jingle music and ambient recordings. Notable work in this field
was done by [SJRS97, GLA02, ZBMG05]. The data sets used for evaluation are the NIST Rich
Transcript Evaluation corpora 2002 to 2004, which also include telephone speech [Gro02]. More
recent work incorporates additional information like transcript analysis [EKLMP12], OCR on on-
screen overlays [PBL+12] or face recognition [BPT+12].

3.2.3 Meeting recordings
Analyzing speech from meetings is the most targeted application field today, since it provides
almost no restriction to the recording: Very different microphones can be used, ranging from
clip-on to stand mounted. Not every speaker will talk directly into the microphone, so the room
acoustics provide a strong coloration of the voice. In a discussion, it is also likely that multiple
people talk at the same time or interrupt each other. When the whole room is recorded, all kind of
background noises can be picked up, like street noises or the ventilation system. These conditions
are represented in the NIST Rich Transcript corpora 2005 to 2009 [Gro05]. Notable contributions
in this field are published by [AWH05, Mir07, BTHVF08].

3.3 Speaker identification workflow
This section introduces the high level structure of SID. Chapter 4 provides more concrete descrip-
tions specific to the approaches used.

The general structure of SID, as shown in Fig. 3.1, is divided into an offline learning phase
and the online recognition phase. The first steps in both phases, the preprocessing, encompasses
the extraction of low level features from the audio data and performing silence removal to strap
unmeaningfull data from the recordings. It is assumed that the recordings contain only speech
from only one speaker. If this is not the case, segmentation has to be performed first. In the offline
phase the background model and the speaker models are trained. This has to be done before
the recognition can be performed in the online phase. The recognition consists of computing a
similarity score for the audio recording and each of the speaker models. The way this is done
depends heavily on the chosen approach. Using the scores for each speaker model, a decision has
to be made, to which speaker the recording belongs.

3.3.1 Preprocessing
The preprocessing is required to transform the audio recording into a spectral representation
suitable for content analysis. This representation is based on the human perception and is described
in more detail in Chapter 3.6. The general approach is to divide the sample stream into overlapping
windows and calculate a spectral representation of that window. The low level feature thus consists
of an array of spectral values.

3.3.2 Learning phase
Before speakers can be identified, the system has to learn how to differentiate speakers based
on how they sound. This is done by training speaker models. Depending on the approach, the
form of these models varies greatly. The shared property is that the speaker model is a fixed-size
representation, which is important later on for the scoring.

The preprocessing for the training phase consists of assembling a training data set and labeling
the contained speakers. This is a time consuming task, which means that either a preexisting
corpus is used, or, if the application is domain specific, only a few hours of data is available.

The first step in the learning phase is to find a projection that maps the low level features of
the utterances to a fixed size representation. As a first step, many approaches utilize a universal
background model (UBM), which is modeled by a GMM. For details see Chapter 4.2. The UBM
represents the spectral energy distribution of speech in general. It is fitted to the test utterances
from different speakers using expectation maximization (EM), as described in Chapter 4.2.2. The
Gaussian mixtures provide a projection from the low level features into a higher dimensional feature
space. The coefficients of the UBM are the expected mean values of speech, given that the training
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Figure 3.1: Overview of the general structure of a speaker identification workflow, independent
of modeling approach. The green boxes represent artifacts, while the red round shapes represent
processes. Some artifacts are omitted for clarity, if they are consumed by only one process. The
arrows represent data flow.
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data is large and balanced enough. In the recognition phase, this mean value is used to normalize
the distribution of utterance features.

Based on this initial projection, different representations have been devised to better capture
the speaker related information. The required transformations are learned by fitting the model to
the labeled training utterances. Details on these methods are given in Chapter 4.

Most approaches apply a normalization step in order to redistribute the data according to the
statistical assumptions of the scoring method. Normalization is also used to suppress unwanted
channel information, which require a model of the content to be removed. These models are trained
using different recordings for each speaker, so they represent the varying qualities between different
recording sessions of the same speaker.

3.3.3 Recognition phase
During recognition, new utterances have to be projected into the UBM feature space. By applying
a scoring function to the utterance and every speaker model, a similarity score is computed for
each speaker. In closed-set identification, the speaker with the highest score is selected. In open-
set identification, two methods can be implemented. Either a manually defined threshold is used
to check if the highest score is sufficiently higher than the second-highest score. If not, then the
utterance can not be classified with sufficient confidence and is declared unknown. The other
strategy uses a special model for speech in general, which is trained on many different speakers.
If the highest score is generated by this model, or if the highest score is not clearly larger than
the general models’ score (introducing the same type of threshold as in the other method), it is
declared unknown. These thresholds have to be chosen manually, depending on the application.

3.4 Speech and speakers
In order to identify speakers it is important to consider what differentiates one speaker from an
other. To do that, the formation of speech in the human body has to be considered. Based
upon that knowledge, physiological and psychological differences can be derived and their impact
on the speech itself can be estimated. These differences can be ordered from concrete, low-level
features to abstract, high-level cues. Based on this categorization it is possible to derive mechanism
and representations to make the information contained in these features accessible to algorithmic
approaches.

3.4.1 The formation of speech
The formation of speech starts with an air pressure coming from the lungs. When the pressure
is sufficiently high, the air passes through the glottis. The vocal folds can then block or restrict
the airflow. When the restricted air flow causes the vocal folds to oscillate, they created the
fundamental harmonic frequencies, called formants, which distinguish voiced speech from unvoiced
speech. The frequencies depend on the size of the larynx. This sound excites the nasal and oral
resonance chambers and is finally released through the mouth and nose. See Fig.3.2 for a schematic
of the vocal tract.

Speech consists of different sounds that can be separated into consonants and vowels. Conso-
nants are produced with the glottis partially or completely closed. They can be further categorized
by place of formation and manner of articulation. Distinctive subgroups are stops, where the air-
flow is stopped and abruptly released, and fricatives, which are formed by forcing the air through an
obstruction, formed by the lips or the tongue. Consonants have a large amount of high frequencies
and have weak base frequencies.

Vowels are produced with an open vocal tract and have a prominent base frequency.
This base frequency (or the lowest resonance frequency in case of a consonant), as well as each

distinctive overtone, is called a formant. Vowels can be distinguished by the frequencies of the
first three formants f0 to f2. Higher order formants do not vary significantly across words but
are more speaker dependent. The fundamental frequency f0 of males lies in between 85Hz to
155Hz, for women between 165Hz to 255Hz, and for children in between 250Hz to 300Hz. The
highest fundamental a trained female singer is able to sing lies around 1300Hz. For females, f3
can range up to 4000Hz for stop consonants. Thus, the important frequency spectrum for speech
understanding ranges from 85Hz to 4000Hz. [RJ11]
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Figure 3.2: Schematic of the vocal tract, showing the physiological features that participate in the
speech formation.

3.4.2 Differences between speakers
Important for SID are features that are unique and reasonably constant over time. Speaker differ-
ences, that do not contribute to identification, are either attributes shared by large groups or ones
that can vary strongly over time.

What uniquely separates each and every speaker is their anatomical configuration, which de-
fines the formants and ranges of frequency and rhythmic modulation that can be produced. Some
speakers can also be uniquely described by a particular choice of words, speech melody or pronun-
ciation. These higher level features are not physically defined but are shaped by social context and
education. While these features contribute to the specific character of speech, they are possibly
shared by others and can also change over time. This makes that kind of high-level speech features
possibly ambiguous and unsuitable for identification, although they can still be used as secondary
cues, given that the specific peculiarity is rare in the set of recognizable speakers. The most reliable
features are still provided by the anatomic configuration of the speaker.

Not all speaker related features contribute to speaker identification: A prominent speech feature
that is strongly influenced by membership of a group is the pitch of voice, which varies between
men, women and children. Actively compensating these differences can decrease the recognition
error by 0.2% [TSH00]. Another influence is the language and the wording which imprint their
acoustical properties onto the speech. By leveraging the transcript of a recording, the error rate
could be decreased by 1.5% [AB13]. Emotional states can impact the pitch and the tempo of
speech. Targeting emotional variability in emotional speeches has lead to an error rate reduction
of 1.3% [CY13].

3.5 Speech related information
Since not all information contained in an audio recording is helpful for speaker identification, it is
important to define the required information before a feature extraction process can be established.
A feature is an abstracted representation of the original data in a lower dimensional space. Through
the projection, implicit information contained in the data is made explicit, and thus accessible for
further processing steps.

In recorded speech there are multiple levels of information, ranging from low-level information
like loudness to high-level information like mood of the speaker or dialect of the language that
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Figure 3.3: Feature pyramid for information contained in a speech recording, taken from [RCC+03].

is spoken. These features can be arranged in a pyramid as shown in Figure 3.3, where features
are arranged by abstraction. The upper layers use lower-layer features as a foundation to derive
their information. With each layer of feature, new domain specific knowledge is introduced that is
needed to extract the desired information from the data source.

The high-level features are mainly used in ASR. Speaker identification generally relies on
low-level spectral features (most prominently in the form of mel frequency cepstral coefficients
(MFCCs)), on which statistical models are trained. The reason is that spoken words can be suc-
cessively decomposed into levels of structure (like grammar or phonetization), so modeling these
information layers can help in improving the recognition. The information needed for SID on the
other does not follow a clear definition, so statistical methods are used directly on the low level
features without explicitely defines hierarchies of features.

The following list describes speech related features of different levels of abstraction:

Low level cues The raw recorded data is represented by a stream of samples. This representation
can already be used for silence detection (by thresholding the signal peaks) or speech detection
(analyzing the zero crossing rate) [BSS+97]. For SID, the recording is usually sampled at
8 kHz. Hirsch [HHD01] has experimentally shown that higher sampling rates do not increase
the recognition rate significantly.

Spectral By applying a Fourier transform on a small, windowed part of the recording a spectral
representation is generated. By weighting and averaging according to a perception model,
the human aural perception can be emulated as described in detail in chapter 3.6. Using
either the full spectrum or a derived representation like MFCCs, basic information about
the recording can be gathered: Silence detection can be done by thresholding the amount of
energy, either in total or weighted by frequency. Audio segmentation can be performed by
evaluating changes in the energy spectrum and placing a segment border when a difference
metric reaches a threshold. The BIC (see Chapter 3.1.1) is commonly used for this [ZH05].
By incorporating a speech model, which describes the statistical energy distribution and
change patterns of speech, it is possible to optimize the segmentation for speech detection
[LZTZ02].

Prosodic Prosody is concerned with acoustic properties of longer parts of speech. Prosodic fea-
tures can represent pitch or durations. Pitch refers to the frequency of the formants which
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are identified as local maxima in the energy spectrum. Energy can also be used for impulse
and rhythm detection. In combination, the length of a formant can be captured. Gender
detection can be done by classifying the first formants by their pitch [MB06].

Phonetic By introducing knowledge about phones, the acoustic building blocks of speech, it
becomes possible to identify phones in the the speech recording. When analyzing a large
amount of speech, this can be used for language detection by comparing the distribution of
phones against statistical language models. Often phones are treated as n-grams (an ordered
set of n instances) so the immediate context of a phone is captured. When introducing
speaker models for each phone, it becomes possible to identify the speaker [AKC+02].

Idiolectal The idiolect of a segment is everything that is specific to this segment and not shared
with others. One feature is the wording. To perform speech recognition, a language-
depending model has to exist which provides a mapping from phone n-grams to words. These
words can themselves be provided as n-grams to represent probabilities of word combinations.

Dialogic A dialogue consists of the multiple speakers talking in alteration. The change of speakers,
and the length of an utterance, are features that characterize the structure of a dialogue.
Having a model that provides n-grams of segment types, it may be possible to classify a
speech recording by type, e.g., dialog, stage discussion or talk show.

Semantic Semantics looks at the context of the speech. Text mining can be used to derive
meaning from the words spoken, so keywords can be found to summarize the contents of the
speech.

3.6 Human perception modeling
The first step in speech analysis is the extraction of low level features. Several feature models have
been devised specifically for speech, which all build upon the findings of psychoacoustics. The
subjective perception of acoustical stimuli has been thoroughly studied, and the human ability to
identify speakers and understand the content of speech, even in noisy environments, shows that
high quality SID and ASR are possible when using the human perception model.

Three findings from psychoacoustics are commonly utilized by speech features:

• The perception of pitch is not linear. Stevens at al. [SVN37] introduced the Mel scale (from
melody), defined as

m = 2595 · log10

(
1 + f

700

)
. (3.1)

The function maps the perceived distance of a frequency f to the 1000 Hz reference tone
from the Hertz scale onto the Mel scale. The mathematical definition is not standardized
and several definitions have been proposed [FM37, Fan68].

• Perceived differences in loudness are logarithmic. Loudness is given in dB, where 0 dB is
defined to be the perception threshold. Doubling the energy of a sound results in +3 dB in
loudness.

• Two frequencies become indistinguishable if their frequencies are very similar. The frequency
range around a reference note, in which this masking effect occurs, is called the critical band
and can be modeled by the auditory filter.

The extraction of low level features loosely corresponds to the transformation from sound pressure
to perceived stimulus. In this section, two different features are presented, which have been used
successfully for speaker identification: mel frequency cepstral coefficients (MFCCs) and perceptual
linear prediction (PLP). Both provide a compressed representation of a short frame of audio, by
projecting the samples in the frame to a fixed number of feature values. They do so by leveraging
different hearing and voicing properties. While MFCCs only consider the human hearing, PLP
explicitly targets the formants as important speech properties. Both features (and variations of
them) have been successfully used for SID [LVH+11, KAM+13].

Common processing steps, shared by both extraction processes, are the separation of the record-
ing into overlapping, equally sized frames in the range of 20 to 40 milliseconds. A window func-
tion, usually a Hamming window, is applied to suppress frequency distortions by the segmentation.
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Then, a discrete Fourier transform (DFT) is applied on each frame, turning the segment into a
spectrum.

To make the features more robust against slowly varying noise, it is common practice to normal-
ize the energy of each frame before generating the spectrum. Since the energy can be interesting
later on, for example in silence detection, the energy is explicitly added to the feature vector after
the feature values have been extracted.

To make time changes in the signal more accessible for further analysis steps, first and second
order derivative values are often computed, regardless of feature type used. [DM80]

While different low-level feature representations have been used for SID, MFCCs are generally
the norm and are used in the experiments of this thesis. PLP is explained for completeness and to
provide a better understanding of the possibilities at this processing stage.

3.6.1 Mel frequency cepstral coefficient
MFCCs are the most commonly used low level feature in speaker and speech analysis. They are
derived from psychoacoustics and model the human perception [MBE10]. The extraction process
is as follows:

1. Before applying the DFT on the frames, a preemphasis is applied to increase the energy at
higher frequencies. This models the increasing loudness perception for higher frequencies.
The decreasing sensitivity towards the upper end of the hearing range is disregarded since it
will not be considered in the following processing steps.

2. The frequency bands of the DFT are summed by a fixed number of bands using overlapping,
triangular windows. The windows are distributed according to the mel scale. The number
of bands can be freely chosen, 20 to 40 bands are common values. These bands correspond
to the critical bands of hearing.

3. Finally, a discrete cosine transformation (DCT) is performed on the reduced and warped
spectrum. By doing so, the signal is turned into a cepstrum (an anagram of spectrum,
highlighting the fact that the second transformation does not project back into the time
domain).

3.6.2 Perceptual linear prediction
Similar to MFCCs, PLP models the human perception when extracting the feature vector, but
it also considers the voicing. Linear prediction with autoregressive modeling is used to model
the most significant formants in the frame and represent the frame spectrum in terms of formant
frequency and intensity.

1. Like with MFCCs, the signal is segmented into frames and a DFT is performed.

2. Also similar to MFCCs, the spectrum is summed into bands, but the window function used
is not triangular but approximates of the auditory filter. The auditory filter is a band-pass
filter that describes the sensitivity of a section on the basilar membrane. Instead of using
the Mel scale for window spacing, the Bark scale is used:

B(x) = 6 · ln
(

x

1200π + ( x

1200π
2

+ 1)0.5
)

. (3.2)

Equal distance on the Bark scale corresponds to equal perceived pitch, whereas the Mel scale
accounts for perceived pitch differences.

3. The loudness is modeled by weighting the frequency band values according to the power law
of Stevens [Ste57].

4. Next, the formants are extracted by perceptual linear prediction. Linear prediction tries
to estimate the signal spectrum xmn of a frame n, containing m spectral values, as a linear
combination of previous frames. [Her90]

xmn =
p∑
i=0

ami · xmn−i (3.3)
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The factors am are the predictor coefficients and p is the order of the predictor (the number
of frames considered). am contains a weight for each frequency band. This is called an
all-pole filter of mth order. The coefficients are found by using the autocorrelation method
for spectral modeling: Instead of estimating the upcoming frame based on the last ones, the
current frame is „estimated“ based on itself. In other words, the filter used for modeling
the predicted frame, is adapted to the current frame only and thus gives a compressed
representation of it. The adaption is done using the autocorrelation matrix xnx

T
n to find

values for a by minimizing an error function, typically the least squares criterion. The filter
order p is chosen according to the filter properties of the vocal tract, so the filter is able to
to capture the most important formant frequencies that occur in speech.

5. Finally, cepstral features are computed by applying a DCT to the am.

3.7 Channel information
A speech recording does not only contain information about the speaker and the speech, but also
about the environment and the recording devices. These influences are called channel information
since they stem from the transmission channel which provides the recording. Initially, the term
was used to describe the influence of different microphones and transmission lines to the recorder,
telephone recordings being a notable example for carrying a strong influence. However, the meaning
of the term has been broadened to also encompass background signals like music or street noise.
Depending on context, the same information is referred to as session information, since it is specific
to the recording session and not the speaker [KBOD07]. Two types of channel information can
be distinguished: Filtering effects, that alter the speech signal in time or frequency domain, and
additive signals.

When performing SID, the channel information is unwanted since it alters the signal in a way
that is uncorrelated with the speaker identity and thus distracts the classifier. Recognizing the
same speaker from a microphone and a telephone recording becomes impossible without explicitly
accounting for the alteration of the recordings. Developing methods for separating the impact of
the speaker and the channel is the central challenge of current research in SID.
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Chapter 4

Algorithms

This chapter introduces the fundamental algorithms which are used in this thesis. Chapter 4.1
starts with introducing the established quality measures and describing the fundamentals of model
training. Thereafter, Chapter 4.2 describes the GMM model, and Chapter 4.3 introduces the
i-vector paradigm. After introducing the i-vectors workflow in Chapter 4.3.1, the channel normal-
ization methods and scoring functions evaluated in this thesis are explained in Chapters 4.4 and
4.5. Chapter 4.6 gives an overview of state of the art results that have been achieved in SID.
In Chapter 4.7 several toolkits which provide implementations of these algorithms are compared,
and Chapter 4.8 gives a detailed overview of ALIZE, the chosen toolkit for this thesis. Finally,
Chapter 4.9 describes iFinder, the baseline workflow which this thesis set out to improve.

4.1 Quality measure
The task of identification consists of associating some unknown data w with one of S classes. In
case of SID, it is classifying an utterance as belonging to one speaker. For each class a score
si|i = {1, . . . , S} is computed, reflecting the probability of the data belonging to that class. The
final classification decision uses these scores to assign the data to one of the class. When evaluating
the accuracy of a classification system, a ratio of erroneous classifications to total classifications
has to be computed. To do this, two sets of scores have to be available: the scores of the genuine
comparisons Ωgen (where the test data belongs to the tested class), and the scores of the impostors
Ωimp (where the input data does not belong to the tested class).

Ω = Ωgen∪Ωimp is the set of all occurring score values, with the smallest value Ω1 and the larges
value ΩS . The false acceptance rate (FAR), defined in Eq. 4.1, is the ratio of wrongly accepted
impostors to all impostors, given some acceptance threshold τ . The false reject rate (FRR), given
in Eq. 4.2, is the ratio of wrongly rejected genuine speakers to all genuine speakers, given the same
threshold τ . The threshold τ is required for the decisionmaking as a reference for acceptance or
rejection [SMA07].

FAR(τ) = FA(τ)
|Ωimp |

| FA(τ) =
{
s | s ∈ Ωimp, s > τ

}
(4.1)

FRR(τ) = FR(τ)
|Ωgen |

| FR(τ) = {s | s ∈ Ωgen, s < τ} (4.2)

Defining a quality measure for classification systems is not as straight forward as it may seem.
Depending on the application, different requirements for false acceptances and false rejects may
apply. For instance, when building an authentication system, false acceptances may be regarded
far worse compared to a system for metadata generation, where all types of errors are equally
bad. To reflect these varying requirements, different quality measures have been proposed: Tra-
ditionally, the ROC curve has been used for system quality description, but for speech analysis
it was superseded by the DET curve [MDK+97]. In both cases, a single valued quality measure,
the equal error rate (EER), can be derived, which is useful when comparing the performance of
different systems. The EER requires a value for τ which balances the FAR and FRR. While being
useful for comparing system performances, the actual application may well require a different value
for τ , or even a different performance metric altogether.

A ROC graph, shown on the right in Fig. 4.1, plots the true acceptance rate (TAR) against
the FAR. The TAR is defined as TAR(τ) = 1 − FAR(τ). Its aim is to show the tradeoff between
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Figure 4.1: Example of a ROC and DET diagram. The image is taken from http://biometrics.
derawi.com/wp-content/uploads/2011/01/det\_roc.png.

benefits and costs [Faw06]. The drawback of this representation is that only one of the two error
types is displayed.

The DET curve, shown on the left in Fig. 4.1, was introduced by Martin et al. [MDK+97] to
measure the quality of speech analysis applications. It plots both error rates against each other to
highlight the balance of both error types.

The EER is the value at which the false positive rate and false negative rate are equal. In order
to compute the EER, a threshold τ has to be found so that FAR(τ) = FRR(τ). The EER is easily
found in the DET curve diagram by intersecting the curve with the axes diagonal.

4.2 Gaussian mixture models
Gaussian mixture models are used for describing probability densities. A GMM is a weighted linear
combination of C unimodal Gaussian densities

p(x|θ) =
C∑
c=1

wcG[µc,Σc] (4.3)

where the weights w sum up to 1. Gc[µc,Σc] describes the c-th Gaussian distribution with mean
µc and D ×D covariance matrix Σc, where D is the dimensionality of x.

pc(x) = 1
(2π)D/2|Σc|1/2

exp
{
− 1

2(x− µc)>(Σc)−1(x− µc)
}

(4.4)

|Σc| is the determinant of the mixture covariance matrix Σc, and Σ−1
c is the inverse. For the

optimization approaches discussed in the next chapters, it is helpful to define θ to encompass all
parameters of all mixtures: θ = {w, µ,Σ}.

The full covariance matrices Σ can be approximated by diagonal matrices, which makes the
inversion more computationally efficient and have also shown to outperform full matrices for speaker
identification [RQD00].

When training the UBM, the parameter set θ is estimated jointly by iterative EM using training
data from different speakers. When training speaker models based on the UBM, the speaker model
is not trained from scratch but the UBM is adapted using MAP adaption. That way a high-
dimensional GMM can be adapted to a very small data set. Both procedures are described in
Chapters 4.2.2 and 4.2.3.

4.2.1 GMM-based speaker identification
The structure of a GMM-based SID workflow is shown in Fig. 4.2. Compared to the general
workflow description in Fig. 3.1, some new elements specific to the GMM approach are introduced.

As in the general model, the offline training phase starts with labeled training data. The first
steps perform extraction of low level features from the audio recordings and silence removal. Based
on the low level features the UBM is trained using EM, as explained below. After the UBM, the
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speaker models are created. Theses are also GMMs which are adapted from the UBM using as set
of training utterances from one speaker per model. Using these models, a set of scores in computed
for each training utterance. Using the scores and the original ground truth, provided in the form
of utterance speaker labels, a set of score normalization parameters are computed which account
for channel influences on the scoring.

Just as the offline phase, the online phase starts with extracting low level features and removing
silent parts. Using the UBM, a vector representation of the recording is computed. This is
compared to the speaker models by calculation a likelihood value for each model. These scores are
then normalized and the classification decision is made.

4.2.2 Expectation maximization
EM is an iterative algorithm that estimates a set of hidden, latent variables on a set of measured
data. It is believed that the observed data is correlated with the unobservable hidden variables.
In case of GMM-based SID, the parameters of the mixtures are learned from a set of training
utterances.

A speech recording x = (y, z) is viewed as consisting of an observable part y (the recorded
samples or extracted low level features) and an unobservable part z (the speaker characteristics).
The aim is to find a parameter set θ, so that the total probability density function (PDF) p(y, z|θ)
is most closely modeled, based only on the observable PDF p(y|θ). This is done by maximizing
the log likelihood estimate of the observed PDF:

argmax
θ

log p(y|θ) (4.5)

This means finding values for the set of parameters θ that are likely to generate the whole data
x, but have to be found by only using the visible part of the data y. The logarithm is applied on
the likelihood function because it guarantees that the function can be derived, which is needed in
order to find extrema. The logarithm ensures that the monotony of the function and the value
where the function reaches its maximum are not altered. The following definitions are used in the
algorithm description:

• θ is a set of parameters that describe the distribution of the data we are interested in. These
parameters are learned.

• x = (y, z) is the whole data, which consists of a visible part y and a hidden part z.

• p(x|θ) describes the probability of seeing some x under the condition that the parameters θ
are a true description of the whole data.

• p(x|y, θ) gives the probability of some x, given the true parameters θ and the observed data
y.

The observed data y, the parametric densities p(y|θ) and p(x|θ), as well as some description of
x must be provided. The challenge addressed by EM is to optimize the parameters θ without
knowing the data z. The EM algorithm uses two alternating steps, which are executed until the
algorithm converges: the estimation step and the maximization step.

Estimation step: In the first step, an estimate of the probability distribution of the whole data is
made, using some initial values for θit|it = 0. Given these initial parameters and the observed
data y, the conditional probability distribution of the whole data p(x|y, θit) is estimated. This
is an estimation of the actual probability distribution P(x|y, z) since the hidden data part z
is unknown. In the next step, the expected value E[p(x|θ)] will be maximized, so a function
has to be created that can be used in the maximization step and which uses the available
knowledge. This function is called the Q-function:

Q(θ|θit) = expected log p(x|θ) =
∫
X

log p(x|θ)p(x|y, θit)dx . (4.6)

In the Q-function, the integral is computed over the log-likelihood of all possible x. The
likelihood of x is weighted by the (guessed) probability of seeing exactly that x.
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Figure 4.3: Visualization of the MAP adaption. Only mixtures that are supported by training
data are adapted. [RQD00]

Maximization step: The second step tries to find a new θ which maximizes the Q-function:

θit+1 = argmax
θ

Q(θ|θit) . (4.7)

These new values are then given back to the estimation step for a new iteration. [CG10]

It is important to note that EM optimization is not guaranteed to find the global optimum
because it can get „stuck“ in a local optimum. In order to account for this, it is common to
perform multiple training runs with different initial values and use the best result.

4.2.3 Maximum a posteriori adaptation
Maximum a posteriori, also known as Bayesian learning, is a modification of the EM algorithm
which, in the expectation step described in Eq. 4.7, maximizes the posterior instead of the likeli-
hood:

θit+1 = argmax
θ

(
Q(θ|θit) + log p(θ)

)
. (4.8)

Thus, it is possible to introduce prior knowledge about the distribution of θ.
In the case of training speaker models, the computed values are not directly used but mixed

with those of the original UBM. For each mixture, a weighting factor is computed based on the
number of training data that are closest to it, as shown in Fig. 4.3. That way only those mixtures
are adapted that have support by the training data. Experiments show that adapting a general
model for speakers outperforms models trained from ground up using EM [Rey97].

4.3 I-vectors
For a long time, GMMs have been the standard modeling approach for SID, until Dehak et al.
[DKD+11] introduced i-vector modeling, which has replaced GMM modeling as the de facto stan-
dard in speech and speaker analysis.

An i-vector, a short term for identity vector, is a fixed size, low dimensional feature vector that
is extracted from the UBM space representation using joint factor analysis. Joint factor analysis
(JFA) is a statistical method for decomposing the original data into one or more independent sets
of latent factors, based on their variability. While JFA was initially used for channel normalization,
separating useful data from distracting information, the i-vector extraction is more of a prepro-
cessing step, in the sense that no channel influences are targeted but a general dimensionality
reduction is performed which retains both speaker and channel information.

After introducing the general i-vector workflow, JFA is described as a theoretical basis from
which the i-vector paradigm is derived.
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4.3.1 I-vector based speaker identification
The general workflow for i-vector based SID is similar to the GMM-based workflow shown in
Fig. 4.2. The two main differences to the GMM-based workflow are the extraction of i-vectors,
which are then used for scoring, and the performance of channel normalization on the i-vectors
before the scoring.

The offline phase starts with extracting low level features from the audio recordings and training
the UBM. The important difference to the GMM-based approach is the total variability (TV)
matrix, which projects from the GMM parameter space into the lower-dimensional TV space. Using
the TV matrix, i-vectors are extracted from the training utterances. These i-vectors, together with
the speaker ids, are then used to train one or more normalization matrices, which normalize the
i-vector distribution and remove channel influences. Generating the speaker models is different
from the GMM approach in that they don’t have to be trained, but can simply be created by
averaging over the i-vectors of utterances belonging to the required speaker. Scoring is performed
using some distance metric to compare the utterance i-vector with all the speaker model i-vectors.

The online phase starts with the same preprocessing steps as the offline phase, after which
the i-vector extraction is performed. Using the normalization matrices, the utterance i-vectors
are redistributed and scores are computed using the speaker models. Based on these scores a
classification decision is made.

4.3.2 Joint factor analysis (JFA)
Initially, JFA was introduced as a channel normalization method that tries to extract the speaker
dependent information s and the channel information c from the incoming supervector w, as stated
in Eq. 4.9. A supervector denotes a large vector x ∈ Rab which is formed by appending multiple
small vectors yi ∈ Ra|i = 1, . . . , b onto each other. In the case if i-vector SID, the utterance
supervector w ∈ RCF is formed by evaluating the C UBM mixtures on each dimension of the low
level vector F . s and c are assumed to be statistically independent.

w = s+ c (4.9)
s = µ+ V y +Dz (4.10)
c = Ux (4.11)
w = µ+ V y +Dz + Ux (4.12)

The speaker dependent information s, as described in Eq. 4.10, consists of the UBM mean
vector µ, the speaker subspace projection matrix V and the representation of the utterance in that
subspace y, and residual matrix D with vector z capturing all information that is not accounted
for otherwise.

µ ∈ RCF describes speech in general and captures the assumed mean value of all utterances
that are expected to be encountered. It corresponds to the mean value of the UBM. V ∈ RCF×Rs

is the speaker related projection matrix that maps from a lower dimensional speaker space with
Rs dimensions to the high dimensional input space. Its columns are referred to as eigenvoices.
The vector y ∈ RRs contains the hidden speaker factors and is treated as a normally distributed
random vector. D ∈ RCF×CF is a diagonal residual matrix, which accounts for speaker related
information that does not contribute to speaker identity, like the language or the actual words that
are spoken. This information is captured in the random vector z ∈ RCF . It is assumed that s is
normally distributed with mean µ and covariance matrix D2 + V V >.

The channel dependent information is described by Eq. 4.11. It consists of the channel subspace
matrix U ∈ RCF×Rc , which columns are referred to as eigenchannels, and the hidden channel
factors x ∈ RRc .

When substituting equations 4.10 and 4.11 into Eq. 4.9, the complete JFA model, Eq. 4.12, is
obtained. As defined in Chapter 4.2, Σc is a covariance matrix for the UBM mixture component
c. In JFA, these matrices are diagonal, and a super-covariance matrix Σ ∈ RCF×CF is defined,
whose diagonal is the concatenation of the UBM covariance matrices. This construct is used later
on. [KOD+08]

4.3.3 JFA model training
The matrices V , D and U must be trained using labeled data. Instead of training them jointly,
a decoupled procedure is used, in which one matrix is trained after another by treating the yet
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untrained matrices as zero. This has shown to produce higher quality models than using joint
estimation [KD04]. Two methods for training are used:
• Classical MAP estimation is used to train D.

• Eigenvoice MAP estimation is used to train the matrices V and U .
The matrices are trained in the following order:

1. First, the eigenvoice matrix V is trained using eigenvoice MAP estimation and assuming
D = 0 and U = 0. The eigenvoice matrix covers the speaker-related principal dimensions.
Assuming D = 0 and U = 0 means that we pretend that no channel influence is present and
the data contains only speaker-identifying information.

2. Train the eigenchannel matrix U , using V and assuming D = 0. This is done by modeling
all speaker related information that is till present in the data when the influence of V is
removed.

3. Train the residual matrix D using V and U . This captures everything that is not covered by
V or U .

The firsts step in training the V matrix is to compute a set of statics for each time frame t of
speaker σ, using the components c of the UBM. The following zero order and first order statistics
have to be computed:

Nc(σ) =
∑
t∈σ

γt(c) (4.13)

Fc(σ) =
∑
t∈σ

γt(c)Yt (4.14)

γt(c) is the posterior of mixture component c accounting for the feature vector Yt ∈ RF at time
frame t. Nc(σ) ∈ R gives the total posterior probability of mixture component c. Fc(σ) ∈ RF
computes a vector that consists of the sum of all time frames of feature vector Yt, weighted by the
posterior of mixture c at each t. The next step is to normalized the first order statistic with the
UBM mean value µc:

F̃cσ =
∑
t∈σ

γt(c)(Yt − µc) . (4.15)

In order to make these statistics usable for further computations, they have to be turned into a
matrix NN(σ) ∈ RCF×CF and a vector F̃F (σ) ∈ RCF :

NN(σ) =

N1(σ)I
. . .

NC(σ)I

 (4.16)

F̃F (σ) =

 F̃1(σ)
...

F̃C(σ)

 (4.17)

I ∈ RF×F is the F-dimensional identity matrix. Using these matrices, an estimate for the hidden
speaker factors y(σ) can be computed. y(σ) is assumed to be normally distributed, with mean and
covariance defined as

y(σ) = G[l−1
V (σ)V >Σ−1F̃F (σ), l−1

V (σ)] (4.18)
lV (σ) = I + V >Σ−1NN(σ)V . (4.19)

l−1
V (σ) ∈ RRs×Rs is the covariance of the posterior distribution y(σ). For more details on the
derivation of these representations see [KBD05].

To actually use these formula to calculate V , a random initialization is performed for V . Since V
is not dependent on any specific speaker σ, speaker independent statistics have to be reformulated
to become independent of σ:

Ac =
∑
σ

Nc(σ)l−1
V (σ) (4.20)

C =
∑
σ

F̃ (σ)
(
l−1
V (σ)V >Σ−1F̃ (σ)

)> (4.21)
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Ac ∈ RRs×Rs is the covariance of mixture component c over all speakers, weighted by the total
posterior of c. C ∈ RCF×Rs is the posterior mean of y(σ), weighed by the normalized posteriors
for all speakers. The matrix V is then composed as

V =

V1
...
VC

 =

A
−1
1 C1
...

A−1
C CC

 . (4.22)

Using this formulation, V can be computed using an initial approximation of V . This procedure
is done iteratively, using the new values for V as an initialization of V for the next iteration.

The eigenchannel matrix U is trained in a similar way, also using the zero order and first
order statistics computed over the utterances of each speaker, as given in Eq. 4.13 and 4.14. The
difference to the training of V is that the first order statistics (giving the posterior values of a
speaker utterance) are normalized with the expectation of the posterior of y, instead of using
the UBM mean µc. This removes the speaker characteristics, as captured in V , and the channel
influences remain.

FUc (σ) =
∑
t∈σ

γt(c)(Yt − E[yc(σ)]) . (4.23)

The dimensionality of the posterior covariance in Eq. 4.19 becomes Rc × Rc. The rest of the
procedure is identical [KBOD05].

For training the residual matrix D, the first order statistics are altered in a similar way. For
normalization, the s is computed according similar to Eq. 4.10, but omitting the residual:

s′ = µ+ V y . (4.24)

For computing s′ µ, V and the mean speaker distribution E[y(σ)] from Eq. 4.18 and used. This
vector is then used for normalization in the first order statistics [KOD+08]:

FDc (σ) =
∑
t∈σ

γt(c)(Yt − s) . (4.25)

The dimensionality of the posterior covariance in Eq. 4.19 becomes CF × CF since D captures
properties of the whole feature space.

4.3.4 Total variability space
The i-vector approach simplifies the JFA model, given in Eq. 4.12, to model only the speaker
related information:

w = µ+ Ty . (4.26)
The total variability matrix T ∈ RCF×div is a non-quadratic matrix of low rank which projects
a i-vector y ∈ Rdiv into the original feature space. The computation of T is the same as the
computation of V in JFA, except that the zero order and first order statistics in Eq. 4.13 and
4.14 are not computed over utterances from the same speaker, but using utterances from different
speakers, thus turning the speaker specific statistics into general speech statistics. This means that
the i-vectors still contain all channel influences, and additional channel normalization has to be
performed on the i-vectors. Methods for doing so are presented in Chapter 4.4.

In order to compute the i-vector yu for a given utterance u, the statistics are computed similar
to Eq. 4.13 and 4.14:

Nc =
∑
t

γt(c) (4.27)

Fc =
∑
t

γt(c)Yt . (4.28)

Using the TV matrix T and the inverted covariance matrix Σ−1, the i-vector yu is computed as

yu =
(
I + T>Σ−1N(u)T

)−1
T>Σ−1F̃u (4.29)

where I ∈ Rdiv×div is the identity matrix [DKD+11].
In thei-vector approach, the speaker model is also represented by an i-vector. There are two

ways to generate a single i-vector from an array of utterances:
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• Appending the audio recordings and extracting one i-vector from the combined recording.

• Generate one i-vector per utterance and compute a mean i-vector afterwards.

4.4 I-vector Normalization
I-vector normalization is performed before the speaker scoring. This step has two purposes: nor-
malizing the distribution of the data in the total variability space so that statistical assumptions of
the following scoring function are met, and removing unwanted channel information. In case of co-
sine scoring, the data is assumed to be distributed normally, according to G[0, I]. This assumption
is usually not fulfilled by real world data and has to be established explicitly.

Channel normalization refers to the reduction of information that is unrelated to the speaker
identity. This can either be done by redistributing the i-vectors in the total variability space, or by
projecting them into a lower dimensional subspace. These projections are trained using either the
global covariance Σ ∈ Rdiv×div , the within-class covariance Σw ∈ Rdiv×div and/or the between-class
covariance Σb ∈ Rdiv×div , which are defined as

Σw =
S∑
σ=1

Ψσ

Ψ (ȳσ − ȳ)(ȳσ − ȳ)> (4.30)

Σb = 1
Ψ

S∑
σ=1

Ψ∑
u=1

(yu,σ − ȳσ)(yu,σ − ȳσ)> (4.31)

Σ = Σw + Σb . (4.32)

Ψ is the number of all test utterances, while Ψσ is the number of utterances associated with
speaker σ. ȳσ ∈ Rdiv is the mean vector of all utterances from speaker σ, while ȳ ∈ Rdiv is the
mean vector of speech in general. yu,σ is the i-vector of utterance u, which contains speech by
speaker σ [BLM+12].

In order to establish normal distribution, the mean value has to be subtracted from the data
and a projection has to be found which turns the total covariance matrix Σ into the identity matrix.
In order to increase the influence of speaker differences on the scoring function the between-class
covariance has to be maximized. To reduce the influence of channel information, the withing-
class covariance has to be minimized. The following chapters describe some of the most successful
algorithms that are used in SID.

4.4.1 Within-class covariance normalization (WCCN)
WCCN was introduced by Hatch et al. [HKS06] as a normalization method for support vector
machine-based recognition. The idea behind WCCN is to construct upper bounds for the FAR and
FRR (as defined in Chapter 4.1) and then find a linear projection that minimizes these bounds.
This projection is the inverse within-class covariance matrix Σ−1

w , hence the name of this method
[DKD+11, HKS06].

To define the normalization projection ϕ(w), the within-class covariance must be decomposed
using Cholesky decomposition:

ϕ(w) = B>w (4.33)
Σ−1
w = BB> . (4.34)

4.4.2 Eigen factor radial (EFR) normalization
EFR normalization was proposed by Bousquet et al. [BMB11, BLM+12] as a preparation for cosine
scoring. Its purpose is to solve two requirements: providing mean and covariance normalization,
and remove the channel influence which is believed to be a nonlinear dilatation („radial“ effect).
This is to be done without dimensionality reduction. The first requirement is dealt with by
calculating the mean and covariance of the i-vectors and then subtracting the mean and use the
inverse covariance matrix as a normalization projection. By using the decomposition from Eq. 4.34,
the i-vector y can be transformed into y′ by

y′ = B>(y − ȳ) . (4.35)
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d. Length normalization

Figure 4.5: 2D visualization of the EFR normalization algorithm, taken from [BMB11].

The second goal is to remove channel influences. It is believed that the channel influences do
effect mostly the length of the vectors. The countermeasure to this is length normalization. By
dividing by the vector magnitude, the transformation function is obtained:

y′ = B>(y − ȳ)
‖B>(y − ȳ)‖ . (4.36)

4.4.3 Linear discriminant analysis (LDA)
LDA is a dimensionality reduction technique that projects high dimensional vectors into a subspace
that minimizes the within-class covariance and maximizes the between-class covariance, as defined
in Eq. 4.30 and 4.31. The directions v of this projection are found by maximizing the Rayleigh
coefficient

J(v) = v>Σbv
v>Σwv

. (4.37)

For a dlda-dimensional subspace, the dlda directions with the highest Rayleigh quotient are used.
Fig. 4.6 gives a 2D example for dlda = 1.

4.4.4 Spherical normalization (SN)
SN was developed by Bousquet et al. [BLM+12] as an extension of EFR. Whereas EFR normal-
ization is intended to be used with cosine scoring, spherical normalization (SN) adapts the same
strategy for LDA or PLDA (described below). Both methods assume that the speaker related
variability is low dimensional, so it can be projected into a subspace where noise influences are
minimal. The goal of SN is to redistribute the i-vectors on the unit sphere surface so that the data
becomes more easy to project into the speaker subspace. This is done by increasing the Rayleigh
coefficient, given in Eq. 4.37. It was found that, because all i-vectors are situated on the unit
sphere, the classical way of computing the within-class covariance Σw did not represent the actual
data distribution very well. This is visualized in Fig. 4.7: The covariance of each speaker cluster
is perpendicular to the unit circle so the within-class covariance Σw is not able to cover these
covariances equally well. To resolve this problem, a spherical within-class covariance is introduced.
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This is done by modifying the EFR algorithm in Eq. 4.36: EFR normalization makes Σ tending
towards I

div
(the identity matrix, divided by the number i-vector dimensions), which is spherical.

To make the covariance Σw spherical, the same transformation can be used, only replacing the
decomposed total covariance Σ→ PDP> with the within-class covariance Σw:

y′ = Σ−1/2
w (y − ȳ)

‖Σ−1/2
w (y − ȳ)‖

. (4.38)

4.4.5 Probabilistic linear discriminant analysis (PLDA)
Similar to LDA, PLDA uses the within-class covariance and between-class covariance, but extends
the data model by introducing Gaussian distributions. An input feature vector w ∈ Rdiv , containing
speech from speaker σ, is assumed to be decomposable into a speaker dependent component µ+V yσ,
a channel component Ux and a residual noise component ε:

wσ = µ+ V yσ + Ux+ ε . (4.39)

While yσ ∈ Rdvoice only depends on the speaker, x ∈ Rdchannel and ε ∈ Rdiv are different for
each recording. ε is defined to be Gaussian with diagonal covariance matrix Σ. V ∈ Rdiv×dvoice

and U ∈ Rdiv×dchannel are of lower rank than the utterance. Usually diagonal matrices are used,
when full covariance matrices are employed the method is referred to as two covariance modeling.
Gaussian distributions are assigned to wσ, yσ and x, which are defined as follows:

Pr(wσ|yσ, x, θ) = Gw[ȳ + V yσ + Uxσt,Σ] (4.40)
Pr(yσ) = Gy[0, I] (4.41)
Pr(x) = Gx[0, I] . (4.42)

Eq. 4.40 describes a conditional probability (which is the distribution of the input vectors w) as
dependent on the speaker vector yσ, the channel vector x and the parameter set θ = {ȳ, V, U,Σ}.
yσ and x are assumed to be normally distributed. θ has to be trained on a data set using the
EM algorithm described in Chapter 4.2.2. The PLDA scoring is described in Chapter 4.5.2 [PE07,
BLM+12].

4.5 I-vector Scoring
Scoring functions provides a similarity score between an utterance i-vector and a speaker model
(which is also an i-vector). Based on these similarity scores a classification decision is then made.
Different scoring functions have been proposed, which can be distinguished into distance-based
and likelihood-based functions. The scoring functions used in this work are the cosine distance
function and the likelihood-based PLDA scoring.

4.5.1 Cosine scoring
Cosine similarity returns the cosine of the angle between two vectors as a measure of similarity.
The return values are bound to [−1, 1]. It is computed by the dot product, which makes it a very
fast scoring function:

score(w1, w2) = w1w2

‖w1‖ ‖w2‖
. (4.43)

4.5.2 PLDA scoring
For computing a similarity score of two i-vectors w1, w2, the likelihood of w1 and w2 containing
speech by the same speaker has to be found. To do this, two hypotheses are introduced: Hsame,
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stating that both vectors share the same speaker, and Hdiff, stating that the speakers are different.

score(w1, w2) = log Pr(w1, w2|Hsame)
Pr(w1, w2|Hdiff) (4.44)

= log Pr(w1, w2|Hsame)
Pr(w1|Hdiff)Pr(w2|Hdiff) (4.45)

= log G
[[
w′1
w′2

]
,

[
Σ + V V > V V >

V V > Σ + V V >

]]
− log G

[
w′1,Σ + V V >

]
− log G

[
w′2,Σ + V V >

]
(4.46)

=
[
w′
>
1 w′

>
2

] [Σ + V V > V V >

V V > Σ + V V >

]−1 [
w′1 w′2

]
− w′>1

[
Σ + V V >

]−1
w′1

− w′>2
[
Σ + V V >

]−1
w′2 + C (4.47)

Eq. 4.44 gives the relation of these two probabilities. The probability in the denominator can be
separated, as stated in Eq. 4.45, since w1 and w2 are assumed to not share the same speaker factors
y. Following [RAHK14, PE07], Eq. 4.46 formulates the probabilities as Gaussian distributions,
where w′ = w− w̄ denotes the normalized input vector. The actual score computation is described
in Eq. 4.47, where all constant terms are incorporated in C, which and can then be omitted.

4.5.3 Classification decision
Based on the similarity scores Ω = {s1, . . . , sS} for each of the S speaker models, the final classifi-
cation decision for one utterance is made. Depending on the application, different decision schemes
can be used. A general distinction has to be made between open-set and closed-set identification:
in the first case, every utterance will be assigned to one of the classes f(s1, . . . , sS)→ {1, . . . , S},
while open-set identification has the option to declare the input as unknown f(s1, . . . , sS) →
{1, . . . , S,O}. In closed-set identification the only meaningful option is to assign the speaker with
the highest score:

f(s1, . . . , sS) = i | ΩS = si . (4.48)
ΩS denotes the S’th order statistics, which, in case of a set containing S values, is the largest value.
In open-set identification it is possible to classify an utterance as unknown, which means it is not
sufficient to find the speaker with the highest score, but the classifier has to be confident enough
to assign that speaker. This is represented by a confidence function p:

f(s1, . . . , sS) =
{
i | ΩS = si p(s1, . . . , sS) > 0
O otherwise

. (4.49)

Every closed-set identifier can be transformed into an open-set identifier by introducing a function
p and introducing the Unknown output label. It has shown to be helpful to introduce a reference
score sO, which is generated using an average-speaker model [RAHK14]. This model is generated
by averaging over all speaker models. The classification function now looks like this:

f(s1, . . . , sS , sO) =
{
i | ΩS = si p(s1, . . . , sS , sO) > 0
O otherwise

. (4.50)

The idea is to compare the highest score to the average score and accept the highest score only if
it is sufficiently higher than the average. The function p can be defined as follows:

p(s1, . . . , sS) = ΩS − sOα (4.51)

The difference is calculated between the highest score and the weighted average score sO. The
weighting factor α is a tuning dial to influence how optimistic the system is in assigning a known
speaker to an utterance. This is especially relevant in verification systems.

4.6 State of the art results
In this brief chapter an overview is given over the current state of text-independent speaker iden-
tification research.
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The state of the art for modern speaker identification is „widely dominated“ [GRM14] by the use
of i-vectors in combination with either PLDA as normalization and scoring function [KDS+14], or
the cosine distance scoring function combined with WCCN [Deh09, FC14]. Dehak et al. [DKD+11]
introduced the i-vector approach and compared it against support vector machines for speaker
classification. By comparing LDA, WCCN and nuisance attribute projection as normalization
steps before performing cosine distance scoring, LDA in combination with WCCN were found to
produce the lowest EER of 14.44% on the NIST SRE 2008 male 10sec trial. They used a UBM
with 2048 mixtures, 600 dimensions for the i-vectors and 250 dimensions for LDA. Bousquet et
al [BMB11] improved the workflow of Dehak by introducing EFR and radial NAP normalization.
Evaluating the NIST SRE 2008 short2 male trial with a UBM size 512 and i-vector size 400 and
Mahalanobis scoring, an EER of 5.24%. Kanagasundaram et al. [KDS+14] investigated different
normalization techniques for i-vectors. They proposed an extension of LDA called weighted LDA
by introducing class-dependent weights for compensation the influence of different class distances,
and an alternative to LDA called weighted maximum margin criterion (WMMC) which uses weight
to balance the importance of within-class covariance and between-class covariance compensation.
For scoring they used Gaussian PLDA (GPLDA). Based on the NIST SRE 2008 short2 trial they
achieved an EER of 3.61%.

Working on recordings of TV shows, Fredouille and Charlet [FC14] applied i-vector based
SID to the french television corpus REPERE. They evaluated PLDA, EFR, SN and WCCN for
normalization and PLDA and cosine distance as scoring functions. The Corpus consists of 571
speakers 47 hours of recordings. They use 512 mixtures in the UBM, 200 dimensions for the i-
vectors and, for PLDA¸ scoring, rank 200 for channels and 100 for speakers. PLDA was found to
be worse than all other combinations, with the best EER of 2.5% achieved with WCCN and cosine
scoring. Glembek at al. [GMM+14] apply WCCN and LDA normalization, combined with PLDA
scoring, to the DARPA RATS task. The task focuses on SID under unknown channel conditions.
It contains 2 hours of data, 1000 speakers and 8 different channel types. By using PLP for low
level features, 2048 UBM mixtures, 400 i-vector dimensions, 200 LDA dimensions and full rank
PLDA channels, an EER of 6.26% was achieved. Garcia and McCree [GRM14] focus on adapting
a SID workflow for domain specific use with only a small amount of training data. PLDA is used
for normalization and scoring. By using 2048 UBM mixtures, 600 i-vector dimensions and 400
dimensions for PLDA, an EER of 2.32% was achieved on the Switchboard corpus. The NIST SRE
04, 05, 06, and 08 corpora were used for initial training.

While it is unclear if cosine scoring (with optimized normalization like WCCN) is superior to
PLDA or not, all authors highlight the criticality of within-class covariance normalization and the
importance of representative data for session normalization training.

4.7 Toolkit comparison
Several toolkits have been developed that provide algorithms and data structures for SID, using
different programming languages, licenses and supporting different approaches. This sections in-
troduces three promising toolkits that have been considered for this thesis and highlights their
strengths and drawbacks in respect to the requirements of the News-Stream 3.0 project. The
requirements a toolkit has to meet are:

• Offering a license that permits commercial usage.

• Providing state of the are algorithms like i-vectors and PLDA.

• Be written in either C or C++ to be integrable into the News-Stream 3.0 pipeline.

• Still being maintained.

Several widely used toolkits like SPRO 1 or HTK 2 are excluded since they focus on ASR and
have to be modified to perform SID. Nonetheless do they deserve a mention since they provide low
level feature extraction which can be used in conjunction with the SID toolkits. In case of ALIZE
it is even necessary since ALIZE does not offer low level feature extraction natively.

1http://www.irisa.fr/metiss/guig/spro/
2http://htk.eng.cam.ac.uk/
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Name License Language Modeling Normalization
ALIZE LGPL C++ GMM, IV, SVM EFR, SphN., LDA, WCCN
Kaldi Apache 2.0 C++ GMM, IV, neural n. LDA
LIUM GNU Java GMM, IV EFR

Table 4.1: Feature matrix of SID toolkits

4.7.1 ALIZE
ALIZE is an open source platform for speaker recognition that is developed by the University of
Avignon. It is written in C++, licensed under LGPL and has been tested on Linux, Mac OS and
Windows. It is distributed through a SVN repository3, with the latest commit dating back to
2014. No precompiled versions are available.

ALIZE is specialized in speaker identification and provides GMM, SVM and i-vector modeling
for speaker representation. For the i-vector approach, EFR, spherical normalization, LDA and
WCCN are implemented for channel normalization. The scoring functions offered by the toolkit
include mahalanobis distance, cosine scoring and PLDA. ALIZE does not provide low level feature
extraction, so an external tool must be used for that. [LBF+13]

4.7.2 KALDI
Kaldi is an open source toolkit for speech and speaker recognition that is maintained primarily
by Daniel Povey at Johns Hopkins University, Baltimore. The name references a mythological
Ethiopian goatherder who is said to have discovered the coffee plant. It is written in C/C++
and licensed under Apache v2.0. It is tested under Unix-like systems and Windows. The project
is distributed through a GitHub repository4, which is actively maintained and extended. No
precompiled versions are available.

The design goals are the usage of a finite-state transducer framework, support for fast linear
algebra libraries like LAPACK and having a non-restrictive license. Building upon the OpenFst
library, the code is highly modularized and flexible.

Low level feature extraction supports both MFCC and PLP. For modeling, GMMs, i-vectors and
neural networks are supported. For normalization, low level mean and covariance normalization is
provided as well as two versions of LDA for high level features. [PGB+11]

4.7.3 LIUM
The LIUM diarization toolkit is named after the Laboratoire d’Informatique de l’Université du
Maine, where it is developed. It is written in Java, published under the GNU license and distributed
as a downloadable jar file. Version 2, the latest release, was created in 2013.

LIUM was created for speaker diarization, so it includes audio clustering, speech detection and
low level MFCC extraction. Speaker models can be created using either GMMs or i-vectors. EFR
is offered for normalization and mahalanobis distance is used for i-vector comparison. [RDG+13]

4.7.4 Comparison
When comparing the three toolkits, as done in Fig. 4.1, LIUM is first to be discarded since it is not
written in a C-like language and does not allow commercial application. Both Kaldi and ALIZE
fulfill the requirements, but since Kaldi is a general speech analysis tool and ALIZE is specialized
on SID, ALIZE offers more options for normalization and scoring, like PLDA, and was thus chosen
for training and evaluation.

4.8 The ALIZE toolkit
ALIZE is a toolkit that aims for providing baseline implementations of successful algorithms for
SID, but by using different low level features it can be used for any classification task. Being a
toolkit means that the project provides building blocks which the user has to chain into a workflow.
This ensures a high degree of freedom in the application. The ALIZE toolkit actually consists of

3svn://alize.univ-avignon.fr/svn/ALIZE
4https://github.com/kaldi-asr
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Figure 4.8: The general structure of the ALIZE toolkit, taken from [LBF+13].

two projects which build upon another: the core library which is called ALIZE, and the executables
which are provided in the LIA_RAL package. The ALIZE core library contains the data structures
and algorithms which are used by the executables.

These executables are grouped into steps, which are shown in Fig. 4.8. It is important to note
that the low level feature extraction and the final decisionmaking are not part of the scope that
ALIZE covers, so this has to be done by other tools. Each step has different executables for the
three modeling approaches that are supported: GMM-based modeling, SVM-based modeling and
i-vector based modeling. For each approach, different algorithms are provided. This chapter will
only cover the i-vector approach since the other approaches were not used in this work.

The executables are command line driven and can be configured either by command line argu-
ments or through a configuration file. All data is stored in files, so running a workflow requires that
potentially large files (up to 4 GB) are repeatedly read and written to disk. When the prototypical
workflow established here is turned into a production workflow, it is advisable to merge the code
into one executable so no unnecessary file operations are executed.

The following list describes the executables of the ALIZE toolkit, grouped by processing step:

Feature extraction: As already stated, no feature extraction is provided by ALIZE itself, but
file format support is provided for the SPRO5 and HTK6 generated feature files. A third
option is using raw floating point data blobs for general features vectors. In that case, the
data definition has to be provided through the configuration file.

Frontend: The frontend processing provides three functions: FeatureNormalization, Ener-
gyDetection and LabelFusion. Feature normalization performs mean removal on the
feature vectors. This can be done separately for each dimension which is helpful for silence
removal. In that case, only the energy (or log energy) is normalized and then used by the
energy detector to mark segments as silent. The energy detector creates a label file for each
feature file which contains segments labeled as speech or non-speech. Label fusion can be
used to smoothen the segment boundaries. This step is the same for all approaches.

Background modeling: Background modeling consists of training the UBM and the TV matrix.
TrainWorld uses EM to train a GMM on a training data set (see Chapter 4.2.2 and 4.2),
and TotalVariability uses JFA to train the total variability matrix (see Chapter 4.3.3).

Enrollment: The term enrollment is more intuitive in the GMM paradigm than in i-vector based
classification. It refers to the speaker model training, which, in the GMM paradigm, is
done by adapting the UBM using utterances from one speaker. Thus, these utterances
are „rolled into“ the model. In the i-vector approach, the model is just an i-vector, which is
extracted using IvExtractor. Neither utterance fusion nor i-vector averaging, as described
in Chapter 4.3.4, are offered by ALIZE, but both are simple to implement. Training the
normalization matrices can be part of the enrollment step. ALIZE allows for offline and
online normalization training. This applies to all implemented normalization algorithms:
EFR, spherical normalization, LDA, WCCN and PLDA (see Chapter 4.4 for descriptions).
All normalization algorithms are provided by the IvNorm executable.

Pattern matching: This is the online scoring process. The IvTest executable processes a trial
file, which defines pairs of i-vector files to compare. IvTest can be configured to use differ-
ent scoring methods, like cosine distance, Mahalanobis distance, two-covariance scoring and

5https://gforge.inria.fr/projects/spro
6http://htk.eng.cam.ac.uk/
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PLDA (see Chapter 4.4.5). It also provides the possibility to train and run any of the nor-
malization methods online. The results are written into an ASCII file containing the i-vector
names and the floating point score for each test.

Score normalization: Score normalization is used in GMM-based classification as a means of
bias compensation. In the i-vector approach, this is dealt with in the normalization step
before scoring.

Decisionmaking: The decisionmaking is not provided by ALIZE and must be tailored to the
application at hand. A common decision making process is described in Chapter 4.5.3.

4.9 IFinder
IFinder is a software development kit for speech analysis, developed at Fraunhofer IAIS. It is written
in C++ and can be used either as command line tool or through a soap webservice interface. Among
others, the SDK contains modules for MFCC extraction, audio segmentation, ASR and SID.

IFinder internally uses KALDI for MFCC extraction. The exact MFCC parameters are given
in Chapter 5.2. Audio segmentation is performed for finding homogenous segments of speech. The
BIC criterion segmentation, as described in Chapter 3.1.1, is used. The implementation is based
on [TG99, CWF10]. ASR is done using i-vector based recognition provided by KALDI.

The current SID implementation is based on [RQD00, RR+95] and uses the classic GMM-UBM
approach. The UBM is trained using EM, the speaker models are then adapted using MAP. The
training data set for the UBM consists of 14 hours of news broadcasts and the UBM was trained
with 1024 mixtures. The speaker models are adapted using 2 minutes of speaker from each speaker.

The evaluation trial used in the experiments was run on the iFinder system and produced an
EER of 8.05% and took 18.15 sec. on average to analyze a 2 minutes test file.
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Chapter 5

Experiments

This chapter describes the process of developing the optimized SID workflow for the Parliament
corpus and discusses the results.

First, Chapter 5.1 introduces the data sets that are used to train, develop and test the workflow.
Then, Chapter 5.2 presents the development strategy and starting conditions of the workflow
optimization. Optimization goal is the minimization of the EER for the parliament data set. In
Chapter 5.2.1 and 5.2.2, the most influential parameters for UBM and TV matrix training are
explored. Then, Chapter 5.2.3 and 5.2.4 evaluate the normalization options offered for cosine
and PLDA scoring. This is done separately for each scoring function, since cosine scoring itself
is not parameterizable while PLDA offers parameters that strongly affect its performance. Also,
ALIZE offers WCCN normalization only for cosine scoring. For both scoring functions a complete
workflow is developed, so that the best workflow can be selected in the final evaluation. Chapter 5.3
looks at the runtime behavior of both workflows. The decision on the final workflow is presented
in chapter 5.4. In Chapter 5.6, the final workflow is compared to the baseline implementation
from the iFinder SDK. Chapter 5.7 discusses the findings and provides an outlook on future work.
Finally, a scheme for providing speaker set extendability is proposed in Chapter 5.8. The EER
values and DET curves used for evaluation are generated using DETware, the NIST evaluation
tool1.

5.1 Data Sources
The quality of the models trained for general speech and speakers, as well as the normalization
and dimensionality reduction matrices, are heavily dependent on the characteristics of the training
data. It is therefore important to verify that the data sets are balanced regarding the trained
characteristics, and that the range of expected input during runtime is well reflected in the training
set.

A corpus contains a possibly large number of manually labeled data. In case of SID, the labels
contain at least the id of the speakers and their gender, but in case of the NIST SRE corpora, which
are described below, more information like recording method, language and speaker nationality
are provided. In order to gain comparability among methods, it is common to provide data set
definitions and trials. Typical data set definitions are for training data, test data and evaluation
data. The training set is used only for offline training and the test set is used in online mode when
running the trials. In case of a system comparison, as it is done in this thesis, it is important to
have a third set for final evaluation. This is a measure against overfitting on the evaluation set,
just as the evaluation set is required to prevent overfitting on the training set.

This thesis uses two corpora: the NIST speech recognition evaluation 2008 and the German
Parliament corpus. The following sections describe their properties and motivate their usage.

5.1.1 NIST speech recognition evaluation
The speech recognition evaluation corpus was developed by the Multimodal Information Group of
the Linguistic Data Consortium (LDC) and the National Institute of Standards and Technology.
Although it is not the only speech analysis related corpus released by the LDC, it is the de facto
standard data set in ASR and SID. An updated version of the SRE corpus is released yearly, so a

1http://www.itl.nist.gov/iad/mig/tools/DETware_v2.1.targz.htm
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unique LDC catalog number is given to each data set in order to clearly distinguish the corpora.
This thesis uses the SRE 2008 training data sets LDC2011S05 and LDC2011S07. Also part of the
SRE 2008 corpus are a test set and additional evaluation data, which were not utilized. In the
experiments, the term NIST SRE 2008 will refer only to the mentioned training sets.

The whole SRE 2008 corpus contains 565 hours of telephone speech and 75 hours of interviews,
using high quality microphones. 640 hours of telephone speech are multilingual, all other speech
is in English.

The training set is separated into several conditions:

10-sec contains 10 seconds long recordings of stereo telephone conversations, with each speaker
on one channel.

short2 contains either 5 minutes of stereo telephone conversation, one channel for each speaker,
or 2 minutes of mono interview recordings.

3conv contains stereo telephone recordings that are composed of three different conversations.
Each conversation contains the target speaker and a different conversational partner.

8conv is the same as 3conv, but contains eight different telephone conversations.

long contains eight minutes mono recordings of one speaker only.

3summed is similar to 3conv, but instead of featuring channel separation between the speakers,
all information is merged into one channel.

For each utterance, a machine generated transcript is provided. For multispeaker recordings, all
speaker identities are provided and the main speaker is marked. [Gro08]

The test set is separated into fever, but similar conditions: 10-sec, short3, long and 3summed.
The definitions are the same as in the training conditions. For 13 possible combinations of training
and test conditions, a separate trial is provided. Each trial consists of roughly 2000 speakers to
identify and about 100 000 tests. All trials have an equal proportion of male and female speakers.
The data is provided as 8-bit files, using the uncompressed sphere format. A tool for reading the
sphere format is provided2.

5.1.2 Speakers in the German parliament
The German Parliament corpus was assembled at Fraunhofer IAIS, based on publicly available
recordings of speeches given in the German parliament (Bundestag). It is an internal training
and benchmarking corpus that represents German planned speech, recorded with high quality
equipment.

It consists of 235 speakers, 163 male and 75 female. While this is imbalanced, it reflects the
gender distribution in the parliament. For each speaker there are 1 to 6 utterances of 2 minutes
length. They are stored as 16 bit mono wav files. Through varying number of utterances per
speaker a gender balance in the recordings is provided.

The corpus is divided into three disjoint data sets: training, development and testing. The
training set consists of 1176 utterances, which corresponds to 39.2 hours of speech. The develop-
ment set consists of 993 utterances, and the test set contains 413 utterances.

5.1.3 Usage in this work
Both the NIST SRE corpus and the Parliament corpus are used in the experiments. The training
of the UBM and the TV matrix is done using the training sets of both corpora. One reason is
that the NIST corpus provides a greater variety of languages and channel conditions, which makes
the model more general. Although a data-specific model would be more appropriate in this data
specific use case, it was explicitly desired to have more general UBM and TV models in order to
be able to reuse the models in different projects and contexts. Another reason is that training a
large GMM requires a lot of training data, which is often a problem in domain specific applications
where not enough training data is available. The impact of different training data on the error
rate is explored in Chapter 5.2.1.

To be able to compare MFCCs, and subsequently i-vectors, it is very important that all data
shares the same bit rate and sampling rate. Although some MFCC extraction tools like SPRO

2ftp://jaguar.ncsl.nist.gov/pub/sphere-2.7-20120312-1513.tar.bz2
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provide a bit rate parameter, it has proved to be necessary to perform bit rate conversion before
MFCC extraction. Therefore, all utterances from the Parliament corpus were converted to 8 bit.

Besides the UBM and TV matrix training, all training and evaluation was done using the
Parliament corpus.

5.2 Classification quality optimization
The i-vector SID workflow, as described in Chapter 4.3.1, consist of several steps that build upon
each other to classify the speaker of an incoming utterance. The quality of the classification
depends both on the quality of each individual step, as well as the combination of algorithms.
Although evaluating the fitness of a trained model (how well has this model captured the required
information to distinguish speakers) outside a fully functional workflow is possible, using likelihood
values or by quantifying the data covariance, the synergy of different algorithms is not captured.
The chosen approach for evaluating different algorithms and parameters is to start with a fully
functional workflow, based on parameters that have been shown to be successful in the literature,
and optimizing the workflow from start to finish. The base configuration, on which the following
experiments build upon, consists of:
• MFCCs with 60 dimensions, including delta and double delta values. Parameters used for
extraction are a preemphasis of 0.97, frame length of 20 ms, frame shift of 10 ms, 24 filter
banks, 19 cepstral coefficients (plus log energy) and a liftering factor of 22. Silence removal
and per-frame energy normalization is performed across all dimensions.

• A UBM with dgmm = 1024 mixtures.

• A TV matrix with div = 400 dimensions.

• EFR normalization.

• I-vector averaging for speaker model generation.

• Cosine scoring.
The configuration for the low level feature extraction is the same as in the analysis system used in
the News-Stream 3.0 project. The TV matrix and the EFR matrices are trained using the parlia-
ment training data set, the evaluation is done on the parliament evaluation set. The recognition
quality is given as EER in percentage. Throughout the experiments, all UBM models, TV matrices
and normalization matrices are trained with 6 iterations.

5.2.1 Model data evaluation
The first step in establishing an i-vector based SID workflow is to train a UBM. The important
parameters for training a GMM are:
• The data set, which has to be balanced (with regard to gender and channel types) and large
enough to support the number of mixtures.

• The number of mixtures.
Additionally, practical concerns when using EM-based algorithms are the initial configuration and
the number of iterations. Since the EM-based algorithms are only guaranteed to find a local
maximum, it is important to find a good initial guess for the mixture values and a sufficiently high
iteration count. Each UBM was trained three times and the best model (with lowest log likelihood)
was used.

In the literature, it is common to see the usage of two gender dependent UBMs. This makes
sense in the context of the NIST SRE corpora, where the trials distinguish between the genders,
but in practice the gender is not known in before, so a mixed gender UBM is used.

A general problem in domain specific SID applications is the lack of sufficient amounts of data
to support the mixtures, so it is common practice to combine multiple data sets for training the
UBM [FC14]. We could confirm this experimentally by training a UBM on the parliament training
data set. It resulted in an EER of 45.62%, which is close to random guessing. When using the
NIST SRE’08 training data set, an EER of 2.82% was achieved. By using the parliament and
NIST training data sets in conjunction, the EER was decreased to 2.23%. Fig. 5.1 shows the EER
and DET curves. The combined data sets show a noticeable improvement in recognition rate over
the model trained solely on out-of-domain data.
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Figure 5.1: Comparison of the error rate using baseline workflow with two different UBMs, trained
on the NIST SRE’08 training data set and NIST+parliament training data sets.

5.2.2 Model size evaluation
After establishing the data set for training the UBM, the optimal number of mixtures dgmm has
to be found. The following numbers of mixtures were tested: 32, 64, 128, 256, 512, 1024. The
next step in the workflow consists of training the TV matrix. The most important parameter of
this process is the number of dimensions div. For each UBM size, a TV matrix was trained with
10, 20, 25, 50, 100, 200 and 400 dimensions, respectively. Fig. 5.2a shows the EER depending on
dgmm and div. The influence of div is very prominent while increasing dgmm provides only slight
improvement. The lowest EER of 2.21% was achieved by using dgmm = 512 and div = 200. As
shown in both Fig. 5.2a and Fig. 5.2b, the differences between high-dimensional UBM and TV
matrices are minor.

In the following, the dgmm = 512 UBM and the div = 200 TV matrix established here are used
as a baseline to compare the performance of normalization and scoring methods examined in the
following sections.

5.2.3 Normalization for cosine scoring
Cosine scoring, as implemented in ALIZE, offers more combinations for channel normalization
algorithms compared to ALIZE’s implementation of PLDA. The possible combinations are:
• Plain cosine scoring
• LDA
• WCCN
• EFR
• EFR + LDA
• EFR + WCCN
• EFR + WCCN + LDA
• Spherical normalization
• Spherical normalization + LDA
• Spherical normalization + WCCN
• Spherical normalization + WCCN + LDA.
WCCN and LDA can always be added as an additional processing step after the initial nor-

malization. In the following evaluation, LDA was applied using dlda = 100, which is half the
dimensions of the TV space. The UBM and TV matrix established in the previous section were
used. As illustrated in Fig. 5.3, LDA provides an improvement in every combination, while per-
forming best in combination with EFR. To further improve the performance of this combination,
the optimal rank for LDA is investigated. Fig. 5.4a shows the performance in relation to dlda.
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Figure 5.2: Visualization of the influence of UBM and TV matrix size on the error rate, using the
baseline system and the NIST+parliament UBM. While increasing dgmm does only provide slightly
decreased error rates, increasing div provides very noticeable improvements which saturate around
div = 400. gmm = 512, div = 200 provides the lowest EER of 2.21%.
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Figure 5.3: EER of cosine scoring, using different combinations of normalization algorithms. In
the none plot, WCCN and LDA are used as stand alone normalization procedures. In the other
two plots, EFR and SphNorm are the primary normalization algorithms whereas WCCN and
LDA are applied in a second step. In ALIZE, WCCN is always applied last. Plain refers to no
normalization. Note that the previous tests already used EFR normalization.
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Figure 5.4: Error rate of cosine scoring, using EFR and LDA as normalization steps, exploring the
dependency of the EER on dlda.
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Figure 5.5: Error rate of PLDA normalization and scoring in relation to different values for dvoice
and dchannel. While increasing values for dchannel provide slight improvements, increasing values
for dvoice decreases the EER noticeably.

5.2.4 Normalization for PLDA scoring
While PLDA was initially introduced to SID with an emphasis on its normalization capabilities, in
this thesis it is treated as a scoring function with built-in normalization, since, as it is implemented
in ALIZE, it is not possible to combine it with an other scoring function.

The normalization performance of PLDA is primarily influenced by the number of eigenvoices
dvoice and eigenchannels dchannel. To find the suitable values for both parameters, the parameter
space was evaluated in increments of 20, ranging from 20 to 200 for dvoice and 20 to 120 for dchannel.
The EER for different values is visualized in Fig. 5.5a. As shown in Fig. 5.5b, plain PLDA does
not improve the error rate over the cosine baseline for this data set.

PLDA can be combined with additional normalization methods, namely EFR, spherical nor-
malization and LDA. All additional processing takes place before PLDA normalization. Fig. 5.6a
compares the performances of different combinations, using the same default parameters as for
Fig. 5.3.

The best performance is achieved when using both spherical normalization and LDA. Since
spherical normalization does not provide parameters to tune, only the LDA rank can be further
optimized. The error rate, depending on rank, is displayed in Fig. 5.7.

While LDA provides an improvement regardless of rank, its performance is heavily fluctuating,
with numerical instability occurring below dlda = 80. The spike at rank 150 is considered an outlier
since it is not supported by neighboring measurements, and the minimum at rank 80 is too close
to numerical instability to be considered a safe parameter choice. The best supported minimum
lies at dlda = 166, providing an EER of 1.71%.
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Figure 5.6: Comparison of different normalization algorithms in addition to PLDA.
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Figure 5.7: Error rate for PLDA in conjunction with spherical normalization and different values
for dlda. The performance of different ranks for LDA fluctuates strongly. Optimizing the rank
value produces only a slight improvement over the randomly chosen rank of 100.
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Figure 5.8: Feature extraction timing for one 2 min. utterance.

5.3 Execution speed evaluation
The execution speed is evaluated only for the online processing steps, for offline training only rough
numbers are given since it is not important for this evaluation. A 2 min. mono wave file from the
parliament test set is used as input, and all 235 speaker from the evaluation set are tested against.
The normalization matrices are evaluated both precomputed and online. The timing experiments
are done on a 2.4 GHz dual core machine with 4 GB ram.

Offline training was done using a 32 core cluster using 2 GHz clock frequency and 128 GB ram.
Model training was done single threaded, since ALIZE has proved not to be thread safe although
multithreading can be enabled. Training a GMM on the parliament training set took around 1
day for 32 mixtures and 8 days for 1024 mixtures. Training the TV matrix took 1 day for 10
dimensions and 6 days for 400 dimensions. Training was done using 6 iterations.

Fig.5.8a visualizes the execution times of the MFCC extraction and preprocessing steps. The
i-vector extraction times, as shown in Fig. 5.8b, are below 1 sec. for small and mid-sized UBMs
and TV matrices. Only at dgmm = 512 and div = 100 the extraction process of 2 min. of audio
takes more than 1 second to terminate. At the highest dimensions, requiring about 9 seconds, it
comes close to the MFCC extraction duration. This means that execution speed is no deciding
factor when comparing the cosine-based and PLDA-based workflows.

The processing speed of the normalization and scoring is evaluated for both the cosine-based
and PLDA-based configurations. The implementation of the normalization algorithms, provided
by ALIZE, allows for two different modes of operation: training the normalization matrices online,
or using precomputed matrices. Both possibilities are compared in Fig. 5.9. It can be seen that
using online normalization, PLDA takes about three times longer than cosine scoring. When using
precomputed normalization matrices, they are about equal in execution speed.
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for precomputed normalization matrices and online computed matrices. Precomputed means that
the normalization matrices are computed offline using a training set. Online mode performs the
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The measurements are an averaged timing for one 2 min. utterance.
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Figure 5.10: Evaluating the cosine based and PLDA based workflows using the test data set. While
both workflows perform worse on the test set, PLDA proved to be more consistent when facing
different data.

5.4 Configuration selection
While the underlying models are trained on the training data set, the workflow configurations
are manually optimized on the test data set. The final decision on which configuration to use is
performed on an independent test data set, so overfitting to the evaluation set is avoided.

As shown in Fig.5.10a, the cosine configuration performs noticeably worse on the test set
compared to the evaluation set. PLDA, on the other hand, shows a less dramatic increase in error
rate. The PLDA-based configuration shows more stability over the cosine configuration, which is
probably overfitted to the test data set. Thus, the PLDA workflow is selected as final configuration.

5.5 Decisionmaking
Both closed-set and open-set decisionmaking, as discussed in Chapter 4.5.3, are tested on the final
workflow. Closed-set decisionmaking, using the simple highest-score selection method, performs
reasonably well by providing a recognition rate of 93.689% (classifying 93.689% of the utterances
correctly). For open-set decisionmaking, two cases are evaluated: classifying utterances that belong
to a known speaker, and classifying utterances that belong to an unknown speaker. To emulate
the unknown case, the correct speaker model is removed from the set of known speakers for each
utterance. The unknown classification is performed by using an average speaker model yO.

When using the unscaled model yO (α = 1), the system performs overly optimistic, as shown in
Fig. 5.11a: in the first case, 93.689% of the known utterances are classified correctly, the rest being
classified as unknown. No utterance is assigned to a wrong speaker. When removing the correct
speaker model for each utterance, no utterance is recognized as unknown but gets assigned a wrong
speaker. To balance this discrepancy in recognition rates, a value for α was found which balances
the recognition rates for known and unknown speakers, as shown in Fig. 5.11b. α = 0.063 causes
the recognition rates to be come equal and leads to an overall recognition rate of 90.511%, where
3.163% of the known utterances are assigned a wrong speaker and the test are wrongly classified
as unknown.

5.6 Comparison to iFinder
The goals of the new workflow are to improve the recognition rate and online execution time of
the current implementation. To assess the current performance, an instance of the iFinder speaker
classifier was installed on the test machine and evaluated using the parliament test set. Fig. 5.12
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Figure 5.12: Error rate comparison of the GMM-based and I-vector-based classifiers.
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visualizes the error rate. The new workflow clearly outperforms the iFinder workflow. Fig. 5.14
visualizes the score distributions of the new PLDA-based system and the iFinder implementation.
The graphs of the new system show a reduced variance in the distributions, compared to the old
system, which provides for better separability during decisionmaking.

To evaluate the execution time, the duration of the test is taken and divided by test performed
on each input file (one input file tested against all 235 speakers). Fig. 5.13 compares the workflow
specific timings. While the i-vector based workflow is faster than the iFinder implementation, it
is only a slight improvement.

The main gain of the new PLDA-based workflow is a substantial decrease in error rate and a
small decrease in execution speed. Thus, both system improvement goals are reached.

5.7 Discussion
While the overall results are in line with recent publications, in terms of reaching a similar EER
for domain specific data set as [GRM14] and confirming the use of PLDA as a well-performing
and robust normalization and scoring function, some findings give interesting insights for practical
implementations.

5.7.1 UBM and TV matrix
Fig. 5.2a shows the impact of varying numbers of mixtures in the UBM and sizes of the TV space.
The number of mixtures have a low impact on the recognition rate, compared to the number of
TV dimensions. Since larger numbers of mixtures still perform better than smaller numbers, it
is desirable to use large UBMs unless the i-vector extraction speed is a critical factor. In regards
to execution speed, the i-vector extraction is actually more expensive than the normalization and
comparisons, as shown in Fig. 5.9. Since the extraction speed is equally affected by both UBM
and TV matrix size, as shown in Fig. 5.8b, a tradeoff in favor of execution speed can be made with
only small losses in recognition rate.

5.7.2 Cosine scoring
Fig. 5.3 shows several interesting results regarding the performance of normalization for cosine
scoring. When comparing EFR and SN, EFR shows better performance than SN in every combi-
nation, even in combination with LDA. This is unexpected since SN is an extension of EFR which
is explicitly modified to work in conjunction with LDA. The linear, non-spherical within-class co-
variance matrix seems to have a stronger impact on the angular distribution of the i-vectors than
the spherical covariance.

A second observation is the performance of WCCN, which underperforms in almost all com-
binations. Paired with SN, WCCN does not provide for a noticeable impact. The performance
of the combination of WCCN and EFR is especially surprising because both methods perform
within-class covariance normalization. WCCN seems to negate the normalization effects of Σw
compensation and length normalization performed by EFR with its linear projection. The same
effect is noticeable in combination with LDA.

LDA shows the best normalization performance, which is to be expected since it is the most
sophisticated algorithm, balancing Σw and Σb. When comparing the LDA ranks, as shown in
Fig.5.4a, a clear optimum of dlda = 44 can be found. This shows that the speaker-related informa-
tion can be well represented in a small-dimensional subspace, which is in line with the underlying
assumption on the separability of speaker related information. It also shows that between-class
covariance normalization helps in making the speakers more separable.

5.7.3 PDLA scoring
The normalization performance of PLDA, as shown in Fig.5.5 of different ranks for speaker and
channel information, has shown to be mainly depending on the speaker rank. The optimal speaker
and channel rank do not differ much. In light of the assumption of low-dimensional, separable
subspaces of speaker and channel information, it can be argued that both spaces are similarly
large.

Interestingly, when comparing the LDA rank of 44 in the cosine workflow with the rank of 166
in the PLDA workflow, the speaker space used in the latter is more than twice as large. This,
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together with the observation of the seemingly irregular performance across rank values, can be
interpreted as a lack of information to be removable by LDA. As PLDA itself is an extension of
LDA, both methods are able to remove similar information patterns.

5.8 Speaker set extension
It is desirable to improve the identification system by extending the set of known speaker or
improving existing speakers models with newly gathered utterances. In the context of the News-
Stream 3.0 project, it is also desirable to apply these improvements without shutting down the
production system.

As described in Chapter 4.8, ALIZE uses configuration files to define the trials and to map
the speaker identifiers to the paths of the files which contain the model data. These configuration
files are reloaded for each incoming utterance, so it is possible to update both the current trial
file (which lists all speaker model files to compare against) and the speaker models themselves in
between runs.

The speaker models can be updated by allowing the user to select speech segments in the
user interface and assign them to an existing speaker. The speaker model can then be updated
by including the new utterance into the averaging process. The same way, new speakers can be
generated.
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Chapter 6

Conclusion

The central challenge for any SID workflow is to distinguish speaker related information from
unwanted information in order to provide robust classification. Finding a suitable procedure to
exclude or lessen the impact of unwanted information cannot be done in general, but must be
tailored to the data at hand. In this thesis an i-vector based speaker identification workflow was
developed in the application context of the News-Stream 3.0 project. A domain specific data
set was used to assemble a SID system with a configuration optimized for the given data. The
new workflow outperforms the previous implementation in both recognition rate and execution
speed. Combinations of a set of algorithms provided by the ALIZE toolkit, as well as important
parameters, have been explored for each processing step:

The number of mixtures of the UBM and the rank of the total variability matrix have been
investigated for their impact on recognition quality and execution speed. While the UBM size has
no strong influence on the error rate, a total variability rank of at least 100 dimensions provided
error rates of 3% or lower. The i-vector extraction speed depends approximately quadratic on both
values.

Cosine scoring and PLDA have been used as scoring functions, and normalization configurations
and parameter values have been optimized for each of them using the domain specific evaluation
data. In both cases, EFR and spherical normalization have been used as normalization procedures,
while LDA (and WCCN in case of cosine scoring) have been applied as additional processing steps.
Cosine scoring, combined with EFR and LDA, showed a clear optimum in the evaluated range for
LDA rank and provided an EER of 1.71% on the development set. PLDA itself showed good results
for dvoice > 60. In combination with spherical normalization and LDA, an EER of 2.11% was
reached on the development set. For different dLDA, although providing an overall improvement,
the error rate varied seemingly at random which shows that most channel information was already
captured by PLDA.

When compared on a test set, the PLDA configuration was chosen over the cosine-based work-
flow, since it showed more stable performance when evaluated on the testing data set. It achieves
an EER of 2.67% on the test set, and takes 8 sec. to classify an i-vector. The cosine-based con-
figuration, while having a lower error rate on the development set, showed a strong decrease in
performance on the test set which indicates overfitting. Finally a scheme for updating the models
and introducing new speaker models into the running workflow was proposed, which enables the
running system to adapt to the data it is analyzing.

Both closed-set and open-set decisionmaking have been evaluated on the PLDA workflow. The
closed-set classification achieved a recognition rate of 93.69%, while the open-set classification
achieved a recognition rate of 90.51%.

Overfitting has shown to be an important consideration when developing an optimized clas-
sification workflow. Future work should look at how to prevent overfitting when only a limited
amount of data is available. Randomly generated subsets of the evaluation data could be used for
parameter evaluation, aiming for the lowest error rate and minimal variance over the test sets.

It would also be interesting to look deeper into the unexpected performance of combinations
of normalization methods. By evaluating different projections for the within-class covariance and
between-class covariance, more insight into the actual distribution of the data and how to coun-
teract it may be gained.
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