
Report of the GI Work Group
”Requirements Engineering for Product Lines”

Authors:
Andreas Birk, sd&m
Gerald Heller, HP
Isabel John, Fraunhofer IESE
Stefan Joos, Robert Bosch GmbH
Klaus Müller, Robert Bosch GmbH
Klaus Schmid (Ed.), Fraunhofer IESE
Thomas von der Maßen, RWTH Aachen

IESE-Report No. 121.03/E
Version 1.0
November 2003

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps
them to establish a competitive market
position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Abstract

This report summarizes the results of the GI working on “Requirements En-
gineering for Software Product Lines”, a working of the GI 2.1.6. This work
group met regularly to identify the key problems in product line engineering
practice with potential (and proven) solutions. While this started originally as
an effort focused purely on requirements engineering issues, we soon un-
derstood that we had to take a broader perspective due to the tight intercon-
nection of requirements engineering with other issues in a product line con-
text.

We will provide a characterization of the different organizations that partici-
pated in this effort. This will demonstrate that overall a good coverage of or-
ganizational types has been achieved. In Section 3, we will then provide an
overview of the main problems in product line development. These could be
clustered in the following main problem categories:

� Organization and Management

� Requirements Engineering

� Product-specific vs. Platform-specific Interests

� Architecture

These categories resulted from a systematic gathering of known problems
along with a clustering. Based on both our own experience as well as our
understanding of the technology we derived and described potential solu-
tions for the main problems (cf. Section 5). As far as possible, we described
necessary preconditions for the implementation of the solution approaches.

Keywords: software product lines, organizational context, architecture, requirements
engineering, platform development

Copyright: The copyright remains with the authors and their organizations.

Copyright © Fraunhofer IESE 2003 and the authors and their organizations v

Table of Contents

1 Introduction 1

2 Presentation of Partners 2
2.1 Bosch 3
2.2 HP 5
2.3 Fraunhofer IESE / Market Maker Software AG 7
2.4 RWTH Aachen 9
2.5 sd & m 11

3 Overview of Problems 13
3.1 Organization and Management 14
3.1.1 Justification of the platform approach as a process model

by a cost / benefit-analysis 14
3.1.2 Independent platform team 14
3.1.3 Difficult cooperation between platform and product

development teams 15
3.1.4 Proof of justification of the platform team 15
3.1.5 High communication overhead 15
3.1.6 Poor configuration management 16
3.2 Requirements engineering 16
3.2.1 Influence of the architecture on requirements negotiation is

not taken into account 16
3.2.2 No description of variability for domain analysis 17
3.2.3 Missing domain analysis and domain description 18
3.2.4 Discussions on design and not on requirements level 18
3.2.5 No explicit requirements process 19
3.2.6 Missing tool support 19
3.3 Product- vs. platform specific problems 20
3.3.1 Sequence of integrating requirements into the platform 20
3.3.2 No explicit prioritization of requirements 20
3.3.3 Realization of platform requirements in products 21
3.3.4 Strong influence of the pilot client 21
3.4 Architectural problems 21
3.4.1 No use of the architectural advantages 22
3.4.2 Poor description of the generic architecture 22

4 Categorization of Problems and Organizational
Constraints 23

5 Lessons for Product Line Development 26
5.1 Organization and Management 26

Copyright © Fraunhofer IESE 2003 and the authors and their organizations vii

5.1.1 Justification of the platform approach as a process model
by a cost / benefit-analysis 26

5.1.2 Independent platform team 27
5.1.3 Difficult cooperation between platform and product

development teams 28
5.1.4 Proof of justification of the platform team 29
5.1.5 High communication overhead 29
5.1.6 Poor configuration management 31
5.2 Requirements engineering 31
5.2.1 Influence of the architecture on requirements negotiation is

not taken into account 31
5.2.2 No description of variability 32
5.2.3 Missing domain analysis and domain description 32
5.2.4 Discussions on design and not on requirements level 33
5.2.5 No explicit requirements process 33
5.2.6 Missing tool support 33
5.3 Product vs. platform specific problems 34
5.3.1 Sequence of integrating requirements into the platform 34
5.3.2 No explicit prioritization of requirements 36
5.3.3 Realization of platform requirements in products 38
5.3.4 Strong influence of the pilot client 39
5.4 Architectural problems 39
5.4.1 No use of the architectural advantages 39
5.4.2 Poor description of the generic architecture 40

6 Conclusions and Outlook 42

7 References 43

8 Participants 45

Copyright © Fraunhofer IESE 2003 viii

Introduction

1 Introduction

In the year 2000 a number of organizations decided to pool their interest in
the topic of requirements engineering for product lines in the context of a GI1
work group. This group started as a forum for the exchange of ideas and in-
formation. Only after some time, the idea was born to extend this work into a
systematic survey of existing product line problems and solutions that were
present in the organizations. This report summarizes the results of this sur-
vey and extends it also with some fundamental ideas that were evaluated
during the course of the work groups, although so far they have not made
their way into the participating organizations. An overview focusing on the
actual state of the art has been published in IEEE Software [18].

The originally founding organizations of the work group were: Robert Bosch
GmbH, Hewlett-Packard, Fraunhofer IESE and the University of Stuttgart. At
a later point the University of Stuttgart left and the University of Aachen
(RWTH Aachen) and the company sd&m AG joined the work group. In addi-
tion both the University of Aachen and the Fraunhofer IESE introduced ex-
perience from industrial cooperation partners into the cooperation.2

This report consists of the following parts: in the next section we will provide
an overview of the various partners, focusing on their product line experi-
ence. In Section 3 we will discuss the main problems that were identified
with requirements engineering for product lines from the combined experi-
ence from the various partners. The problems described in this section go
beyond the core of requirements engineering as problems that became visi-
ble in our work often had their roots in a different part of the life-cycle.

In Section 4 we describe an approach to the categorization of context factors
and use this as a basis for characterizing the participating industrial organi-
zations. This description was used as a basis for relating the different prob-
lems and solutions to the characteristics.

In Section 5 we describe the main measures for dealing with the identified
problems based on the combined experience of the work group.

1 GI = Gesellschaft für Informatik e.V.
2 For the Fraunhofer IESE the main experience that was introduced was derived from its cooperation

partner the company Market Maker Software AG.

Copyright © Fraunhofer IESE 2003 1

Presentation of Partners

2 Presentation of Partners

In this section we provide an overview of the various partners who contrib-
uted to this analysis of requirements engineering for product lines. These
partners are:

• Hewlett Packard – here experience from its OpenView development
platform was introduced to our analysis.

• Bosch – here mainly experience from the development of motor con-
trol systems provided the basis of the analysis

• Fraunhofer IESE / Market Maker – the Fraunhofer IESE together
with its cooperation partner Market Maker shared experience from
the build-up of a software product line in a small- and medium-sized
company (SME).

• RWTH Aachen – the RWTH Aachen shared experience of its coop-
eration partner3

• sd&m – this company provided experience from managing a com-
pany-wide product-line asset base in the domain of management in-
formation systems.

The following table provides on overview of these different case studies. It
particularly illustrates the wide variety of different product line situations that
were covered. In the following table, the entries are defined as follows:

• Market orientation defines whether the organization targets a spe-
cific market segment without a concrete customer in mind, or
whether it addresses individual customer projects.

• Product type describes whether the individual products complement
each other in the form of a product suite or whether these are similar
systems of comparable functionality that target different market
segments and customer profiles.

• Hardware embedding can be embedded system (HW/SW) or pure
software (SW).

3 Unfortunately, the cooperation partner wants to remain anonymous.

Copyright © Fraunhofer IESE 2002 2

Presentation of Partners

• Organizational size defines the number of employees in the part of
the organization that applies SPL software development (Categories:
up to 10, 250 or 1000).

• Sites defines the number of development sites involved in SPL de-
velopment includes the categories 1, up to 3, and up to 8.

• Platform development describes whether reusable assets and final
product are developed in different organizational entities.

Art HP Bosch IESE/
Market Maker

RWTH
Aachen /
cooperation
partner

sd&m

market orientation segment customer customer customer
(+ segment)

customer

product type suite variants variants variants variants

hardware embed-
ding

SW SW/HW SW SW/HW SW

organizational
size

1000 1000 10 250 1000

sites 8 3 1 3 8

platform devel-
opment

no yes no yes yes

Table 1 Organizational Characteristics

2.1 Bosch

With sales of approx. 35 billion euro in 2002, Bosch is one of Germany’s
largest industrial enterprises, with a significant international presence. At the
beginning of 2003, a total workforce of some 224,000 were employed in the
three business sectors Automotive Technology, Industrial Technology and
Consumer Goods and Building Technology. The Bosch Group operates in
the following fields: automotive technology, automation technology, packag-
ing technology, power tools, thermotechnology, household appliances, secu-
rity technology and broadband networks.

Copyright © Fraunhofer IESE 2003 3

Presentation of Partners

Throughout the world, some 20,000 employees are involved in research and
development for the Bosch Group. These scientists, engineers and techni-
cians are working on new products and systems, as well as on innovative
production techniques. Their work is also devoted to the continuous im-
provement of existing products. To remain at the leading edge of technology
and to continue to grow, Bosch invests heavily in research and development
every year (almost 2.5 billion euro in 2002). For more details see:
http://www.bosch.com

In this report we focus on experiences from the Diesel systems division, an
expanding Bosch business. The year 2002 again saw an increase in the
number of newly registered cars with diesel engines in Western Europe,
their share rising to over 40 %. In the next few years, the company expects
this rise to continue to approx. 50%. The high-pressure fuel-injection sys-
tems manufactured by Bosch have played a decisive role in this success
story: common-rail and unit injector systems ensure that diesel engines run
more efficiently, quietly and cleanly.

Although diesel injection systems consist of a lot of hardware the optimisa-
tion of fuel economy, emissions and performance requires electronic control
units. The electronic system contains all of the actuators (servo units, final-
control elements) required for intervening in the engine management, while
monitoring devices (sensors) register current operating data for engine and
vehicle. Product lines are an important system development paradigm in the
automotive industry to amortize costs beyond a single product. On the other
hand automotive products are rich of variants to meet the special needs of
different customers and variety of types of cars. The paradigm of platforms is
well established in the mechanical and electrical engineering practice in
automotive companies and their suppliers like Bosch. In order to make the
car more secure, economical, clean, and comfortable, more functionality is
moving from mechanical to electrical and from electrical to software solu-
tions. Therefore, today’s automotive products are software-intensive sys-
tems that are developed with the product line paradigm.

Diesel injection systems vary in basic hardware configuration (like Common
Rail System or Pump Injection System. At Bosch commonalities for these
configurations are developed centrally. Although the diesel-hardware differs,
control units are used which are based on the same electronic diesel control
(EDC). The operating system as well as basic function libraries are common
for all hardware configurations. Other parts of the platform are independent
of the injection system and differ by the used system components in the mo-
tor (e.g. turbo charger, air condition). The control of these components can
be handled in a platform as well. Communication with other control units in a
car is independent of the motor configuration but differ from vehicle to vehi-
cle.

A SW-platform for diesel motor has to deal with different complexities. Bosch
delivery diesel injection systems to more or less all manufactures of car and

Copyright © Fraunhofer IESE 2002 4

Presentation of Partners

lots of truck diesel engines around the world. Every customer has its own
philosophy concerning engine families and the use of communication proto-
cols. They also use different algorithms to control the system parts.

Development of engines is an evolutionary process. Motor constructions as
well as hard- and software components are permanently tested and im-
proved on the test bench or in the vehicle. Software as the most flexible part
faces the latest changes.

These complex requirements and constraints are managed in platform de-
velopment. The EDC SW development has established a process for co-
ordination of requirements and delivery dates of platform parts and platform
baselines. The characteristics make a SW platform for diesel injection sys-
tems a configurable toolbox. It is used and developed further for each motor
and each vehicle. However, EDC is a real-time system. It is not possible to
combine SW components or memory without influencing the run-time behav-
iour. Interfaces must be defined clearly, but the system is tested after every
serious change anyway to guarantee save and efficient diesel motors.

2.2 HP

HP is a technology solutions provider to consumers, businesses and institu-
tions globally. The company's offerings span IT infrastructure, personal
computing and access devices, global services and imaging and printing for
consumers, enterprises and small and medium businesses. For more details
see http://www.hp.com. The OpenView Business Unit is a part of HPs global
software organization. OpenView has more than 10 years history in develop-
ing IT management software. The OpenView product line consists of a vari-
ety of products in the domains of network, storage, systems and service
management. See http://openview.hp.com for details.

Copyright © Fraunhofer IESE 2003 5

Presentation of Partners

The OpenView organization develops its product line concurrently on differ-
ent locations around the world. The product line is not only developed within
HP, but also with a couple of subcontracted R&D organizations around the
world.

In the early years the OpenView product line started with independently de-
veloped products in the area of network management and systems man-
agement. These products proved to be extremely useful for the customer
and therefore grew in size for many years. Typically, OpenView products are
multi-tier products (UI clients, management server, DB server and agents).
The products support a wide range of operating systems platforms.

A suite of new products supplemented these offerings over the years. Par-
tially those were developed in-house and partially acquired externally. The
following challenges became more and more apparent:

• Products started to overlap in functionality
• Customers who bought more than one products were faced with con-

sistency and efficiency issues
• Development and maintenance costs increased too much

Copyright © Fraunhofer IESE 2002 6

Presentation of Partners

That’s why OpenView management decided to reengineer the products to
become a more tightly integrated product family. Driving goals were:

• Time to value
o Fast deployment in customer environment
o Products share common (data-) models
o No need for customers to configure applications separately
o Products share common concepts, Additional products can be

easily rolled-out
• Cost of ownership

o Reduce training of IT personal and lower the upgrade / mainte-
nance costs

• Solution offering
o Single products are targeted to solve specific vertical problems

(e.g., Network management, system management, application
management, ...)

o Provide a suite of products tightly integrated from which the cus-
tomer create a solution for their problem

Around 1999 the development paradigm changed in a way, which yields to
develop reusable components with a shared data model. A single R&D or-
ganization (~500 people), which is made up by several domain labs, exists in
parallel to the support organization and the marketing organization. A cross
domain architecture review board analyzes current software offerings and fu-
ture roadmap plans. Shared components are sometimes reengineered from
existing products or newly developed. OpenView management decided to
not establish a platform team but develop the common components within
the product teams. A software roadmap plan shows how the current prod-
ucts re-incorporate these common components over time. While the existing
products were developed in a variety of computer languages, the common
components usually are developed in C++ and/or Java. The OpenView or-
ganization has established a systematic requirements management process,
which is supported by a requirements management product that allows ac-
cess to all requirements from any location.

2.3 Fraunhofer IESE / Market Maker Software AG

Fraunhofer IESE is part of the Fraunhofer organization in Germany and fo-
cuses on applied research in the field of software engineering. As such, it is
not a software development organization. However, it does intensively coach
and support software development organizations in terms of improving their
software engineering competency and in particular their ability for product
line development. For this reason Fraunhofer IESE is familiar with a number
of different organizations, which are developing software product lines. In
order to further this case study, they provided an example quite different

Copyright © Fraunhofer IESE 2003 7

Presentation of Partners

from the other organizations discussed here: an example of a small enter-
prise working very successfully with software product lines [1].

The company MARKET MAKER Software AG is meanwhile very experi-
enced in the development of software product lines. Already in the early
nineties their key product MarketMaker DOS evolved into a set of products,
as it was adapted to various customer needs, e.g., in order to interface with
different bank information systems. In addition it got a module structure, of
individually acquirable modules. However, as all software was part of the
basic executable, the additional modules were only turned on and off. When
in the late nineties the new product MarketMaker 98 was developed the
same structuring was used. However, with this new product line an addi-
tional factor of variation came into play: additional product versions, labeled
product variants for large customers with unique appearance of front-end
components and functional enhancements, were derived from the same
source. This introduced an additional dimension of functional variation into
the product line. This variation was also reflected on the source code level
(i.e., the additional product versions did neither have the additional modules,
nor did they contain other code that was only relevant to MarketMaker98).

In 1998 a new organizational unit was funded within MARKET MAKER Soft-
ware AG. This unit focused on the development of a web-based platform for
financial information systems: i*-product line. This new platform was devel-
oped completely anew in Java with two exceptions: an additional Market-
Maker 98 variant and an existing system for managing real-time data feeds
were used, which works as an encapsulated information server for the i*-
product line platform. In this way, the i*-product line products could build di-
rectly on the abstraction of financial data streams. This very elaborate ap-
proach to developing a product line is also known as leveraged product line
introduction [2].

Over time the organizational unit for Merger development grew from three
developers to about seven developers currently. They are on the same site
as the developers from the MARKET MAKER products, thus simplifying
strong information exchange among the contributors of the two complemen-
tary product lines. Due to the small size of the organization a simple organ-
izational structure could be used: a single organization manager is responsi-
ble for the whole i*-product line development (including product manage-
ment).

The basis of the i*-product line is the web-enabling platform for distributing
financial information over the web. Actually, the i*-product line platform itself
is the basis for several basic product types: Intranet-based stock market in-
formation systems for large banks, internet-based financial information addi-
tions for large online information portals, XML document server as web ser-
vice for third-party applications and chart-viewers which are parts of web-
pages by other providers (e.g., company portals that want to have their own
stock chart). The individual variants of the software are then developed in a

Copyright © Fraunhofer IESE 2002 8

Presentation of Partners

customer-specific manner. This requires the ability to accommodate a large
degree of mostly unpredictable variation. By now the number of product
variants exceeds thirty. Of course the products share considerable function-
ality and typically the approach is taken to integrate the generic functionality
as soon as possible into the product platform, if a customer requires some
new functionality. Variations are typically requested on two different levels of
granularity. First, customers may differ widely in the functionality they re-
quire, e.g., is user management required or not. On the other hand, each
customer wants his specific look and feel, leading to many small differences
among different variants (e.g., different color schemes). While the former
type of variation is dominated by optionality, the later is typically dominated
by alternatives. While the market for web-based financial information sys-
tems is rather new, it shares a lot with traditional financial information sys-
tems, with which the company was already well acquainted. The basic im-
plementation that was used was based on a framework of Java classes
combined with variant-specific code.

The key goal of taking a product line approach was to be able to achieve a
large market coverage within a short time after the first releases where
fielded. This had to be done with a small number of people. The company
was widely successful at achieving this goal. Due to the small number of
people working in this organizational unit and the need for fast time to mar-
ket, an agile approach to software development was used. This resulted in
an only implicit requirements engineering process, which did not use a lot of
documentation. Also variabilities that could be supported by the available
assets where typically only documented in an implicit way.

2.4 RWTH Aachen

The Software Construction Group of the Technical University of Aachen pre-
sents a product line-like project of one of its cooperation partners.

The project task was to develop a semantic graphic framework that allows to
combine a graphical representation of network topologies together with its
semantic data. The need for the framework in this domain arose from the
realization that standard offerings of graphical tools did not cover all the re-
quirements for specialized engineering. The typical approach to configure a
network was to enter data into two independent tools: a database application
to enter the data describing the network and a picture editor to draw the
network topology. The framework approach should unify the picture and data
entry to keep pictures and the corresponding data consistent. A customiza-
ble framework was needed to develop and instantiate different products that
serve electric, gas and water network topologies.

The biggest benefits were seen in unifying the process and therefore in the
reduction of making mistakes during data entering and in adoption of similar
processes. Furthermore it was now possible to extract the topology informa-

Copyright © Fraunhofer IESE 2003 9

Presentation of Partners

tion completely from the graphical connections. Savings were realized during
the processes of data entry, commissioning and test of the on-line systems.
Besides the savings that have been achieved during operation, the frame-
work made it possible to reduce the effort of developing new applications
and to reduce the time of development. The framework was developed at
two different locations and less than 20 people were involved.

Product frameworks

Domain frameworks

Support
frameworks
GUI, Base,

etc.

Platforms

Figure 1: Layered framework architecture

When the framework was designed many of the applications, which were
built later using the framework, could not be envisioned. The fact that two
different applications provided guidance in the development was most help-
ful. Architectural choices were considered in terms of how they help to im-
plement increased reuse and whether they satisfy basic needs for graphical
engineering. That is, the architecture would suffice to cover the essential
needs of the applications being built at this time. For flexibility the approach
was to provide hooks for customization as they were foreseeable. Exten-
sions due to possibly emerging future requirements were not built in. Figure
1 shows the layered framework approach. The product frameworks them-
selves form the base for customer specific variants that are mainly
characterized by alternatives. These variants have the same system
architecture but may add and/or redefine functionality to meet customer
specific requirements. The task of customization is split into two parts:
configuration (selection from various options, the framework provides) and
tailoring (functional change and/or enhancement by means of programming).

The frameworks were developed incrementally based on object-oriented
analysis, design and programming and have been implemented in C++.

The whole framework approach was planned for evolutionary software de-
velopment, because of the long development time and shifting requirements.

Copyright © Fraunhofer IESE 2002 10

Presentation of Partners

Finally more than ten industrial applications have been built upon the basis
of the layered framework approach, which is therefore regarded as a suc-
cess. In the context of the mentioned developments the additional initial ef-
fort was necessary to establish the platform that could be used to develop
these applications for different domains with less effort and in less time.

2.5 sd & m

sd&m AG, software design & management, is one of the major German
software houses specialized in the development of large custom information
systems. sd&m does not develop or sell any standard software products but
focuses entirely on custom software solutions. Its domains are business in-
formation systems, internet systems, and technical applications. In addition,
sd&m offers consultancy services on information technology and IT organi-
zation.

sd&m has been founded in 1992 and has today about 897 staff (in 2002)
and revenues of 129 Million € (2002). It is present at eight sites in Germany
and Switzerland. sd&m belongs to the group of Cap Gemini Ernst & Young,
being operated as an autonomous unit.

The product line initiative of sd&m focuses on the definition of a standard ar-
chitecture of information systems that eases the development of custom in-
formation systems. This apparent contradiction of developing a standard ar-
chitecture for custom information systems is actually a powerful application
of software product line (SPL) principles to a family of functionally diverse
(custom) software systems. The commonalties between the systems are
with their technical architectures: Many information systems have the same
three tiers architecture, use the same few database products, application
servers, and client technologies, and have similar technical links to neighbor
systems. This is enough commonalty - besides all functional differences be-
tween banking applications, production planning systems, etc. - to qualify for
defining a SPL based on technical systems characteristics.

sd&m's standard architecture for information systems, called QUASAR
(Quality Software Architecture) has been introduced by Denert and Sieder-
sleben [17]. It is built on the distinction of technical software components
from application-dependent, functional ones. Each software component
should be designed so that it addresses either technical or application-
oriented concerns. This makes it possible to define a generic systems archi-
tecture, which enables reuse across functionally diverse custom software so-
lutions.

The QUASAR set of reusable assets consists of the generic architecture,
software frameworks and reusable components, as well as various methods
and processes. The architecture defines standardized interfaces between
technical components. For many interfaces, several alternative implementa-

Copyright © Fraunhofer IESE 2003 11

Presentation of Partners

tions for different system platforms are available. The strong standardization
of interfaces reduces dependencies between components and fosters reus-
ability. This is contrary to conventional frameworks that tend to have exten-
sive interfaces, which increase dependencies and reduce reusability. The
methods and development processes associated with QUASAR foster the
separation of technical and application-dependent concerns early in the de-
velopment process. They map system requirements, specification, and sys-
tem architecture onto the generic QUASAR architecture. This provides the
ground for application of frameworks and generic components, and it gener-
ally results in well-structured and modular high-quality system architectures.

The entire sd&m staff is educated in the new standard architecture. There-
fore, a series of lectures has been set up, every software engineer receives
hardcopies of technical white papers on the approach, and the contents of
the entire internal education program are aligned with QUASAR. Knowledge
brokers support application of QUASAR, and a staff of technical experts acts
as internal consultants for the deployment of the software frameworks and
generic components in projects. Project reviews, which are performed regu-
larly as part of sd&m's quality management system, also check whether the
projects take full benefit from the core assets provided by QUASAR.

QUASAR and its various supporting measures have been defined in a series
of proactive efforts of sd&m's research division in collaboration with senior
staff from all over the company. So the approach integrates new architec-
tural principles with proven and well-established development practice from
a variety of projects. Benefits of QUASAR include faster development cycles,
faster and highly accurate development of project offers, increased reuse ra-
tes (of software components, domain and technical expertise, as well as the
various work products of projects), higher staff qualification, and the gradual
establishment of a SPL- and reuse-based development approach throug-
hout the company.

The QUASAR initiative of sd&m has emerged during 2000. In 2001, sd&m
Research was founded as an organization whose main goal was the devel-
opment and support of the QUASAR SPL infrastructure. In 2002, sd&m Re-
search was merged with sd&m's software technology management group,
which has at that time already been very effective, for instance, in knowl-
edge brokering and company-wide qualification. The merger provided the
basis for integrating the QUASAR infrastructure tightly with the corporate
development process and development practices.

In addition to QUASAR experience, sd&m has contributed experience from
projects where it was involved in its customers' own product line develop-
ment. This includes development of reusable component frameworks for a
product line and development of families of information systems – e.g., a
family of product variants for different national markets [19].

Copyright © Fraunhofer IESE 2002 12

Overview of Problems

3 Overview of Problems

In this chapter we give an overview of the problems we identified in the con-
text of requirements engineering for software product lines. The listed prob-
lems were brought up by the participants of the workgroup as examples of
their experienced practice. Below we name and describe the problems and
categorize them according to the main areas these problems are related to:

o Organizational and management problems
Problems with respects to organizational aspects, like cooperation
and coordination of various teams.

o Requirements engineering problems
In this category all problems are shown that have their roots in the
requirements engineering process.

o Client- vs. platform-specific problems
This category includes problems that arose because of conflicts be-
tween product- and platform-specific concerns.

o Architectural problems
All problems that reach from the requirements level into the following
phases, like architecture or design. This includes problems that stem
from the impact of the architecture on the requirements phase.

The following table provides an overview of the identified problems and their
relation to one of the described categories:

No. Challenges Category
1.1 Justification of the platform approach as a process model by

a cost / benefit-analysis
Organization and Management

1.2 Independent platform team Organization and Management
1.3 Difficult cooperation between platform and product develop-

ment teams
Organization and Management

1.4 Proof of Justification of the platform team Organization and Management
 1.5 High communication overhead Organization and Management
1.6 Poor configuration management Organization and Management
2.1 Influence of the architecture on requirements negotiation is

not taken into account
Requirements engineering

2.2 No description of variability for domain analysis Requirements engineering
2.3 Missing domain analysis and domain description Requirements engineering
2.4 Discussions on design and not on requirements level Requirements engineering
2.5 No explicit requirements process Requirements engineering

Copyright © Fraunhofer IESE 2003 13

Overview of Problems

2.6 Missing tool support Requirements engineering
3.1 Sequence of integrating requirements into the platform Product- vs. platform-specific
3.2 No explicit prioritization of requirements Product- vs. platform-specific
3.3 Realization of platform requirements in products Product- vs. platform-specific
3.4 Strong influence of the pilot client Product- vs. platform-specific
4.1 No use of the architectural advantages Architecture
4.2 Poor description of the generic architecture Architecture

Table 2. Overview of Challenges

In the following sections the identified problems are described in detail. In
Section 5 we will discuss some solutions for these challenges that we identi-
fied during our cooperation.

3.1 Organization and Management

In this section, we will discuss problems related to organizational aspects,
like cooperation and coordination of various teams.

3.1.1 Justification of the platform approach as a process model by a cost / benefit-
analysis

One of the major problems in setting up a software product line is to evalu-
ate the platform approach. That means: Is the higher effort for establishing a
product line justifiable against a single product development? To answer this
question it must be clear which benefit a platform provides and how many
(potential) products will be built upon it.

Experience shows that at least two or three products must be built to make
the platform profitable. A complete cost estimation must be performed for
both approaches (single product and product line development) to compare
both realizations. In practice, this estimation is very difficult to perform be-
cause of the multitude of influencing factors. In none of the environments,
we observed, measurements exist that would allow justifying the product line
in an objective manner.

3.1.2 Independent platform team

Often, when setting up a product line organization, an independent platform
team that does not work on concrete products is established. The platform
team develops components for reuse and does not develop a product for a
special client and is therefore not (directly) constrained by any deadline for
the date of release. Therefore this team often has insufficient contact with

Copyright © Fraunhofer IESE 2002 14

Overview of Problems

the client and his requirements. This may easily lead to different perceptions
of the further requirements by the platform team and product teams. As a
consequence the functionality implemented may not match the needs of the
products and is re-implemented by the product teams.

3.1.3 Difficult cooperation between platform and product development teams

As described above, the cooperation of platform and product teams is diffi-
cult. Further, the management of the workflow between these two teams is a
difficult task, too. The elicited requirements must be analyzed to decide
whether they are platform or product requirements and must then be dele-
gated to the specific team so that the responsibilities for the various re-
quirements are explicitly assigned. Additionally, product teams that need a
generic solution for a requirement must explicitly define the requirements for
the platform team. Often the platform team is overloaded and cannot guaran-
tee that the next product release includes the required platform functionality.
This is a problem of high practical relevance, which has so far hardly been
studied [9].

3.1.4 Proof of justification of the platform team

While the platform team is a common approach to establishing a product
line, the justification of the platform team as a whole is often a problem. As
the platform team does not build customer products, it can not be justified di-
rectly from the benefit of the sold products. Thus, other justifications are
needed. Typical criteria are:

o Description of costs and benefits of the platform (for example release cy-
cles, stability, sales etc.)

o Strategic platform using other criteria, such as standardization, cost of
ownership of the client, etc.

If such explicit criteria cannot be given, the justification relies on the man-
agement support only, leading to internal tensions and sometimes abandon-
ing of the platform halfway to success.

3.1.5 High communication overhead

Product line development requires even more communication than single
product development. This communication is needed, as the development of
the various products must be coordinated. Additionally, the requirements for
the final products must be assigned either to the platform or to the products.
The high number of configurations leads to discussions as well, because the

Copyright © Fraunhofer IESE 2003 15

Overview of Problems

platform must be stable so that every product can use the functionality pro-
vided by the platform without conflicts.

3.1.6 Poor configuration management

The configuration management is another critical and difficult task. Due to
the large number of products, the complexity strongly increases. This is
mostly due to the fact that both the platforms as well as the various products
evolve over time – and they usually evolve independently. This leads to
problems in determining configurations, as different versions of product as-
sets and platform assets may relate to each other. Thus dependencies
among products and platforms need to be documented and related to de-
pendencies among versions. This multitude of different products together
with the high number of versions leads to a huge complexity, well exceeding
the complexity of the existing software development.

3.2 Requirements engineering

Problems that are emerging during the process of requirements engineering
are described in this subsection. The problems emerge while performing re-
quirements negotiations or influence them. Furthermore, methodical chal-
lenges and tool support are documented in this passage.

3.2.1 Influence of the architecture on requirements negotiation is not taken into ac-
count

On the one hand the platform architecture provides useful common function-
ality, but on the other hand, all products are based on that architecture and
“have to fit” into it. During the scoping process, the bounds of the architec-
ture have usually been set and so the capability of the platform has been
fixed. Though, while the architecture should be generic enough to provide
highest flexibility, fundamental modifications of the architecture can only be
performed under high effort and costs. Furthermore, a modified common ar-
chitecture will lead to additional costs for an adjustment of the products as
well.

Larger companies face the problem that the exchange of information be-
tween different business divisions is often very limited. During requirements
negotiations that are usually performed by the marketing division, new re-
quirements will be elicited and are advertised to the customers. Often, mem-
bers of the marketing divisions don’t know about the capabilities of the plat-
form and their constraints and do not recognize whether new requirements
are consistent with the platform. Thus, new requirements that have been
elicited, which do not conform to the architecture, can only be implemented

Copyright © Fraunhofer IESE 2002 16

Overview of Problems

with high effort and modification of the platform or even cannot be imple-
mented at all.

3.2.2 No description of variability for domain analysis

Modeling variability is an essential task in developing software product lines.
Variability means that besides the common parts that are shared by all
members of a software product line, each product has its own specific parts.
The definition of the common and the variable parts of a software product
line is mainly done during product line scoping. But, variability exists and
must be modeled in every phase of the product line development process:
elicited and analyzed in the analysis phase, designed in the design phase,
and finally implemented in the implementation phase.

Besides considering variability in different phases it is very important to take
into account that different classes of variability exist. It can be differentiated
between technical variability, comprising all kinds of variability that exist in
the product line infrastructure and functional variability, defining functional
and quality aspects of the system. Technical variability is defined in terms of
“how” a product line can be implemented; functional variability is defined in
terms of “what” the product line should be capable of.

The analysis of functional variability is necessary to identify aspects that are
mandatory, which means that they are common, and aspects that are vari-
able, that means, they are not mandatory but can be considered in a specific
context or not. To communicate and negotiate common and variable aspects
with the stakeholders, an appropriate notation must be chosen to guarantee
that domain experts and developers understand each other.

Variable system aspects are defined by means of so called variation points.
At a variation point, different specific variants can be chosen for each family
member to resolve this variation point. The following types of functional vari-
ability must be considered:

o Options
Optional aspects of a system can be integrated into products or not.
That means from a set of optional aspects, any quantity of these as-
pects can be chosen, including none or all. We distinguish between
options that can only be chosen if a specific condition holds and op-
tions where one has a free choice to integrate them or not. Hence,
optional aspects can be modeled by means of an or-relationship.

o Alternatives
From a set of alternative aspects, only one aspect can be chosen -
defining an exclusive-or/xor-relationship that means a “1 from n
choice”. Again, we distinguish between alternatives that are linked to
a specific condition, or not.

Copyright © Fraunhofer IESE 2003 17

Overview of Problems

o Optional alternatives
Finally a combination of optional and alternative aspects must be
considered. This is the case, if alternatives are available at a varia-
tion point, but it can be decided if these alternatives are relevant at all
– that means a “0 or 1 from n choice”.

If the analysis and the documentation of variability in the software product
line is not explicitly performed, common and variable parts cannot be identi-
fied and it is not clear which requirements should be implemented in the plat-
form and which in the potential products.

3.2.3 Missing domain analysis and domain description

Before starting the development of a software product line a domain analysis
should be performed. The analysis of the domain or the domains that are
covered by the product line helps to find commonalities and variability. A well
understood domain is a basis to find the scope of the product line and there-
fore to identify platform and product requirements. A missing domain analy-
sis and domain description leads to the situation that the platform require-
ments are not recognized, incomplete, inconsistent or simply wrong. Incom-
plete platform requirements may lead to a platform that is too inflexible and
too inadequate to provide a good basis for the products.

3.2.4 Discussions on design and not on requirements level

During discussions between members of the requirements engineering team
sometimes the problem surfaces that discussions are taking place on the
design and not on the requirements level. This problem may occur in the fol-
lowing situations:

o It is not clear, which specific problem is solved by an implemented
feature. That means, solutions are created for unidentified problems

o While deciding if a requirement becomes a platform or a product re-
quirement, the existing architecture is analyzed to answer this ques-
tion. The decision is then based on the question: “Is this requirement
easier to implement in the platform or in the product(s)?”

o The requirements are documented in a way, that does not describe
what the system should provide, but how it should provide it. That
means solutions are presented instead of presenting needs.

All these cases mentioned above lead to incorrect specifications and might
lead to building the wrong product line.

Copyright © Fraunhofer IESE 2002 18

Overview of Problems

3.2.5 No explicit requirements process

Besides the problem that the elicited requirements are only poorly docu-
mented or even not documented at all, sometimes the whole requirements
engineering process is not performed. If the requirements process, as a
phase of the software development process, is missing, the following phases
will get severe problems. If the requirements are not elicited, surely the
wrong system will be build. If the requirements are not documented, re-
quirements will be incomplete and therefore an incomplete system will be
build, again. If the requirements are not verified, they will become inconsis-
tent and dependencies among requirements will not be recognized. The re-
quirements engineering phase decides strongly about the success of the
project. This holds true for single product developments and is even more
important for a software product line development. Additionally, the following
activities in requirements engineering for software product lines should be
performed:

o determine platform and product requirements (scoping)

o identify commonalities and variabilities

o model commonalities and variabilities

o identify and model dependencies among requirements

If some of these activities are not performed, the success of the product line
will be very limited.

3.2.6 Missing tool support

The requirements engineering process must be tool-supported to handle the
huge volume of elicited requirements. There are several differences between
a single product development and a product line development and therefore
a tool must be capable to support that development, including the additional
activities that must be performed in the requirements engineering phase,
mentioned above.

All participants of this work group reported about the poor tool support for
the requirements engineering for product lines. Existing tools support only
single product development and therefore lack support for modeling com-
monalities and variabilities as well as variation points in requirements. Espe-
cially dependencies among variable parts are not supported and therefore
cannot be modeled. Also a requirements engineering tool should be capable
of managing evolution. That means over time, new requirements will be elic-
ited and must be integrated into the existing set of requirements. Dependen-
cies and relationships to “old” requirements must be verified, ideally auto-
matically. Further, the functionality of providing different views on the product

Copyright © Fraunhofer IESE 2003 19

Overview of Problems

line is missing in existing tools. A view on requirements of the whole product
line is useful to analyze platform and product requirements, whereas a view
on the requirements of only one product (including the used platform re-
quirements of the product and the special product requirements) helps the
product team to distinguish the requirements which should be implemented
for their special product – ignoring requirements on other products.

In summary, it must be said, that existing tools are not designed to support
the requirements engineering process for software product lines. Besides
general problems with the provided functionality and usability, the tools lack
in supporting the additional activities that must be performed in such a re-
quirements process.

3.3 Product- vs. platform specific problems

In this section, we will focus on problems relating to the question whether
specific requirements should be realized in the platform or in the products.

3.3.1 Sequence of integrating requirements into the platform

The question: “Which requirement should be integrated into the platform
next?” is a very critical point with a huge impact on the overall effectiveness
of product line engineering. Due to limited resources and short release cy-
cles, it is often difficult to decide which requirement to integrate into the plat-
form next. Typically the different product teams have multiple requirements
that they want to implement in the platform to build their product on. The
platform team must now decide on the order of requirements implementa-
tion. It often faces the problem of a lack of resources, whereas the product
team must guarantee its prescribed date of release for the product. Further-
more, not only new requirements have to be implemented, but also existing
requirements from the various products may have to be integrated into the
platform, too. Besides the need to decide on when to integrate a requirement
into the platform, it is also a problem to decide whether a requirement be-
comes a platform requirement at all. This is described in problem section
3.1.3.

3.3.2 No explicit prioritization of requirements

Another identified problem is that requirements for future releases are often
not prioritized. Therefore, especially the platform development team has dif-
ficulties to decide which requirement is important for the next release and
must be implemented first (see section 3.3.1).

Another problem is that requirements may be prioritized on the amount of
sales of a special product. That means, requirements for a champion prod-

Copyright © Fraunhofer IESE 2002 20

Overview of Problems

uct receive a higher priority than others, which might lead to a degenerated
platform, as the platform strategy is effectively ignored.

3.3.3 Realization of platform requirements in products

Because of the deadlines the product teams have to face, they often cannot
wait for the platform team to implement their requirements into the platform.
Thus, the product teams often implement the platform requirements as
product requirements in their products.

This leads to several problems. First, it might be possible, that in future re-
leases other products have to meet the same requirement which leads either
to the implementation of the same requirement twice, or the functionality of
the requirement must be removed from the first product and has to be inte-
grated in the platform now. Furthermore, the implementation of platform re-
quirements into products leads to “thinning out” of the platform and to “over-
loaded” products. This strategy is against the idea of a software product line
with a common platform and nullifies the advantages of the product line ap-
proach.

3.3.4 Strong influence of the pilot client

A strong pilot client, who might finance a major part of the product line de-
velopment, wants his requirements to be realized in the first place. Though
he pays for the development and therefore without him, the product line de-
velopment might not have been started at all, the implementation of his de-
sires (requirements) might not conform to the platform strategy. The problem
is, that if the requirements of the pilot client are realized solely, than the
scope of the product line might be too small and the platform is designed too
specific and not generic enough to cover the whole domain, for which the
product line was initially planned for. The architecture of the product line will
be strictly limited then, and cannot be changed for potential future products
without very high effort. On the other hand it must be taken into account, that
without the pilot client the development of the product line would not have
started at all and that the success of the product line as a whole depends on
the first product. The pilot client is also very useful for analyzing the domain
and for eliciting essential requirements.

3.4 Architectural problems

Problems that emerge from architectural constraints are discussed in this
subsection. Additionally architectural decisions that reach back into the re-
quirements engineering process are discussed here, too.

Copyright © Fraunhofer IESE 2003 21

Overview of Problems

3.4.1 No use of the architectural advantages

The decision to develop a software product line is mainly influenced by the
expected benefit of the platform that should provide a common architecture
for all the members of the product line. All products should fit into the pro-
vided architecture and should benefit from it. The problem is that the func-
tionality, the interfaces and constraints of the common architecture are usu-
ally very abstract and complex and are possibly not well understood by every
member of the development unit. The ignorance of the capabilities of the
platform architecture leads inevitably to the fact that the architecture is not
used fully. Therefore, requirements that have already been implemented into
the platform might be implemented again in various products. Multiple im-
plementations of a requirement lead in the first place to an overhead, which
is linked to avoidable, possibly high costs and secondly to an useless plat-
form because the capabilities are not used. A major problem arises if the
multiple implemented requirements are constrained by other requirements
so that the platform stability becomes vulnerable. Again, the implementation
of (originally) platform requirements in the products will lead to a thinning out
of the platform and reduces the advantages of the platform.

3.4.2 Poor description of the generic architecture

Often the generic (reference) architecture is not or only poorly documented.
The missing documentation of the platform results in a lack of understanding
of the platforms capabilities. Therefore it cannot be used adequately and it is
not clear which feature belongs to the platform and which does not. A good
documentation of all the features provided by the platform is mandatory to
guarantee that especially the product teams understand the capabilities of
the generic architecture. In particular, this requires good documentation of
the generic interfaces.

Copyright © Fraunhofer IESE 2002 22

Categorization of Problems and
Organizational Constraints

4 Categorization of Problems and Organizational Constraints

There are many context factors that influence product line development. A
set of context factors and organizational and product line constraints that in-
fluence the implementation and architecture of a product line and of the
product line as a whole can be found in [3].

As we focus here on the situation for requirements engineering, as opposed
to architecture and implementation, we need to use a slightly adapted ver-
sion of this characterization schema. This is now described in detail:

Entry points: Three different starting situations can be distinguished for a
product line (cf. [4]):

• Independent PL: a new product line is developed from scratch

• Integrating PL: product line is introduced while some products are al-
ready under development

• Reengineering-driven PL: the core product line assets are reengi-
neered from legacy systems

Number of independent features: How many features relevant to distin-
guishing the various members of the product line can be identified?
The measure is relative to the overall size of the functional area. Meaning
larger functional areas can also be expected to have more features without
changing the value of the measure. The scale has the values low, medium,
high (e.g., for a domain estimated at 100 kLoC 10 features would be low,
while 100 would be high).

Structure of the product line: This captures whether variabilities among
systems are dominated by optionality or alternative. Variabilities can be ba-
sically classified in two types: options, i.e., features which can be present or
absent, and alternatives, i.e., features for which various alternative behaviors
can exist, but which have to be present in principal. Usually, both of them will
exist, thus we are looking here at the predominant type of variability. Scale
is: optional, neutral, alternative (e.g., 20% options, 80% alternatives would
still be captured as alternative).

Variation degree (logic): What percentage of a system is from a logical
(i.e., from a requirements engineering point of view) the same for all the sys-
tems? low, medium, high (low < ~40%, high < ~80%).

Copyright © Fraunhofer IESE 2003 23

Categorization of Problems and
Organizational Constraints

Variation degree (realization): What percentage of a system is covered by
the core (i.e., the overall common) part? low, medium, high (low ~40%, high
~80%).

Number of products: What is the number of products the product line is
expected to contain? Scale: low, medium, high (low<=5, high>=12)

Complexity of feature interactions: This describes how interrelated fea-
tures are on average. Two features are called interrelated if one modifies the
behavior of the other (i.e., the functionality is not just the sum of the two).
This is again measured as low, medium, high.

Feature size: The size of a feature is basically the amount of code relevant
to implementing it. It is measured on a scale ranging from low (approx. one
procedure/method/ object) to high (a complete subsystem).

Performance requirements: The performance requirements (memory, run-
time) are measured relative to what is not easy to provide. Thus, the per-
formance requirements are called strict, if they are expected to be a high
priority design rationale to squeeze out the required performance level. Oth-
erwise (i.e., it is obvious that the required performance levels can be
achieved) the performance requirements are called loose.

Coverage: This basically measures to what extent the potential feature
combinations will actually occur. For example, if 100 optional features exist
then the domain contains 2100 possible combinations; if actually only a small
number of products (10) will be developed than the coverage is obviously
low. Conversely for high coverage.

Maturity: If the domains relevant to the product line are very mature, i.e., the
exist already for quite some time and they are well understood.

Stability: If the domains relevant to the product line are not expected to
change in the near feature (e.g., as shown by standardization) then they can
be regarded as being of high stability. Scale: low, medium, high.

Openendedness: This describes the range of functionality that may be rele-
vant to the systems now and in the future (i.e., can it be expected that the
currently identified set of features will also cover future systems well or is
there an expectation that future product line members may need other fea-
tures?). As opposed to maturity and stability this does not address the
change in the features that are relevant to a domain, but with respect to the
domains that are relevant to the system family. Scale: open, neutral,
bounded.

Copyright © Fraunhofer IESE 2002 24

Categorization of Problems and
Organizational Constraints

Architecture / Implementation: This highlights the means by which the fi-
nal implementation is envisioned: This focuses on the question which im-
plementation approach is used for the product line:

• a component-based approach is used for product composition

• an object-oriented framework is the basis for the development

• a domain-specific language is used

• a different approach is used.

The following table provides a characterization of the various case studies in
terms of the characteristics defined above. We will refer to this characteriza-
tion later when we discuss the potential for applying certain solution ap-
proaches to specific cases.

Nr Characteristic HP Bosch IESE/
Market
Maker

RWTH
Aachen /
cooperation
partner

sd&m

1 Entry Points Integrating Inde-
pendent

Integrating Independ-
ent/integrating

Integrating

2 #independent
features

Medium High Medium Medium-high Medium

3 Structure Optional Optional Optional Alternative
(10% optional)

Optional

4 Variation degree
(logic)

High High Medium ?? High

5 Variation degr.
(realization)

Medium –
high

low Medium High High

6 # of Products High Very high Medium High High
7 Complexity of

feature interact.
Low-
medium

Low Low-
medium

High Medium

8 Feature size Low-high Low Low-
medium

High Low-
medium

9 Performance
requirements

Strict Strict Medium-
Strict

Strict Strict

10 Coverage Low-
medium

Low Low ?? Low-
medium

11 Maturity High High Medium High High
12 Stability Low High Medium High High
13 Openendedness Open Neutral Open Open Open
14 Architecture /

Implementation
Compo-
nents

Frame-
work/
Compo-
nents

Framework Framework Frame-
work/
Compo-
nents

Table 3 Product Line Characteristics

Copyright © Fraunhofer IESE 2003 25

Lessons for Product Line
Development

5 Lessons for Product Line Development

For the problems described in Section 3 we identified possible solutions.
These solutions have either been successfully applied in one of our organi-
zations and product lines or are generally accepted solutions that the whole
workgroup agreed on.

5.1 Organization and Management

5.1.1 Justification of the platform approach as a process model by a cost / benefit-
analysis

Cost/benefit analysis must usually be performed on the basis of case evi-
dence or plausible yet hypothetical scenarios. In many cases, benefit is most
appropriately expressed in non-monetary terms. Improvements of maintain-
ability, flexibility, quality, development time, and the like are often regarded a
more viable basis for management decisions than monetary values would
be. Costs related to platform development, however, must be expressed in
terms of financial expenses.

Detailed quantitative justifications of costs and benefits based on actual
measurement data can rarely be provided. In most cases, it is perceived as
too complex to perform the required measurements. This is especially the
case for such complex measurement tasks like platform development. Ex-
ceptions can occur in situations where the respective measurement data is
needed for other purposes as well (e.g., regular controlling or specific man-
agement purposes). In the surveyed organizations we are not aware of such
data.

The following list presents arguments and case evidence in favor of platform
development based on experience from our organizations:

• Platform development allows for shortened release cycles.

• Platform development facilitates product planning and allows for more
accurate estimation of product development efforts. The reasons for this
are:

1. new product development becomes less complex and

Copyright © Fraunhofer IESE 2002 26

Lessons for Product Line
Development

2. experience from previous product developments is well available and
can often be applied relatively reliably to forthcoming development
projects.

• Platform development allows for the rapid development of prototype
products.

• Platform development reduces the defect rate of new products as com-
pared to development from scratch. When trying to demonstrate this ef-
fect, it can become difficult to break down the overall defect rate into de-
fects per component. In addition, the overall defect profile will change
and require new testing strategies (e.g., the percentage of interface de-
fects is likely to increase, while component-internal defects would be re-
duced).

• Through standardization effects from platform development, system in-
stallation can become standardized and unified. As a consequence, new
systems can be deployed more efficiently.

• Platform development makes the overall software development environ-
ment (i.e., organization, processes, practices, and tools) more stable.

• Product standardization through platform development in the embedded
systems domain reduces development costs per product device. Overall
product costs decrease.

• Platform development is a prerequisite to managing a large variety of
product variants.

• In some situations, for instance in the case of value-based product pric-
ing, platform development provides the possibility to sell an existing fea-
ture several times without causing any additional costs.

5.1.2 Independent platform team

How can it be avoided that platform development through independent
teams is linked too closely to specific product needs? - During our investiga-
tions, we found the following measures to avoid or overcome this problem:

• Always demonstrate the benefit of new platform developments using ac-
tual client products.

• Plan releases of the platform (i.e., new features or architecture modifica-
tions) with regard to actual client needs across several client-specific
projects or across several versions of the end product. However, balance

Copyright © Fraunhofer IESE 2003 27

Lessons for Product Line
Development

such measures carefully with the risk of focusing too strongly on specific
clients.

• Implement organizational measures that ensure developers are aware of
client needs. Examples of such measures are:

1. All developers are responsible for features, while only a relatively
small integration team will configure the final products and combine
the code for the selected features (cf. [13], [14]).

2. Platform developers are exchanged from time to time with product
development teams.

• Establish some mechanism that ensures continuous coordination be-
tween platform and product teams. An example of such a measure is the
establishment of architecture review boards.

5.1.3 Difficult cooperation between platform and product development teams

One simple but not so easy to enforce measure is to foster information ex-
change between platform and product development teams. This can be
made concrete with joint meetings, joint discussions about requirements or
integration of other teams into requirements or development decisions of the
own team. By dividing the responsibilities for requirements between platform
and product team communication can be made clearer as there is an explicit
ownership and responsibility of one team and not a shuffling of the responsi-
bilities of one team to another.

If the ownership of components to the platform team is made so explicit that
the components needed by the product development teams are really
bought from the platform, a customer supplier relationship between the two
teams can arise that makes communication easier. But this is only possible
for non-core components, if much functionality of the platform is always in
the product (if the platform has a very high coverage, cf. section 4) buying
the same functionality for each product that is built does not make sense.

Another organizational measure could be to introduce a responsible for the
product line that has the responsibility for the requirements of the product
line including the common platform and all derived products. This responsi-
ble person can coordinate communication and negotiation between platform
and product requirements

Copyright © Fraunhofer IESE 2002 28

Lessons for Product Line
Development

5.1.4 Proof of justification of the platform team

An actual proof of justification of the platform team in quantitative terms is
very difficult to achieve (cf. introduction of cost/benefit analysis, above).
However, it will most often be possible to measure some kind of evidence for
the benefit of a platform team. A good starting point for deriving such evi-
dence is the identification of important strategic goals of the organization that
can be achieved through platform development and the contribution of plat-
form teams. Examples of such strategic goals are improved product main-
tainability, more flexible organizational structures, or reduced cost of owner-
ship. In some situations it can be relatively easy to identify quantitative indi-
cators for such strategic goals that can also be measured with little overhead
cost.

If a specific measurement program is set up it is important that measurement
is performed in goal-oriented manner with a clear focus on important busi-
ness goals [15]. In addition, measurement procedures and actual use of
measurement results must be linked closely with the organization, its proc-
esses, and its decision-making procedures [16].

5.1.5 High communication overhead

Depending on the organizational setup the following options exist to cope
with the high communication overhead that may be related to product line
development:

• Standardize interfaces between components
Establish clear guidelines and templates on how to document inter-
faces between components. This reduces significantly the communica-
tion, which is otherwise needed to explain the structure of the system.
Every contributor and reviewer expects and uses the same structure.

• Establish domain teams for components
Once the features are allocated to components, the responsibility for
that requirement and its resolution is completely transferred to the
component team.

• Component-driven development (product line specific)
Component teams, which have a clear functional focus and deep un-
derstanding of the domain, are responsible to elicit and manage the
requirements themselves. They actively identify product requirements
and determine the ones they can potentially address. It should be
noted that this requires an additional role, which takes care of ‘left-over’
requirements in the product teams. This role may be an architect, who
allocates the remaining requirements to component teams or triggers
the creation of a new component team.

Copyright © Fraunhofer IESE 2003 29

Lessons for Product Line
Development

• Creation of templates to describe requirements and features
(cf. Standardize interfaces between components)

• Standardize documentation
Define the structure and location of the documentation. Also take care
about naming conventions to avoid confusion and lengthy discussions.

• Synchronized releases
Synchronized releases support cooperation of all developers, testers
and product line stakeholders and in particular between domain engi-
neering and application engineering.

• Well-defined escalation mechanisms
In case these are not in place there is a tendency of endless peer-to-
peer discussions.

• Clear responsibilities
It should be clear who owns which artifacts in the requirements proc-
ess to avoid misunderstandings and duplication of work.

• Establish configuration management for requirements
Even organizations which have established configuration management
for other software development work-products do not always practice
this for requirements as well. Specific requirements versions help to
avoid turmoil in the process.

• Establish a requirements process
This practice comes along with clearly defined responsibilities. It adds
the aspect of time, decision points and involved work-products. This
avoids having too many communication sessions with inadequate entry
criteria.

• Transparent storage of requirements
Every stakeholder in the requirements process should know where the
requirements information can be retrieved and updated. If this is not
known there may be lengthy delays about requirements.

• Use of stakeholder-specific views
Requirements may be established on a variety of levels of detail. Not
every stakeholder is interested to read through the complete material.
Thus, there should be stakeholder-specific views available that only
represent the information needed.

Copyright © Fraunhofer IESE 2002 30

Lessons for Product Line
Development

5.1.6 Poor configuration management

At the moment there are only few tools that integrate configuration manage-
ment functionality with product line functionality. The exception we know of is
the GEARS Tool [http://www.biglever.com] that supports software mass cus-
tomization with a product line code repository.

It is possible to do configuration management on a product line without
product line support if the produced variations are reintegrated into the CM-
repository after building the products. This is only feasible if only few varia-
tions are produced. A possibility that holds for code but not for requirements
documents is to explicitly address variability only at build time and not in re-
quirements documents or in code. Addressing variability at build time only
leads to a more component based development approach but has the disad-
vantage that some possible commonalities have to be duplicated.

5.2 Requirements engineering

5.2.1 Influence of the architecture on requirements negotiation is not taken into ac-
count

In a product line an explicit architecture normally exists and serves as a ba-
sis for communicating about the system. So, when communicating about the
requirements, either with external customers and future users of the system
or with internal customers like marketing or component providers, the archi-
tecture should be the basis of the negotiations.
Explicitly describing the architecture in an adequate way and communicating
the architecture helps in making the influence of the architecture clear to all
involved persons. If internal or external customers can get an overview of
how the architecture of the product line looks like (e.g. in a few pages com-
ponent diagram) the relation of requirements to architecture can get clearer.
To be able to produce these diagrams, an architectural training of designers,
requirements engineering and product line engineers could be useful.

If the functional and non functional requirements of the different products
and their relation to the architecture are explicitly described requirements
changes or additional requirements can better be mapped to changes in the
architecture.

An organizational measure to strengthen the importance of the architecture
for the product line is to establish a “round table” including requirements en-
gineers, lead architects and marketing and sales department where the ar-
chitecture is communicated, changes are negotiated and the influence of
new requirements is made explicit.

Copyright © Fraunhofer IESE 2003 31

Lessons for Product Line
Development

A further organizational measure could be to integrate the architects into ne-
gotiations with customers. The architects, having a good overview of the
system can often give precise estimates on what influence a changing re-
quirement has on the architecture. If an organizational integration is not
possible helpful support could be that the architects provide readable and
understandable documentation on the influence of changes on the architec-
ture to sales and marketing.

5.2.2 No description of variability

A first step towards a description of variability is the introduction of a uniform
documentation structure for all products in the product line. Only if the re-
quirements for all products are described with the same formalism and in the
same way it is possible to compare the documents and to identify
commonalities and variabilities among the product requirements.

To foster an explicit description of variability a notation is needed to explicitly
describe commonality and variability. This notation could either be provided
in templates for common and variable requirements that propose a common
notation or could be realized in a tool that makes it possible to gather and
model variants. Training for all requirements engineers in product line con-
cepts and in formulating variabilities can also support a broad use of a vari-
ability notation.

With an explicit “function team”, a team that is responsible for an area of
functionality and can describe requirements on that functionality independent
of the concrete product it is possible to abstract from concrete products and
start to think about commonalities and variabilities.

5.2.3 Missing domain analysis and domain description

The domain analysis step helps in clarifying the principle commonalities and
variabilities in the domain and their relation to existing and planned products.
By realizing and communicating variability only with low-level, more technical
requirements, not with user requirements, the use of variability is limited to
the technical level of system or software requirements and a domain analy-
sis can take place there. The user requirements then have to be explicitly
linked to the variable software/system requirements.

Feature Trees, as described in FODA [12] [10] are a good notation to get an
overview of the common and variable features within a domain and between
the products. A feature diagram can give a condensed view on commonal-
ities and variabilities in the domain. But feature trees describing variability in
the domain should not be delivered to the customer because they show the
range of all possibilities within the product line and lead the customer to
wanting features they do not really need are not willing to pay for.

Copyright © Fraunhofer IESE 2002 32

Lessons for Product Line
Development

An explicit domain analysis is not always needed. In small and mature do-
mains (or sub domains) the variabilities may be known enough to do without
an explicit and documented domain analysis.

From an organizational point of view it would be a possible solution to make
the quality assurance group responsible for the domain analysis documents
and the domain documentation. As the quality assurance personnel has to
understand the domain in order to understand problems, solutions and im-
plementation in the domain, it is an adequate task for them to produce and
maintain domain documentation (given adequate resources).

5.2.4 Discussions on design and not on requirements level

Especially in technical domains it can often happen that discussions be-
tween requirements engineers and developers happen on design level, so
the engineers talk about solutions instead of problems or functionality. An
organizational measure to overcome this problem is it to fix the functional re-
sponsibility of people more precisely and broaden the responsibility of the
roles. So a developer may also be responsible for the requirements and thus
gets the possibility to talk with users or customers in a small area of func-
tionality. This organizational change is only possible in smaller organizations
and with the appropriate staff.

A broader measure for establishing a requirements culture in the organiza-
tion is to provide requirements engineering and requirements management
trainings to software engineers and developers.

5.2.5 No explicit requirements process

The nonexistence of an explicit requirements process is not a product line
specific problem but gets more profound with a product line. The measures
described in 5.2.2 could also partially solve this problem. A first step toward
a requirements process within the product line could be to start with re-
quirements management, so to collect the requirements from the involved
parties, classify them, make changes and variability transparent and make
them accessible for all. A further step could be to make sure that traceability
within the requirements and from the requirements to the architecture is es-
tablished.

5.2.6 Missing tool support

Currently there are no requirements tools with real product line support. A
recent study by the SEI [11] showed the following results for tool usage in
the requirements engineering process for product lines:

Copyright © Fraunhofer IESE 2003 33

Lessons for Product Line
Development

Tool Percent

Rational Requisite Pro 26

Doors 19

Slate 3

Others or Homegrown 50

Table 4 RE Tools used for Requirements Engineering of Product Lines

The high percentage of the use of other or homegrown tools is an indicator
for the fact that there is no real product line requirements tool.

In order to get product line support with the established tools, there are two
possibilities:

• Extend the tool if it’s possible with self implemented extensions. Unfortu-
nately this is not possible with every tool and leads to an implementation
effort that is not feasible in all situations

• Invent pseudo variability, so to use elements of the tool to indicate com-
monality and variability. In this case, the tool provides no product line
support (e.g. instantiation support or a view on the products) and the
variability exists only on graphical or syntactical level.

5.3 Product vs. platform specific problems

5.3.1 Sequence of integrating requirements into the platform

In a product line situation many projects simultaneously depend on the plat-
form. Thus, the sequence in which requirements are integrated into the plat-
form becomes a key issue, as it must be ensured that the required function-
ality that should be reused by a future product is already part of the platform
when it is needed.

When analyzing solutions to managing the requirements for the platform, we
must differentiate two issues: mechanisms we put in place in order to identify
a sequence of requirements integration steps and the decision criteria used
for determining a specific sequence. The discussion of these criteria does
also overlap with the sections 5.1.2 through 5.1.4.

Key mechanisms to put in place in order to ensure an adequate sequence of
requirements integration into the platform are:

Copyright © Fraunhofer IESE 2002 34

Lessons for Product Line
Development

• As rather extreme measures (which are nevertheless applied):

o Platform-Freeze, i.e., at a certain point no more functionality is added
to the platform. The problem with this approach is obvious as the
product line further evolves.

o Everything is platform, i.e., each functionality is developed in a reus-
able fashion as part of the platform. The problem here is typically, that
the degree of reusability of different elements of the platform will be
very different. Without proper analysis a lot of effort may also either
be wasted (if unnecessary effort is spent on genericity) or a lot of
functionality in the so-called platform may still not be reusable.

• A basis for organizing the integration of requirements into the platform is
to establish communication forums. These aim at making the necessary
requirements of the various products widely known:

o A typical approach is job rotation. This enables the stakeholders of
platform development (developers, managers) to better understand
the product needs.

o Another approach is discussion forums. These may be informal meet-
ings or rather formal like an architectural board.

• In terms of a true decision instrument from a managerial point of view:

o Either a single key manager is responsible (he then needs to be re-
sponsible for the various products and the platform at the same time).

o Or an architectural board is established as a decision body.

As decision criteria for integrating requirements into the platform we also
found many measures available:

• Often the number of products in which the functionality appears is used as
a basis for determining whether and when functionality should be inte-
grated. While this has the advantage of being a very simple criterion, it
may also be misleading, as the benefit from reuse is not directly related to
the number of products. In some cases even functionality that could be
reused quite often is better implemented anew for each system [8].

• The effort required for the features may also be used as a criterion. That
is the features that require more effort are integrated, as they provide a
higher benefit when reused. Again this can be misleading [8].

• Additionally, we can put a weight (the importance) on the features and the
sum of these weights then indicates its priority for integration. While this

Copyright © Fraunhofer IESE 2003 35

Lessons for Product Line
Development

makes features for reuse available that are very important for customers
and thus improves the potential for fast reaction to important customer
demands, it may still be misleading in terms of the overall benefit.

• From the point of view: which features should be integrated into the plat-
form? the ideal criterion is to use the underlying benefit-/risk-relation as
the yard-stick [8]. This, however, requires the ability to analyze this to
some degree (e.g., cost estimation). If this is performed it provides an op-
timal measure to determine which functionality should be provided in re-
usable manner for some systems – and which not. These criteria are par-
ticularly important for the incremental transition to a product line approach
[5].

• On the other hand, if the question is not whether something should be
part of the platform, but merely when it should be brought into the devel-
opment process, then analytical studies showed that the best criteria are
to use the remaining buffer between when the functionality is expected to
be completed and when is it needed for integration in a product as the de-
cision criterion.

Both, an adequate approach to decision-making and communication as well
as the right selection criteria must be used in order to ensure that the se-
quence of requirements integration into the platform is adequate. In addition,
this problem can (and should) be somewhat simplified by introducing regular
platform release cycles (e.g., 6 month), to ensure high quality and transpar-
ency of the status of the platform.

5.3.2 No explicit prioritization of requirements

This issue is of course strongly related to the previous section which dis-
cussed how to identify functionality that should be integrated into the plat-
form.

Addressing the issue that no explicit prioritization of requirements from a
product perspective happens actually requires to solve two problems:

• First, a prioritization process needs to be established in the organi-
zation, so that everybody adheres to it.

• Second, prioritization criteria must be found that, if applied, lead to
an optimization of the organizational benefit.

Both issues are also interrelated, as a prioritization process will usually only
be accepted, if it leads to benefits for all involved stakeholders.

Copyright © Fraunhofer IESE 2002 36

Lessons for Product Line
Development

In the context of product line development, introducing a prioritization proc-
ess requires to synchronize:

• The overall prioritization of product requirements (which require-
ments should be introduced into which product),

• The prioritization of platform requirements (which requirement
should be introduced when into the platform), and

• The development of the products.

Thus, a process for requirements prioritization in a product line context
needs to be shared by the product management team, the platform devel-
opment team, and the various product development teams. In order to in-
troduce such a process in an organization, it is important to create visibility
of the priorities of the various requirements and in particular to make trans-
parent which requirements will be implemented at what point in time in the
platform, respectively the products. This is more easily communicated of
course, if the overall organization has an underlying, common release cycle.

In order to create the required transparency, it is possible to provide tool
support, so that each involved party can at any point check the current
status of the requirements. Frequent meetings of all relevant stakeholders
can serve the same purpose. An underlying prerequisite for installing such a
process is of course an agreement on the main criteria relevant to the re-
quirements prioritization.

A large variety of possible criteria exist. Of course, we can apply certain
standard criteria from single systems requirements management like cus-
tomer demand, the turnover that is expected from the resulting products or
the development time required for these products. However, in the context
of product line development some variations of these criteria should be
made due to the impact of the available reuse potential. In an ideal situation
one would balance the required investment (development time, effort) with
the resulting revenues. However, the investment itself depends strongly on
the question of whether certain functionality is developed in a product-
specific manner or as part of the platform. Thus, the requirements prioritiza-
tion is strongly linked with this question, while usually they are treated as
being independent. An approach to do this is the PuLSE-Eco approach [5].
Thus, while in principal we could treat the decision of whether something
should be part of the platform or not and whether some functionality should
be part of a certain product independently, they are not really independent.
A low-value functionality which can be easily reused across a number of
products, contributing a small amount to the value of each of these prod-
ucts, can be more appropriate than adding a large part only to a single
product.

Copyright © Fraunhofer IESE 2003 37

Lessons for Product Line
Development

Also, the earned revenue as a single metric can be rather misleading. For
example, if a single product dominates the overall revenue stream. In this
case, this approach may lead to a strong focus on only a single product,
endangering the overall integrity of the product platform.

5.3.3 Realization of platform requirements in products

How can it be avoided that platform requirements are implemented in the
products instead of in the platform? - Most of the measures we have found
to fight this problem are organizational precautions:

• Reduce application engineering to the minimal amount possible: ensure
that feature teams in domain engineering perform all development, while
client-specific teams derive the final products by integration of platform
components only.

• Perform systematic product line scoping in order to clarify which re-
quirements shall be implemented within the platform. Based on this clari-
fication, actively enforce that these requirements are actually imple-
mented in the platform only.

• Establish some mechanism of job rotation between platform and product
development. This creates awareness among the developers about
where a requirement is implemented best. Also informal communication
paths are established this way, so that negotiations about the best solu-
tion for implementing a specific requirement can proceed on developer
level between platform and product teams.

• Install an architecture review board that fulfils cross-sectional functions
and mediates across product and platform development. The architec-
ture review board shall be responsible for the overall architecture. For
this reason, it decides how and where requirements are to be imple-
mented.

• Enforce the development of explicit architectural models (e.g., based on
UML models) that include clear definitions of their semantics. Such
models help communicating the product architecture throughout the or-
ganization. They create awareness of the role of the platform and can be
consulted when deciding about the implementation of new requirements.

• A more social than organizational measure is to enforce a platform
commitment of the developers. This can happen by introducing mile-
stones for the integration of requirements/features into the platform that
are independent of project platforms.

Copyright © Fraunhofer IESE 2002 38

Lessons for Product Line
Development

5.3.4 Strong influence of the pilot client

Overly strong influence of the pilot client can become a problem. However,
before discussing possible solutions to this problem, it must also be noted
that the existence of a pilot client is a prerequisite for the successful estab-
lishment of product line development. For this reason, pilot clients should be
regarded more as an opportunity than as a source of problems.

In order to avoid that the product line becomes too narrowly focused on the
pilot client, the following measures have shown to be useful precautions:

• While working with the pilot client, never loose the overall domain out of
sight. For instance, perform a domain analysis in parallel with the pilot
client driven platform development.

• When having designed the platform based on the needs of a pilot client,
walk through the features of the platform and explicitly document ex-
pected deviations required by other clients. This creates awareness for
other clients' needs and reduces overly strong dependency from the pi-
lot-client.

• Carefully develop a vision of the product line and clearly communicate it
throughout the organization. Even under time pressure when working for
a specific client, this can help avoiding unwanted dependency from this
client.

Take care that platform components are sufficiently generic and well encap-
sulated. This generally strengthens platform applicability to future projects.
However, stand the temptation to make the components too generic and
complex (e.g., avoids unnecessarily rich component interfaces; rather ex-
tend the interfaces later, when needed).

5.4 Architectural problems

5.4.1 No use of the architectural advantages

Ensuring that architectural advantages are adequately used in a product line
requires three capabilities to be in place:

• The architecture must be explicitly defined and documented.
This can be done by any one of the existing architecture notations [6], [7].

• The architecture and its underlying concepts must be communicated to
the different stakeholders who are expected to respect it.
It is not sufficient to just define the architecture. It needs to be properly

Copyright © Fraunhofer IESE 2003 39

Lessons for Product Line
Development

and adequately communicated as well. Key to the success of this is the
active dissemination of this information:

o The various stakeholder needs must be addressed and the necessary
information must be presented to them.

o An adequate notation must be found to communicate this information
also to stakeholders like marketing or sales personnel who are not apt at
reading technical notations.

• The adherence to architectural rules and the appropriate exploitation of
the available architecture must be enforced.
For enforcing the architectural principles responsible roles must be in-
stalled. This can be a lead architect or a whole architecture review board
[13]. This process needs to start early: already when new projects are un-
der negotiation it must be ensured that they are compatible with the exist-
ing architecture.

All three principles must be in place in order to ensure adequate exploitation
of the architecture.

5.4.2 Poor description of the generic architecture

Having a documented product line architecture in place provides an excel-
lent vehicle to improve effectiveness in software development. This can be
used to clearly separate product development from platform development,
thus avoiding duplicate work and inconsistencies. Performing domain analy-
sis is a prerequisite for that.

Specific solutions are:

• Establish architectural roles which have clear responsibilities, e.g.:
o Product architect
o Product line architect
o Domain architect
o Component architect
Each architect has a clear scope on what to document. E.g.: The product
line architect concentrates on architectural style and principles and de-
scribes the boundary between framework and product. The component
architect describes capabilities of the component and its relationship to
other relevant components.

• Provide architectural scenarios, which communicate the capability from
usage (consumption) perspective.

Copyright © Fraunhofer IESE 2002 40

Lessons for Product Line
Development

• Establish explicit traceability between (Product-) requirements and archi-
tecture solutions.

• Explicit architectural modeling (e.g. with UML), which includes semantics,
provides a common understanding between the parties.

• Establish an architectural training curriculum to ensure common skill sets.

Architectural guidelines, checklists and templates streamline daily coopera-
tion. Often those are directly derived from architectural training curricula.
Some organizations establish even organizational templates, which can be
customized.

Copyright © Fraunhofer IESE 2003 41

Conclusions and Outlook

6 Conclusions and Outlook

Software product lines are a new and intriguing area of software engineering
technology. While already heavily in use in industrial practice all its relation-
ships and constraints are not yet fully understood. In this report we under-
took the endeavor to collect and organize existing problems in product line
development along with potential as well as proven solutions.

This challenge could only be undertaken by a continuous and intensive co-
operation. In our case this cooperation lasted for nearly three years, includ-
ing five organizations (temporarily more) and was facilitated through the or-
ganizational body of the GI (the German association of computer scientists).

A major part of our effort was dedicated to the identification of existing prob-
lems (or needs) in product line development. We identified here the following
main problem categories:

� Organization and Management

� Requirements Engineering

� Product- vs. platform-specific

� Architecture

These categories resulted from a systematic gathering of known problems
along with a clustering. While we took of course a broader look, our collec-
tion might still be biased due to the specific perspectives of our organiza-
tions. However, we believe that due to the diversity of the participating or-
ganizations a rather good coverage of the problem space could be achieved.

Based on both our own experience as well as our understanding of the tech-
nology we derived and described potential solutions for the main problems
(cf. Section 5). As far as possible, we described necessary preconditions for
the applicability of the solution approaches. However, this deserves much
further work. We are still at the beginning of a systematic understanding of
the interdependence of software product line techniques and the context fac-
tors. This report provided a first step in this direction.

Copyright © Fraunhofer IESE 2002 42

References

7 References

[1] Cristina Gacek, Peter Knauber, Klaus Schmid, Paul C. Clements;
Successful Software Product Line Development in a Small Organi-
zation. Chapter 11 in Software Product Lines: Practices and Pat-
terns, Addison Wesley Longman, Paul Clements and Linda North-
rop, 2001.

[2] Klaus Schmid and Martin Verlage. The Economic Impact of Product
Line Adoption and Evolution. IEEE Software, Vol. ??, No. ??,
July/August 2002.

[3] Klaus Schmid and Cristina Gacek. Implementation Issues in Product
Line Scoping. Software Reuse: Advances in Software Reusability –
Proceedings of the 6th International Conference, ICSR'6, Vienna,
Austria, June 2000, LNCS 1844, pp. 170-189.

[4] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua and
Dirk Muthig, Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud.
PuLSE: A Methodology to Develop Software Product Lines. Pro-
ceedings of the Symposium on Software Reusability (SSR’99), pp.
122-131, 1999.

[5] Klaus Schmid, A Comprehensive Product Line Scoping Approach
and Its Validation, Proceedings of the 24th International Conference
on Software Engineering (ICSE24), pp. 593-603, 2002.

[6] Len Bass, Paul Clements, and Rick Kazman, Software Architecture
in Practice, Addison-Wesley, 1998.

[7] Jan Bosch. Design and Use of Software Architectures, Addison-
Wesley, 2000.

[8] Klaus Schmid. Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines. University of Kaiserslautern,
IRB Verlag, 2002.

[9] Klaus Schmid, Stefan Biffl. Managing Product Platform Require-
ments, forthcoming.

[10] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel. Product Line
Analysis: A Practical Introduction. Technical Report CMU/SEI-2001-
TR-001, Software Engineering Institute, Carnegie Mellon University,
June 2001.

Copyright © Fraunhofer IESE 2003 43

References

[11] S.Cohen. Product Line State of the Practice Report. Technical Note
CMU/SEI-2002-TN-017. Software Engineering Institute, Carnegie Mel-
lon University, September 2002

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, November 1990

[13] Peter Toft, Derek Coleman, Joni Ohta. A Cooperative Model for
Cross-Divisional Product Development for a Software Product Line.
Software Product Lines: Experience and Research Directions; Pro-
ceedings of the First Software Product Line Conference (SPLC1).

[14] Lisa Brownsword and Paul Clements. A Case Study in Successful
Product Line Development. Technical Report. CMU/SEI-96-TR-016,
1996.

[15] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal
Question Metric Paradigm, Encyclopedia of Software Engineering,
John J. Marciniak (Ed.), John Wiley & Sons, pp. 528-532, 1994.

[16] Robert Kaplan and David Norton. The Balanced Scorecard, Harvard
Business School Press, 1996.

[17] Ernst Denert and Johannes Siedersleben. Wie baut man Informati-
onssysteme? - Überlegungen zur Standardarchitektur (in German).
Informatik Spektrum, pp. 247-257 (2000).

[18] Andreas Birk, Gerald Heller, Isabel John, Thomas von der Maßen,
Klaus Müller, Klaus Schmid. Product Line Engineering: The State of
the Practice. IEEE Software, Vol. 20, No. 6, pp. 52-60, Novem-
ber/December 2003.

[19] Andreas Birk. Three Case Studies on Initiating Product Lines: En-
ablers and Obstacles. Proceedings of the OOPSLA 2002 PLEES
Product Line Engineering Workshop (2002).

Copyright © Fraunhofer IESE 2002 44

Participants

8 Participants

Andreas Birk is a consultant and software engineering
professional at sd&m. His special interests include soft-
ware engineering methods, knowledge management, and
requirements engineering. He received his Dr.-Ing. in soft-
ware engineering and his diploma in computer science and
economics from the University of Kaiserslautern. He’s a
member of the IEEE, the ACM, and the German Computer
Society. Contact him at sd&m AG, Löffelstraße 46, D-
70597 Stuttgart, Germany; andreas.birk@sdm.de.

Gerald Heller is a senior software engineering consul-
tant at Hewlett-Packard. He has worldwide responsibility
for the requirements engineering process at HP’s largest
software organization. His research interests include
collaborative, component-based development. He
received his PhD in computer science from Friedrich
Alexander University of Erlangen in Germany. Contact
him at Hewlett Packard GmbH, Schickardstraße 25, D-
71034 Böblingen, Germany; gerald.heller@hp.com.

Isabel John is a researcher and consultant in software
product lines at the Fraunhofer Institute for Experimental
Software Engineering. Her main interests include require-
ments engineering for product lines, scoping, and legacy in-
tegration into product lines. She received her Diplom, in
computer science from the University of Kaiserslautern.
Contact her at the Fraunhofer Inst. for Experimental Soft-
ware Eng., Sauerwiesen 6, D-67661 Kaiserslautern, Ger-
many; isabel.john@iese.fraunhofer.de.

Stefan Joos is an internal consultant for processes, meth-
ods and tools at Robert Bosch in Germany. He is
responsible for the requirements engineering process in
automotive development for Diesel Systems. His research
interests include intergroup cooperation in large and
complex development organisations. He received his PhD
from the University of Zurich. Contact him at Robert Bosch
GmbH, Werner Straße 1, D-70469 Stuttgart, Germany;
Stefan.Joos@de.bosch.com.

Copyright © Fraunhofer IESE 2003 45

Participants

Klaus Müller is an internal consultant for require-
ments engineering and organizes the knowledge
transfer between business units at corporate re-
search and development at Robert Bosch, Stuttgart.
His research interests include mastering process
improvement requirements engineering and inter-
group coordination. He received his PhD from the
Technical University of Aachen. Contact him at
Robert Bosch GmbH, Robert-Bosch Straße 2, D-
71701 Schwieberdingen, Germany;
klaush.mueller@de.bosch.com.

Klaus Schmid is department head for Requirements
and Usability engineering at Fraunhofer IESE, where he
worked on many projects that transferred product line
engineering technology to industry. His research
interests include requirements engineering and product
line development. He received his PhD in computer
science from the University of Kaiserslautern. Contact
him at the Fraunhofer Inst. for Experimental Software
Engineering, Sauerwiesen 6, D-67661 Kaiserslautern,
Germany; klaus.schmid@iese.fraunhofer.de.

Thomas von der Maßen is a member of the Soft-
ware Construction Group and a PhD student at the
University of Aachen. His research interests in-
clude requirements engineering for software prod-
uct lines, especially the modeling of variability and
tool support. He received his Diplom in computer
science from the University of Aachen. Contact him
at Research Group Software Construction, RWTH
Aachen, Ahornstraße 55, D-52074 Aachen, Ger-
many; vdmass@cs.rwth-aachen.de.

Copyright © Fraunhofer IESE 2002 46

Document Information

Title: Report of the GI Work
Group
”Requirements Engineering
for Product Lines”

Date: November 2003
Report: IESE-121.03/E
Status: Final
Distribution: Public

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	Abstract
	Table of Contents
	Introduction
	Presentation of Partners
	Overview of Problems
	Categorization of Problems and Organizational Constraints
	Lessons for Product Line Development
	Conclusions and Outlook
	References
	Participants

