

Inspection of High Level Statecharts

Authors:
Christian Denger

Funded by the German BMBF
under grant VFG0004A (“QUASAR”)

IESE-Report No. 030.03/E
Version 1.0
April, 2003

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Abstract

Since their invention by Fagan in 1976, inspections proved to be an essential
quality assurance technique in software engineering. Traditionally, inspections
were used to detect defects in code documents, and later in requirements
documents. However, not much is known how to apply inspections to design
document. Statecharts are an important technique to describe the dynamic be-
havior of a software system. Thus, it is essential to define techniques for detect-
ing defects in statechart models. In this report, checklists and reading scenarios
are presented to support an inspector during defect detection for statecharts.

Keywords: Software Inspection, Software Review, Statecharts, Perspective-based Reading,
Statechart Inspections

Copyright © Fraunhofer IESE 2003 v

Table of Contents

1 Introduction 1

2 Brief introduction to Inspections 2
2.1 The Inspection process 2
2.2 Reading Techniques 4
2.2.1 Checklist based reading 4
2.2.2 Scenario and Perspective based reading 5

3 Inspections of large scaled documents 7

4 State of the art in Statechart-Inspections 10
4.1 Defect Taxonomy for Statecharts 10
4.1.1 Correct 10
4.1.2 Complete 11
4.1.3 Consistent 11
4.1.4 Unambiguous 11
4.1.5 Testable 12
4.1.6 Traceable 12
4.1.7 Feasibility 13
4.1.8 Understandable 13
4.2 Statechart Inspection with Traceability based Reading 14
4.3 Statechart Inspections with Checklists 15
4.4 The QUASAR-Inspection Approach 16

5 Checklist-based Inspections of Statecharts 19

6 Scenario-based Inspections of Statecharts 22
6.1.1 Perspective: Tester of the High Level Statecharts (System

Specification Document) 24
6.1.2 Perspective: Low Level Statechart Designer (System

Specification Document) 26
6.1.3 Perspective: Maintainer of the statecharts (system

specification document) 29

7 Conclusion and Further Research 32

References 33

Copyright © Fraunhofer IESE 2003 vii

Introduction

1 Introduction

Inspections are an industrial strength quality assurance technique that is widely
used in almost all industrial domains. The inspection approach was first pub-
lished by Fagan [Fag76] and focused on the detection of defects in code docu-
ments. Over the last decades, the approach was tailored to other software en-
gineering artifacts, e.g. requirements document, test cases / plans, and design
documents [GG93, Lai00, SE93, TSF99, Bas97, BGL96].

With the rise of object orientation, the inspection approach has to cope with
new challenges. Now, an inspector has to deal with concepts like inheritance,
distributed information, and abstraction. Even though, the literature provides a
lot of references to the use of inspections in code, design, and requirements
document, not much is known about how to use inspections to detect defect in
object oriented design documents. Only a few approaches can be found that
give advice on how to perform inspections in such design documents [TSF99,
Lai00]. Since these approaches only focus on defects in all UML diagrams, i.e. in
class diagrams, sequence diagrams, etc. they are too general to inspect each of
this model type in detail. Thus, it is necessary to define techniques how to in-
spect more special aspects of object oriented design documents, for example,
use cases, class-diagrams, and statecharts. Statecharts are a widely used tech-
nique to describe the dynamic behavior of a software system. Thus, this report
will focus on the inspection of this diagram type. A technique, how to inspect
use cases is described in an additional report [Sch02]. Furthermore, [Sch02] pro-
vides a generic approach how checklists and scenarios for perspective based
reading can be systematically developed, which is adopted in this report.

This work is part of the QUASAR-project. In this project, a special form of state-
charts, high level statecharts, are the major part of the system specification
document. The approach described in this report supports the defect detection
in these high level statecharts. Nevertheless, the inspection approach can be
used to inspect every kind of statecharts that are part of the high level design.

The reminder of this report is structured as follows. Chapter 2 gives a brief in-
troduction to inspections in general and frequently used reading techniques to
support inspections. Chapter 3 addresses the problems of inspections in the
large. Chapter 4 defines quality criteria that must be matched by statecharts
and gives a brief overview of the state of the art in statechart inspections. Also
the QUASAR inspection approach for statecharts is introduced. A checklist to
support the inspection of statecharts is presented in Chapter 5. Chapter 6 pro-
vides reading scenarios to support perspective based reading of statecharts and
Chapter 7 summarizes this report and gives hints for further research questions.

Copyright © Fraunhofer IESE 2003 1

Brief introduction to Inspections

2 Brief introduction to Inspections

An inspection is a static quality assurance technique that allows the identifica-
tion and correction of defects early in the software development cycle. In this
report, the term inspection is used in the sense of a structured review process..
Other static quality assurance techniques like walkthroughs, management or
team meetings are not considered as an inspection in this report.

The definition of an inspection as a static analysis technique to detect defects in
software life cycle products is very abstract and therefore, this definition needs
to be enhanced. In addition to the definition, the following aspects characterize
an inspection:

1. It follows a defined process
2. The participants of an inspection have defined roles
3. The inspectors are supported by reading techniques
4. The participants in an inspection are trained
5. The results of an inspections are documented

These characteristics are explained in more detail in the following sections.

2.1 The Inspection process

In the following figure, the inspection process and the involved roles are sum-
marized. The inspection process consists of four basic steps which are essential
for a good inspection result. One or more roles participate in each step and one
of these roles is responsible for the correct performance of the related step. Fi-
nally, the figure shows that in each step certain documents are produced or
serve as input document. In the following paragraphs each step and the related
roles are explained in more detail.

In the planning step, the organizer of the inspection is responsible for planning
the whole inspection process. This activity includes the scheduling of the differ-
ent process steps, to provide the document under inspection and all the other
important document, e.g. checklists, reading scenarios, to the inspectors, re-
serving rooms for the meeting.

Copyright © Fraunhofer IESE 2003 2

Brief introduction to Inspections

Planning

Detection
Defect
Report
Form

Collection

Correction

Software
Documents

Planning
Form

Defect
Correction

Form

1

2

3

4

organizer

inspector

moderator
inspector
author

author
Corrected
Software

Documents

Defect
Collection

Form

Roles
Activities
Products

Planning

Detection
Defect
Report
Form

Collection

Correction

Software
Documents

Planning
Form

Defect
Correction

Form

1

2

3

4

organizer

inspector

moderator
inspector
author

author
Corrected
Software

Documents

Defect
Collection

Form

Roles
Activities
Products

Roles
Activities
Products

Figure 1: The Inspection Process

In the detection step, each inspector searches for defects in the document un-
der inspection. The inspectors are supported by reading techniques, which are
described in more detail in Section 2.1.2. During the detection step, all the is-
sues, i.e. errors, questions, improvement suggestions, raised by the various in-
spectors are logged in a defect report document.

In the collection step the issues raised during the detection are merged into a
defect collection documents during a meeting. The moderator is responsible for
leading the meeting into the right direction. The aim of the meeting is to de-
cide whether an issue raised by an inspector is a defect or not. Therefore, the
author of the document under inspection shall participate in the meeting to an-
swer questions or to clarify vague aspects in the document. The moderator
must assure that the issues are not discussed too long (the duration of the
meeting shall not exceed 2 hours, otherwise a second meeting should be
scheduled) and that the inspectors evaluate the product not the author of the
product.

Finally the author is responsible for the correction of the defects that the in-
spection team agreed upon in the meeting.

In order to assure successful inspections it is essential that all the results of the
inspection are documented. For example, defect logs and effort sheets give
valuable input for the evaluation of the effectiveness and the efficiency of an
inspection. A second very important prerequisite for a successful inspection is
that at least 50 percent of the inspectors are trained in inspecting software
documents. Performing inspections with inexperienced inspectors is a thread
for good inspection results. Moreover, certain roles in an inspection should be

Copyright © Fraunhofer IESE 2003 3

Brief introduction to Inspections

trained in specific skills. For example, the moderator needs special moderation
and special social skills to efficiently lead the inspection meeting.

2.2 Reading Techniques

A reading technique represents a series of steps or procedures that guide an in-
spector in acquiring a deeper understanding of the document under inspection
and to detect defects in this document [LK01].

A lot of different reading techniques are distinguished in the literature. Exam-
ples are Ad-Hoc reading, checklist based reading, scenario based reading, read-
ing by stepwise abstraction and function point reading. A complete summary of
all these reading techniques can be found in [LK01]. Laitenberger defines a
classification scheme for these reading techniques which allows a detailed
comparison of the different techniques [Lai00]. As the comparison of different
techniques is not the focus of this report, these aspects of the reading tech-
niques are not discussed in detail.

In the following sections, two reading techniques will be discussed in more de-
tail, namely, checklist based reading and perspective based reading.

2.2.1 Checklist based reading

Checklist based reading is the most frequently used reading technique. Within
this approach the inspectors are supported by checklists that contain questions
each inspector has to answer during the defect detection phase. These ques-
tions focus on certain quality aspects of the document under inspection. The
checklist approach tells an inspector what to check but it provides only poor
guidance how to check whether a certain quality aspect is fulfilled.

According to Laitenberger [Lai00] checklists have three basic weaknesses. First,
the checklist questions are often extremely general, e.g. “Are the requirements
complete?” Such questions are not useful to support the inspection process,
since the inspectors are not guided how to verify the addressed quality factor.
Second, concrete guidance is missing on how to use the checklist that is, when
to answer a certain question based on which information. Third, the checklist
questions are often not up to date, i.e. they are based on defects detected in
the past but recent defect classes are not included in the checklists. Thus, com-
plete defect classes might be missed during the inspection. An additional prob-
lem is that checklist are often too long; that is they contain to many questions.

According to different sources, e.g. [Lai00], [GG93], a checklist shall adhere to
the following criteria in order to minimize the above mentioned weaknesses:

Copyright © Fraunhofer IESE 2003 4

Brief introduction to Inspections

• paraphrased as precise as possible
• not longer than one physical page
• structured so that the quality aspect the questions are focused on is clear

to the inspectors
• kept up to date
• focused on questions that reveal major defects
• a checklist question that is answered with “no” points out a potential de-

fect
• derived from guidelines, rules, quality aspects used in the project context

in which the artifact under inspection was created.

It is important to understand that checklists found in the literature are just ex-
amples that need to be tailored to the context in which they shall be applied.

2.2.2 Scenario and Perspective based reading

Beside a checklist, other approaches can be used to support the inspector dur-
ing the defect detection phase. One technique, which shows in several experi-
ments significantly better results regarding the efficiency of inspectors, is the
scenario based reading technique.

The basic idea of this technique is that an inspector is guided by a scenario that
tells him or her what to look for during the inspection and how to perform the
inspection. Furthermore, the scenario assures that an inspector actively works
with the document under inspection and thus he or she gains a deeper under-
standing of the document. This profound understanding of the document is a
prerequisite to find more subtle defects in the document under inspection. Fi-
nally, the attention of the inspectors is focused on the essential parts of the
document under inspection and thus avoid a cognitive overhead of the inspec-
tors [Lai00].

A reading scenario consists of three main parts:

1. Introduction
2. Instructions
3. Questions

In the introduction, the goal of the scenario is described and the quality aspects
that are most important in the particular scenario are defined. In the instruc-
tion, an inspector gets concrete guidance how to work with the document un-
der inspection in order to detect defects and to gain a profound understanding.
Furthermore, the instructions focus the attention of the inspectors to the essen-
tial information in the document. For example, the instruction part of a scenario
that supports defect detection in a requirements document can state that an
inspector shall derive a high level statechart diagram from the use cases. Finally,

Copyright © Fraunhofer IESE 2003 5

Brief introduction to Inspections

the questions focus on common defect sources in a particular document or en-
tity under inspection and thus, help the inspector to detect defects related to
these questions while working with the document and to decide whether or
not the document under inspection fulfills certain quality criteria [LK01]

In the current literature different approaches exist following the ideas of sce-
nario based reading. These are defect based reading which organizes the sce-
narios around different defect classes, usage based reading, focusing on par-
ticular usage profiles during the inspection and perspective based reading that
organizes inspection around the needs of the stakeholders of the document
under inspection. In the following paragraphs the ideas of perspective based
reading are described in more detail, since this approach is used in Chapter 4 to
define scenarios supporting a inspection of statecharts

In the perspective based reading approach (PBR) the scenarios are defined ac-
cording to different stakeholders of the document under inspection. The ap-
proach is based on the fact, that different stakeholders have different percep-
tions of the quality of a particular document. For example, for a customer of
the future system has other needs on the requirements documents (under-
standability, completeness) than a tester who is responsible for deriving test
cases from the requirements (testability, correctness). The PBR approach as-
sures, that all necessary views on the document are considered during the in-
spection and thus, a maximum of possible defects can be detected. Due to this
characteristic of PBR one of the essential steps in this approach is the identifica-
tion of all important stakeholders of the document under inspection. If the per-
spective of one stakeholder is not considered in the inspection, the inspectors
might miss essential quality criteria during the defect detection phase and thus
critical defects might remain undetected [LK01].

The reading scenarios are tailored to the particular perspectives. The instruc-
tions describe activities that are typically performed by the stakeholder the sce-
narios is written for. For example, from the perspective of a tester, the inspector
has to develop test cases from the document under inspection.

Copyright © Fraunhofer IESE 2003 6

Inspections of large scaled
documents

3 Inspections of large scaled documents

In the literature a lot of experience reports and experiments show that inspec-
tions are an efficient and effective way to detect defects. However, with the
rise of more and more complex systems and larger documentation of such sys-
tems, inspections must cope with the problem that it is difficult to inspect the
whole document. The rise of object orientation increased this trend, since in-
spections have to cope with new aspects e.g. inheritance, highly distributed in-
formation, i.e. different views on certain system entities. Furthermore, in an ob-
ject oriented design document, a logical system entity is described by means of
different diagrams types and the other way round, each diagram type describes
various logical entities. Thus, there is a many-to-many relationship between a
logical entity and its documentation. This results in usually very large docu-
ments under inspection, which make it even more difficult to perform a single
inspection of the whole document.

These considerations raise the question, how to partition an object oriented sys-
tem into parts that can be inspected. Earlier approaches suggested that the
documents shall be partitioned into smaller chunks and then an inspection is
performed for each document chunk. These approaches have two major draw-
backs. First, in an object oriented development crucial information is distributes
over several different documents or document parts. Thus, an inspector would
miss essential information while performing the inspection. Second, these ap-
proaches are not scalable, i.e. they are not applicable for large scaled software
projects. This results from the fact, that these approaches suggest size informa-
tion as the main splitting criterion which causes severe problems as the differ-
ent parts of such a partitioning approach are no longer self contained and con-
ceptually incomplete. [Lai00, BL02, LA99]

Thus, another partitioning approach is needed for inspections of large scaled
systems that assures that the parts of the document under inspection are self-
contained and that the author won’t miss necessary information during the in-
spection. Travassos et. al [TSF99] describe two approaches. The first approach
suggests to organize the inspection around a subset of the most relevant sys-
tem functionalities. The second one suggests to organize the inspection around
conceptual entities in the system design, e.g. concepts appearing in the class
diagrams, the interaction diagrams or the state machines. A third approach is
presented by Laitenberger [Lai00, BL02, LA99]. He suggests an architecture-
centric inspection (ACI) approach. The essence of this approach is, that the sys-
tem is partitioned into smaller parts by use of the system’s architecture. The ar-
chitecture of the system is developed early in the development process. Even in
the requirements phase the crucial logical entities of the system are known and

Copyright © Fraunhofer IESE 2003 7

Inspections of large scaled
documents

thus, the inspection can be organized around these entities. A second impor-
tant aspect of ACI is, that in this approach the author distinguishes explicitly be-
tween a logical artifact of a software system and its documentation. This is a
basic difference between ACI and earlier inspection approaches, as earlier in-
spection approaches are documentation centered as described above. However,
also this approach does not state how to deal with large documents when the
inspection team has to cope with time restrictions. ACI gives guidance how to
separate the documents into smaller chunks but postulates to inspect the
whole document.

[The02] presents an approach that is similar to the approach of Travassos et al.
as it is organized around critical use cases of the system, called usage-based
reading. During defect detection, the inspectors are guided by use cases and
have to decide whether the inspected artifact fulfills the use case or not. A sec-
ond important element in this approach is the assumption that defects are of
different importance. Thus, the idea is that the inspectors focus on use cases
most important to the users, since these use cases reveal the most “critical to
user” defects. In order to deal with the problem of time restrictions, the use
cases need to be prioritized according to their criticality. By doing so, it is as-
sured that after the inspection those parts of the system are inspected that are
most relevant for the user even in the case of time restrictions.

Even though, usage-based reading gives valuable hints on how to focus an in-
spection, it gives not much hints, how an inspector shall read the document
and what an inspector shall look for. Therefore, a combination of the usage-
based reading technique and the perspective based reading technique is sug-
gested in this report. The ideas of usage based reading is to organize the in-
spection around prioritized use cases, addressing the problems of large docu-
ment in combination with time restrictions. These ideas are combined with the
ideas of checklist based reading and perspective based reading which give con-
crete guidance how to inspect an artifact and what to look for. Figure 2 clarifies
this approach

Copyright © Fraunhofer IESE 2003 8

Inspections of large scaled
documents

Prioritised
Use Cases

Checklist &
PBR-Reading

Scenarios

Defect Detection

Focus for inspectors

Guidance for inspectors

Prioritised
Use Cases

Checklist &
PBR-Reading

Scenarios

Defect DetectionDefect Detection

Focus for inspectors

Guidance for inspectors

Figure 2: The QUASAR-Inspection Approach

In order to prioritize the use cases, two approaches can be utilized. First, the
user and the customer can prioritize the use cases according to the relevance of
the use case for the fulfillment of their most important goals. Such a prioritiza-
tion can be done by means of interviews with the customer and the users of
the system. The requirements engineering process requires a prioritization of
the use cases anyway, then, the information is already at hand. A second op-
portunity is performing a risk analysis of the use cases in order to prioritize the
use cases according to the evaluated risk level. In the first case, the use cases
are ranked in decreasing order of the importance for the user and the cus-
tomer, in the second case in decreasing order of the evaluated risks.

However, in the case that the document under inspection is small enough to
perform an inspection of the whole document within time schedule, a prioriti-
zation is not needed.

Copyright © Fraunhofer IESE 2003 9

State of the art in Statechart-
Inspections

4 State of the art in Statechart-Inspections

This section describes the results of a literature survey on inspection techniques
for statecharts. There are only a few approaches in the current literature de-
scribing approaches for the inspections of object oriented design documents
[Lai00, TSF99, Win97, MM99, Bin99]. Binder and Travassos et. al describe ex-
plicitly how to inspect statecharts. These approaches are described in more de-
tail with respect to a defect taxonomy for statechart models.

4.1 Defect Taxonomy for Statecharts

In this section, a defect taxonomy is presented that is based on the IEEE stan-
dard 830 [IEEE] that describes quality criteria that shall be fulfilled by a good
software requirements specification (SRS). The quality criteria are re-defined
with respect to statechart models. Then, possible defects of statechart models
are derived from the definitions.

Side Remark: In the defect taxonomy the quality aspect changeability, which is
part of IEEE 830, is omitted. The reason to do so is that in several instances it is
hard to distinguish for a defect between changeability and other properties in
the table. For example, if something is hard to understand, should it be a defect
related to Understandability or to Changeability. Therefore, in order to achieve
orthogonal attribute values we omitted changeability.

4.1.1 Correct

Definition:
A statechart diagram or a set of diagrams is correct, if it is judged to be equiva-
lent to some reference standard that is assumed to be an infallible source of
truth.

Defects:
A statechart diagram or a set of diagrams is not equivalent to the Use Cases in
the system requirements document; that is the statechart model is not consis-
tent to the user requirements. Thus, the statechart diagram contains incorrect
states, incorrect actions, incorrect events, incorrect conditions, incorrect transi-
tions, and incorrect interactions of statecharts.

Example:
A use case of the user requirements is realized in the statecharts in another way

Copyright © Fraunhofer IESE 2003 10

State of the art in Statechart-
Inspections

than needed; for example, the states of the statechart do not represent the
states mentioned in the use case.

4.1.2 Complete

Definition:
A statechart diagram or a set of diagrams is complete, if no required elements
are missing.

Defects:
A statechart diagram or a set of diagrams dose not contain all necessary ele-
ments. Crucial information that is required for subsequent activities is not pre-
sented. Thus, the statechart model does not represent all the user require-
ments; essential states, events, actions, operations, and guard conditions are
missing; parts of guard conditions are missing.

Examples:
Missing states, missing operations/actions, missing events, missing transitions

4.1.3 Consistent

Definition:
A statechart diagram or a set of diagrams is consistent, if there are no contra-
dictions among its elements or elements of other diagrams.

Defects:
The information of a single statechart diagram or the information of different
statecharts is described in at least two different, incompatible ways so that
there is a contradiction between different statechart diagrams, different state-
chart elements or between statecharts and other design diagrams (e.g., class-,
sequence, collaboration- diagrams).

Examples:
The actions triggered by the same event, in two different statecharts, result in
contradictory system behavior; guard conditions are not mutually exclusive; an
event can lead into more than one destination state (not deterministic).

4.1.4 Unambiguous

Definition:
A statechart diagram or a set of diagrams is unambiguous, if every element
therein has only one interpretation.

Copyright © Fraunhofer IESE 2003 11

State of the art in Statechart-
Inspections

Defects:
The statecharts are ambiguous if elements of the statecharts can be interpreted
in two or more ways. Thus, it is not clear, which of the two or more interpreta-
tions are true.

Examples:
The state-names are ambiguous, the event names are ambiguous (e.g. the
event name “environmental input”. In the case of more than one input form
the environment, it is impossible to decide which event is meant in a certain
situation), the action/operation names are ambiguous.

4.1.5 Testable

Definition:
A statechart diagram or a set of diagrams is testable, if there exists a feasible
process to check that the statecharts fulfill their requirements.

Defects:
A statechart diagram or a set of diagrams is untestable, if there exists no feasi-
ble process to check that the statecharts fulfill their requirements. That means it
is not possible to derive test cases from the statecharts due to logical or physical
constraints.

Examples:
The expected system reaction in response to a certain event cannot be derived
from the statechart model.

4.1.6 Traceable

Definition:
A statechart model is traceable, if it is possible in a syntactical sense to establish
explicit links between each statechart element and the user requirements from
which the statechart elements are derived.

Defects:
It is not possible to establish traceability links between statechart elements
(state diagrams, states, events, conditions, operations, actions) and the corre-
sponding use cases in the user requirements; that is the statechart elements are
specified in a way that prohibits establishing explicit links.

Examples:
The statechart diagrams do not have unique identifiers. Then, it is not possible
to link the statechart diagram to a certain user requirement.

Copyright © Fraunhofer IESE 2003 12

State of the art in Statechart-
Inspections

Two essential quality aspects are missing in the taxonomy described above,
namely, feasibility and understandability. The statecharts need to be feasible in
the further development steps; that is, a designer should be enabled to easily
transform, for example, high level design statecharts into low level design
statecharts. Therefore, we add two additional quality aspects to those recom-
mended in the IEEE standard 830 [IEEE]:

4.1.7 Feasibility

Definition:
A statechart model is feasible, if it is possible to transform the statechart model
into lower level design models or code.

Defects:
The behavior described in the statecharts cannot be implemented; that means it
is impossible to refine certain statechart diagrams into statecharts of a lower
level of abstraction. The statechart diagrams and the statechart elements have
too many relationships and communication links between each other. The
statechart diagrams are too complex.

Examples:
It is not possible to derive low level statecharts from the high level statecharts.

4.1.8 Understandable

Definition:
The presented information is difficult to understand and comprehend. Specific
instances are also deviations from the prescribed document format.

Defects:
The statecharts and statechart diagrams are difficult to understand and com-
prehend. The statecharts are not specified according to a given template.

Examples:
The statecharts are described too complex due to many relationships between
the statecharts.

Note that the different quality criteria influence each other. For example, having
a complete traceability between the use cases and the statecharts eases to real-
ize changes in the statecharts or having a complete, unambiguous, and consis-
tent statechart models positively influences the testability of the statechart
models.

Copyright © Fraunhofer IESE 2003 13

State of the art in Statechart-
Inspections

The mapping of the quality aspects to possible defects in the statechart models
shows that the defects are related to states, transitions (including events, condi-
tion, and actions), operations and relations to other UML design-diagrams. The
current state of the art, regarding statechart inspections, is presented in the fol-
lowing sections. Each approach is related to the possible defects in statechart
models.

4.2 Statechart Inspection with Traceability based Reading

Travassos et al. [TSF99] describe a traceability-based approach (TBR) to inspect
high level object oriented design diagrams using the unified modeling language
(UML). More detailed information regarding the scenarios is described in an
additional technical report [Shu99]. The approach uses scenario-based reading
to support the inspectors during defect detection and focuses on the following
design diagrams:

• class diagrams,
• interaction (sequence/collaboration) diagrams,
• state machines, and
• packages.

Although the approach is named traceability based reading, it focuses on other
quality criteria if we follow the definitions given in the last section. The re-
quirements on a system are considered as an important input for this inspection
approach. Since the requirements are the basic input for the development of
the above mentioned diagrams, it is necessary to check the correct and com-
plete realization of the requirements in the high level design. Furthermore, the
internal consistency of the diagrams themselves is of great importance, i.e. the
consistency between the different diagram types. Therefore, Travassos et al. de-
fine two types of traceability based reading: horizontal and vertical reading. In
this context horizontal means that diagrams on the same level of abstraction
are compared to verify their consistency, for example class diagrams and state-
charts. Vertical reading describes the comparison of documents on different ab-
straction levels to verify the completeness and the correctness of the high-level
design diagrams; for example requirements and class diagrams are compared.
The authors analyzed for which diagrams it is necessary to compare these
against each other. They identified seven important combinations of documents
that shall be considered in an inspection:

1. Comparing requirements description against class descriptions
2. Comparing use cases against sequence diagrams
3. Comparing class diagrams against class descriptions
4. Comparing class diagrams against sequence diagrams
5. Comparing state machine diagrams against class diagrams
6. Comparing state machine diagrams against sequence diagrams

Copyright © Fraunhofer IESE 2003 14

State of the art in Statechart-
Inspections

7. Comparing state machine diagrams against requirements description and
use cases

Each of these reading scenarios gives concrete guidance to detect complete-
ness, correctness, and consistency defects in the corresponding documents. The
scenarios guide the inspector during the comparison of the two documents un-
der inspection. For example when comparing a requirements document and the
state machine, the inspector shall read the requirements and the use cases in
order to identify possible system states and events that might cause transitions
between states. The states and transitions identified in this step are then com-
pared to the states and transitions in the state diagrams. Thus, the inspectors
can identify omitted, redundant, and incorrect states and transitions. All the
other reading scenarios follow the same principle of comparison. The complete
scenarios are described in detail in [Shu99].

4.3 Statechart Inspections with Checklists

In the literature a lot of checklists can be found for design inspections [Joh,
NASA, Lai00, Bry99] but they are not specifically designed for defect detection
in statechart diagrams. Binder describes several rules how to specify statecharts
that are created to allow state based testing. Moreover several modeling style
guides give hints on how well-formed statecharts should look like [Bin, UML,
Amb02]. Such guidelines can serve as valuable input for the definition of a
checklist. As the rules defined in Binder address specific quality problems of
statecharts they are most interesting for our approach.

Binder [Bin] defines several rule sets on how statecharts shall be specified in or-
der to guarantee their completeness, correctness, and consistency, before using
them to produce a test suite. Therefore, Binder focuses on these quality aspects
from a testers perspective. Some of Binder’s rules are highly specific; that is, the
rules focus on quality criteria that are relevant for detailed test design, for ex-
ample, rules regarding state invariants. The approach postulates these rule sets
as checklists that shall be used to perform inspections of statechart models that
are used for stated based testing. These rules can be easily transformed into
checklist questions.

Binder [Bin] defines the following five “checklists”:

1. Structure checklist
2. State name checklist
3. Guarded transition checklist
4. Flattened machine checklist
5. Robustness checklist

Copyright © Fraunhofer IESE 2003 15

State of the art in Statechart-
Inspections

The structure checklist defines criteria that assure the correct construction of
statecharts, e.g. that every state can be reached from the initial state. The state
name checklist focuses on weak, ambiguous, and inappropriate state names.
Such names are often symptoms for misunderstood and ambiguous require-
ments. The guarded transition checklist focuses on the guards in the state tran-
sition. This checklists assures that the guard conditions are logically and struc-
turally correct; for example, that all guard conditions are mutually exclusive. The
flattened machine checklist focuses on potential defects in the class hierarchy,
i.e. on the consistency between super-class and sub-class behavior in the case
of inheritance; for example, that no state of the super-class is eliminated in the
sub-classes. Also this checklist addresses several aspects that are very specific
and hard to understand from a perspective other than a tester’s perspective; for
example, aspects regarding the state invariant of super class states. Finally, the
robustness checklist focuses on necessary characteristics of the statecharts to
assure correct and safe behavior under failure modes.

To summarize these aspects with respect to the quality criteria and defects
specified in Section 4.1, Binder focuses on testability aspects of the statecharts.
Each checklist is designed in a way that assures that it is easily possible to gen-
erate a test suite from the statecharts. Thus, ambiguity, completeness, correct-
ness, and consistency criteria are assured with respect to the needs of a tester.

As mentioned in Section 2.1.2 checklists must always be tailored to the context
of the project in which they are used to support the inspection process. Thus,
the above checklists can serve as initial ideas for checklists for statechart inspec-
tions. The complete checklists can be found in [Bin].

4.4 The QUASAR-Inspection Approach

The inspection approach of this report is tailored to the context of the
QUASAR-project. However, the approach can be used in any other develop-
ment environment if the context is similar to the QUASAR context. Thus, the
most relevant context factors of the QUASAR approach are briefly described in
the following paragraph.

The QUASAR project deals with challenges on requirements engineering and
quality assurance in the development of embedded systems, especially in the
automotive domain. Beside other research questions, the improvement of qual-
ity assurance techniques is analyzed in this context. One important result of the
QUASAR project are guidelines, describing how to transform requirements,
specified as use cases, into a class diagram and corresponding high level state-
charts [DKK02]. This transformation provides a more formal view on the re-
quirements. Thus, the use cases in the system requirements document support
the user/customer perspective and the class diagram and the high level state-
charts in the system specification document support the designer perspective.

Copyright © Fraunhofer IESE 2003 16

State of the art in Statechart-
Inspections

The idea is, that the high level statecharts (the system specification document)
are used to support sub-contracting as the more formal view on the require-
ments facilitates the understanding of the requirements for the developers of
the subcontracting company. In the QUASAR project, the tool Rhapsody in J is
used to model the class diagrams and the high level statecharts.

The inspection approach described in this report focuses on quality assurance
techniques for the designer perspective on the requirements, i.e. the high level
statecharts. In particular, an inspection approach tailored to the needs of defect
detection in high level statechart is presented. The QUASAR context factors in-
fluence the inspection process in several ways:

Certain aspects that should be checked in a statechart inspection are not con-
sidered in the approach due to the context setting. The check of the traceability
and the consistency between the statecharts and the requirements (correctness)
is not explicitly considered in the approach. Following the QUASAR guidelines,
how to transform use cases into a class diagram and high level statecharts, as-
sures these quality aspects in a constructive way rather than checking them af-
terwards. One can say that the developers might not follow the guidelines and
thus, an explicit inspection of these aspects gets necessary. This is a valid argu-
ment but the guidelines can be easily transformed into a checklist and there-
fore, the approach focuses on other quality aspects. Moreover, if no construc-
tive guidance is given, the TBR approach described in Section 4.2 should be
used to compare the statecharts and the requirements as well as the statecharts
and other design diagrams in order to assure these quality criteria.

The consistency between the class diagram and the statecharts is not explicitly
checked in our approach, as the most quality aspects regarding the consistency
between the two diagram types are assured by the use of the tool Rhapsody in
J. For example, when using the tool, it is impossible that an operation or an
event used in the statecharts is not defined in the class diagram. Also, some of
the quality problems addressed in Binder’s checklists, described in Section 4.3,
can be automatically checked by the tool Rhapsody in J. For example, the flat-
tened machine checklist addresses problems such as missing states in a sub-
class statechart in the case of inheritance. Such quality aspects are automati-
cally assured by the use of the case tool Rhapsody in J, as the tool assures that
the sub-class’ statechart contains the same states and events than the super-
class’ statechart. However, if no tool is used for statechart modeling or a tool
that does not assure such aspects, it is necessary to address these potential de-
fect sources in the inspection process.

Note that the approaches described in the literature can only serve as a starting
point to support the inspection of statecharts. Adapting these approaches to
the concrete project environment is always necessary.

Copyright © Fraunhofer IESE 2003 17

State of the art in Statechart-
Inspections

The QUASAR-Inspection approach focuses on quality criteria that are not ad-
dressed by current scenario based approaches to inspect statecharts. These
quality criteria are testability, changeability, and realizability in latter develop-
ment steps. In order to verify these quality aspects, perspectives based reading
scenarios are defined that focus on the detection of defects that are related to
these quality criteria. The following matrix summarizes how the different ap-
proaches are related to the quality criteria and consequently which defect types
are addressed by the approaches:

Table 1: Qualtiy criteria in Relation to the approaches

 Travassos et al Binder QUASAR-
Checklist

QUASAR-
Scenarios

Correctness X (X) X X

Completeness X (X) X X + tool

Consistency X (X) X X + tool

Ambiguity (X) X X

Testability X X

Changeability X

Traceability (X) (X)

Realizability X

Note that a “X” means that this quality aspect is directly addressed by the ap-
proach and a “(X)” means that the quality aspect is indirectly addressed due to
relationships between the quality criteria. The entry “tool” shows which quality
aspects are assured by using the tool Rhapsody in J in the QUASAR context.

If it is not possible to perform an inspection with the reading due to extreme
time restrictions, a checklist to inspect the statecharts can be used. This check-
list focuses mainly on syntactic aspects and contains high level questions. The
matrix above shows that the checklist cannot be used to replace the reading
scenarios as it does not address all the quality criteria, but it can supplement
the perspective-based inspection.

Copyright © Fraunhofer IESE 2003 18

Checklist-based Inspections of
Statecharts

5 Checklist-based Inspections of Statecharts

In this section a checklist for inspecting high-level statecharts is developed. This
checklist is tailored to the QUASAR context factors described in Section 4.4 and
therefore needs to be tailored to the specific context factors when used in an-
other project. As described in Section 2.2, a checklist consists of several ques-
tions guiding the inspectors during the defect detection in “what” to look for.
Following the guidelines how to describe a checklist given in [Sch03] the check-
list presented below represents a starting point for checklist based reading of
statechart models.

The checklist is designed in a way that it supplements the reading scenarios de-
fined in Chapter 6. Moreover, the checklist is developed in the QUASAR context
that is, the guidelines to transform use cases into statecharts need to be con-
sidered in the checklist, as it is important to verify that the developers of the
statechart really applied the constructive guidelines. Thus, the questions 1 – 6
of the checklist assure that the constructive guidelines were used in the crea-
tion of the statecharts. Syntactical checks need not to be considered in the
checklist questions, as the tool Rhapsody in J is used as a modeling tool. This
tool automatically performs several syntax checks; for example, “Each state-
charts has an initial state”, “A junction connector has exactly one outgoing
transition”, “Each event is defined in the corresponding class”, etc. If no case
tool is used during statechart modeling the checklist needs to be enhanced
with additional questions. This holds also in the case that a case tool with dif-
ferent features is used. Then, the checklist needs to be adapted to the features
of the tool. The checklist questions 7 – 9 are examples how to enhance the
checklist to cover such consistency checks that are usually performed by a tool.

The checklist was derived from several checklists found in the current literature
[Bin99] and from style guides how to design statechart models [Amb02, UML].
The checklists recommended by Binder served as the main input for this check-
list. Extracts of Binder’s “Structure checklist”, “State name checklist”, and
“Guarded Transition checklist” were used to define general checklist questions.
However, some aspects of Binder’s checklists are specific for testing statecharts
and are too long. Therefore, Binder’s checklists are generalized to support an
inspector focusing on defects not specific for test considerations and that can
be performed in a single inspection. However, if a detailed checklist-based in-
spection of statecharts shall be performed, it is recommended to consider all of
Binder’s checklists, tailored to the project context.

Copyright © Fraunhofer IESE 2003 19

Checklist-based Inspections of
Statecharts

Completeness

1. Are all the use cases considered in the statecharts?

2. Is each user input, i.e. each monitored variable, mentioned in the use cases consid-
ered in the statecharts?

3. Is each system output, i.e. each controlled variable, mentioned in the use cases
considered in the statecharts?

4. Is each exception mentioned in the use cases, realized in the statecharts?

5. Is each rule mentioned in the use cases, realized in the statecharts?

6. Are the names for the statecharts and the statechart elements consistent to the
elements in the requirements?

Consistency

7. Is each statechart consistent to the class diagram; that is, are the events, opera-
tions, variables, and actions used in the statecharts defined in the corresponding
classes?

8. Is the statechart of a sub-class consistent to the statechart of the corresponding
super-class?

9. Has each statechart diagram a defined default state?

10. Is each state of each statechart reachable from the statecharts initial state?

11. Has each state, except the final state, an outgoing transition?

12. Are all of the statechart elements (states, events, actions, guards, operations)
needed to realize the behavior?

13. Does each outgoing transition of a composite state make sense for all sub-states?

14. Are for each state all the events and guards of outgoing transitions mutual exclu-
sive?

15. Does it make sense that with each recursive transition the entry and exit actions
are re-performed?

Correctness

16. Are all the exceptions, rules and events mentioned in the requirements imple-
mented correctly in the statecharts?

Ambiguity

17. Are all the state-, event-, action/operation-names meaningful in the application
context?

18. Are the state-, event-, action/operation-names of the statecharts unique?

Copyright © Fraunhofer IESE 2003 20

Checklist-based Inspections of
Statecharts

In the case of an inspection of a large document the recommendations how to
partition the document for the inspection described in Chapter 3 shall be used.

We want to emphasize again, the checklist should be used to supplement the
perspective-based scenarios or to perform a high level, more abstract inspec-
tion, focusing on syntactic aspects. The checklist shows that not all quality crite-
ria, defined in Section 4.1, are addressed by the checklist. This results from the
fact that a checklist usually focuses on defects resulting from syntactic aspects
and subtle defects are hard to address by a checklist. Regarding the quality cri-
teria and the related defects taxonomy described in Section 4.1 the checklist
addresses ambiguity, completeness, consistency, and correctness problems on a
high level of abstraction.

To address more subtle defects an inspector needs a profound understanding
of the document under inspection. As described in Section 2.2, such an under-
standing can only be gained by actively working with the document. The per-
spective based reading scenarios ensure that the inspectors actively work with
the document and thus focus on more subtle defects. However, also syntactic
defects should be detected in an inspection with the reading scenarios. There-
fore, the reading scenarios described in the following section are designed in a
way that also syntactic defects can be detected. In the case that the checklist is
used in addition to the reading scenarios, the reading scenarios need to be
adapted in that way that the questions that address syntactic aspects are
skipped in the perspective based inspection.

Copyright © Fraunhofer IESE 2003 21

Scenario-based Inspections of
Statecharts

6 Scenario-based Inspections of Statecharts

In the QUASAR approach, high level statecharts are part of the system specifi-
cation document. In this chapter, the perspective based reading scenarios for
high level statecharts are described in detail. Following the approach described
in [Sch02], the first step to develop perspective based reading scenarios is the
identification of the relevant document stakeholders. That is, all the stake-
holders who work with the system specification document in general and with
the high level statecharts in particular must be identified. Furthermore, the
most relevant quality aspects of these stakeholders regarding the requirements
need to be identified. To support the inspection of the high level statecharts,
three main perspectives are identified, as depicted in Figure 3.

High Level Statecharts,
System Specification

Maintainer

Tester

Low Level
Designer

Figure 3: Stakeholders of the High Level Statecharts

The maintainer is responsible for realizing adaptive, corrective, and perfective
changes in the high level statecharts. Therefore, the maintainer is most inter-
ested in easy to change statecharts; for example, that he or she can easily iden-
tify those statecharts and statechart elements affected by a change in the re-
quirements.

The low level designer is responsible for refining the high level statecharts into
the low level system design. By doing so, the designer needs to understand the
high level statecharts and has to assure that all information needed to create
the low level design is contained in the high level statecharts. Thus, this per-
spective is most interested in easy to understand, complete, and realizable high

Copyright © Fraunhofer IESE 2003 22

Scenario-based Inspections of
Statecharts

level statecharts. In the context of the QUASAR project the requirements engi-
neer assumes this role, as the low level statecharts are defined on the software
requirements level and thus by the requirements engineer.

Finally, the tester is responsible for testing the high level statecharts. This activ-
ity contains the development of a test plan, the derivation of test cases from
the statecharts, and performing the tests. Thus, the testability and the com-
pleteness of the high level statecharts are most important for the tester.

Having identified all the stakeholders and their needs, a particular reading sce-
nario is defined for each stakeholders view. This supports the defect detection
of an inspector assuming one of these views. Each reading scenario considers
the goals, needs, and quality criteria that are characteristic for the correspond-
ing view (stakeholder). The instruction step of each scenario, described in Sec-
tion 2.2, is tailored to typical activities which the corresponding stakeholder
performs with the document. In the following sections, each reading scenario is
described in detail, following the structure for scenarios described in Section
2.2.

In order to derive concrete instructions for each scenario, some ideas of more
general reading scenarios for object oriented design document [TSF99, Lai00,
LA99] were used. However, the main part of the instructions is based on con-
siderations how the different stakeholders work with the high level statecharts.
These typical work-processes were transformed into instructions for the inspec-
tors.

As described in [Sch02] each instruction part of a document is described by
means of an agenda, i.e. each instruction has a unique number, a description
of the activities to be performed in the step, and a validation column for each
step. This validation column contains statements that assure that the related
scenario step is performed correct and completely. Furthermore, the validation
column contains questions regarding defects that can be detected in the corre-
sponding scenario step. These questions ensure that defects are detected while
performing the scenarios.

The reading scenarios described in the following sections are supported by the
QUASAR context. Requirements management and in particular establishing
traceability between use cases on the system requirements level and statecharts
on the system specification level is addressed in the QUASAR project. In the
QUASAR project, explicit links between the use cases and the classes and state-
charts that realize the use cases are defined. Having these explicit links several
steps of the reading scenarios can be supported:

• The complete scenario of the maintainer perspective
• Step 0 of each scenario that links use cases to statecharts

Copyright © Fraunhofer IESE 2003 23

Scenario-based Inspections of
Statecharts

The traceability links facilitate the identification of related information elements
in the statechart models and between the statecharts and other diagrams (class
diagrams and use cases). Without the explicit links, the inspectors must search
manually for the related elements. Thus, in the QUASAR project, the scenarios
can be performed faster then in another context where traceabiltiy links are not
available.

Note, that the scenarios described below can be used to inspect all high level
statecharts of a document if this document is small enough. In the case of a
large document, the inspector shall organize the inspection around prioritized
use cases as described in Chapter 3. This approach can be easily used in the
QUASAR context as use cases are transformed into statecharts and thus, the
mapping between the prioritized use cases and the statecharts is easily possible.
Furthermore, the explicit traceability between these documents established in
the QUASAR context supports this selection process.

Note that the first step of each reading scenario can be skipped in the case that
a document can be completely inspected.

6.1.1 Perspective: Tester of the High Level Statecharts (System Specification Document)

Introduction:
Assume you are a tester in a software project. As part of your job you derive
test cases from the statecharts of the high level design description. Thus, from
your perspective, the most important quality aspects are the testability of the
statecharts and the completeness of the test cases.

Instructions:

Nr. Step Validation
0 Start with the use case with the highest priority. Specify the

name of the use case in the first column of the following
table. Then, identify all classes and high level statecharts that
are related to this use case. Therefore, specify the name of
the classes in the second and the names of the statechart in
the third column of the following table.

use case name class name statechart name

Repeat the following steps 1 – 3 for as much use cases as
possible. Perform these steps according to the priority order
of the use cases, that is from high priority to low priority

All the classes and state-
charts relevant to model
the use case could be
identified.

All states and classes are
necessary to model the
use case.

Copyright © Fraunhofer IESE 2003 24

Scenario-based Inspections of
Statecharts

1 For each class in the system specification document identify
the statecharts belonging to the classes. Thus, write the class
name in the first column and the corresponding statechart
names in the second column of the following table:

class name statechart name related classes

All the statecharts belong-
ing to the class could be
identified.

All the statechart names
and class names are un-
ambiguous and meaning-
ful in the application con-
text.

All the states are needed
to model the behavior of
the class.

2 Identify all the classes in the class diagram that are related to
the classes identified in Step 1 (Associations, Aggregation,
Inheritance). Specify the names of these classes in the third
column (“related classes”) of the table of step 1.

All associated classes
could be identified.

All identified relation are
reasonable.

3 Now, derive test cases for the statecharts identified in Step 1.
follow these instructions. Make sure that each test case as-
sures that the branches of at least all statecharts belonging to
a specific class are covered.

Derive all the table entries by performing the test case manu-
ally.

1. Define the initial state of the system, before the test
case is performed.

2. Define an event sequence that serves as an input for the
system. Specify the name of each event in the first col-
umn of the following table.

3. For each event, specify the state of the system before
the event is received in the second column of the table.

4. Specify the guards that must be considered for the event
in the third column, if any.

5. With respect to the value of the guards, specify the ac-
tion that is performed when the event is received, in the
fourth column of the table.

6. Specify the expected state of the system after the event
was received in the fifth column of the table.

7. In the sixth column, specify the expected state changes
in the related classes you identified in step 2.

All the states, events,
guards, and conditions to
derive test cases can be
found in the statechart
diagrams.

Each test case assures that
the branches of at least all
statecharts belonging to a
specific class are covered.

All the states in the state-
chart can be reached from
the ideal state.

All the event-, action-, and
guard names are unambi-
guous and meaningful in
the application context.

All possible guard condi-
tions are considered in the
test case.

Copyright © Fraunhofer IESE 2003 25

Scenario-based Inspections of
Statecharts

Event State Guard Action Destina-
tion State

State in
assoc. class

Repeat the steps 1 – 7 as long as test cases for all statecharts
identified in step 1 are specified.

Questions:

1. Which information is missing to create the test cases?

2. Are the effects of the system reaction specified under all circumstances?

3. The evaluation of which guards might lead to side effects in the system?

4. In which cases is the behavior of the system non-deterministic; for example,

due to guard-conditions that are not mutually exclusive?

5. Which events create in your opinion transitions into incorrect destination
states? Please specify why.

6. In which transitions are the wrong actions performed or are actions per-

formed that should not be performed at all?

7. In which cases are the transitions or the guard conditions un-reasonable
from your point of view.

6.1.2 Perspective: Low Level Statechart Designer (System Specification Document)

Introduction:
Assume you develop the low level statecharts in a software project. To perform
the transformation of the high level statecharts into low level statecharts one of
your tasks is to get a profound understanding of the high level statecharts.
Thus, the quality aspects understandability, completeness, and realizabiltiy of
the high level statecharts are most important for your work.

Instructions:
Note that step 0 is optional (see Section 0)

Copyright © Fraunhofer IESE 2003 26

Scenario-based Inspections of
Statecharts

Nr. Step Validation
0 Start with the use case with the highest priority. Specify

the name of the use case in the first column of the fol-
lowing table. Then, identify all classes and high level
statecharts that are related to this use case. Therefore,
specify the name of the classes in the second and the
names of the statechart in the third column of the
following table

.

use case name class name statechart name

Repeat the following steps 1 – 3 for as much use cases
as possible. Perform these steps according to the priority
order of the use cases that is from high priority to low
priority.

All the classes and statecharts
relevant to model the use case
could be identified.

All states and classes are nec-
essary to model the use case.

1 For each class in the system specification document
identify the corresponding statecharts and sub-
statecharts. Write the name of each class in the first
column of the following table and the name of the cor-
responding statecharts and sub-statecharts in the second
column.

Class Name Statecharts und Sub-

Statecharts

All the statecharts and sub-
statecharts belonging to the
class could be identified.

All the statechart names and
class names are unambiguous
and meaningful in the applica-
tion context.

All the states and sub-states
are needed to model the be-
havior of the class.

2 In order to understand the interaction between different
statecharts (and the corresponding classes) analyze the
events of the statecharts. Therefore, write the names of
the events of the statecharts into the first column of the
following table. For each event, specify the name of the
statechart in which the event is created. For each event,
specify the names of all statecharts in which the event is
consumed.

Event Name Created in

statechart
Consumed in
statechart

All events are identified at
least in one statechart.

All the event names are un-
ambiguous and meaningful in
the application context.

All events that need to be
consumed in a statechart can
be identified and no superflu-
ous events are identified.

Copyright © Fraunhofer IESE 2003 27

Scenario-based Inspections of
Statecharts

3 In order to understand the behavior described in the
statecharts create a table for each operation and action
of each statecharts according to the following structure:

Operation /
Action-name

Purpose Defined in Called in

1. Write the name of each operation/action of the
corresponding statechart into the first column.

2. Specify the perceived purpose of the operation /
action in the second column.

3. For each operation/action of the corresponding
statechart write the name of the class and the
statechart in which the operation/action is de-
fined into the third column

4. For each operation/action write the name of the
class and the statechart in which the opera-
tion/action is called into the fourth column. Con-
sider especially recursive transitions, that might
trigger actions/operations several times.

All operations and actions of
the statecharts are considered
in the table, especially entry,
exit and in-state actions.

The purpose of each opera-
tion/action could be under-
stood when reading the state-
charts.

All the operation/action names
are unambiguous and mean-
ingful in the application con-
text.

Each operation/action that is
called in the statecharts is de-
fined in the corresponding
class.

Questions:

1. Are there any interactions between statecharts for which you could not see
the purpose? If so please specify why.

2. Can you imagine important interactions between the statecharts that were

not considered? If so, please specify these interactions

3. Makes each outgoing transition of a composite state sense for all sub-
states?

4. Which important information regarding events and operations/actions is

missing that makes it impossible or difficult to refine the statecharts?

5. Are the calls of the operations/actions reasonable, especially recursively cal-

led entry, exit actions and operations on recursive transitions?

6. Which elements of the high level statecharts are difficult to realize in the

low level statecharts? If any, please specify why.

Copyright © Fraunhofer IESE 2003 28

Scenario-based Inspections of
Statecharts

6.1.3 Perspective: Maintainer of the statecharts (system specification document)

This scenario is slightly different form the previous scenarios, as the inspectors
need particular input documents in addition to the document under inspection
and the reading scenario. The inspector has to perform activities of a software
maintainer, i.e. changes of the requirements have to be considered in the state-
charts. In order to allow an inspector to perform this scenario, the inspection
champion (i.e. the person who is responsible for inspections in the project) has
to develop change requests for the requirements that are probable to occur
during the development of the product. These virtual change requests should
be specified for all use cases. If there are too much use cases in the require-
ments document, the prioritization of the use cases shall be used to identify
those use cases for which a change request shall be defined.

Introduction:
Assume you are a member of the maintenance staff in a software project. One
of your responsibilities is the management of requirements changes and to
change the system specification consistently to these changes Therefore, the
maintainability and changeability of the statecharts is one of the most impor-
tant quality aspects from your perspective.

Instructions:
Note that step 0 is optional (see Section 0)

Nr. Step Validation
0 Start with the use case with the highest priority. Specify the

name of the use case in the first column of the following
table. Then, identify all classes and high level statecharts
that are related to this use case. Therefore, specify the
name of the classes in the second and the names of the
statechart in the third column of the following table.

Use case name Class name Statechart name

Repeat the following steps 1 – 3 for as much use cases as
possible. Perform these steps according to the priority order
of the use cases, that is from high priority to low priority.

All the classes and state-
charts relevant to model
the use case could be iden-
tified.

All states and classes are
necessary to model the use
case.

Copyright © Fraunhofer IESE 2003 29

Scenario-based Inspections of
Statecharts

1 Read the first change request in order to get a profound
understanding of the change. Identify all the use cases that
are affected by the change request. Write the name of
each directly affected use case in the first column of the
following table. Identify all the use cases that are related to
the directly affected use case by analyzing the includes,
extends, and interrupt relations of the use cases.

Use Case Related Use Case

All use cases that are af-
fected by the change re-
quest could be identified.

2 In order to analyze which statecharts are affected by the
change request identify for each directly affected use case
and each related use case all the statecharts that partici-
pate in the realization of these use cases
Write the name of the statecharts into the second column
of the following table:

Use Case Related Use Case Statechart name

All the statecharts neces-
sary to model each use case
could be identified.

All the statecharts are
needed to realize the use
case.

All relationships between
the use case could be iden-
tified.

3 For each statechart in the table of step 2, analyze the im-
pact of the change request.

1. Specify the number of the change request in the
first column of the following table.

2. Specify the name of the statechart that is affected
by the change request in the second column.

3. For each statechart, specify all those elements
(states, events, actions, guards, operations) that are
affected by the change request in the third column.

Change Re-
quest. ID

Statechart Name Affected
Elements

For each change request
the affected statecharts and
statechart elements could
be identified.

Questions:

1. For which change request was it difficult (impossible) to identify the af-
fected statecharts and statechart elements? Please specify why.

Copyright © Fraunhofer IESE 2003 30

Scenario-based Inspections of
Statecharts

2. Are there change requests that are, in your opinion, difficult or impossible
to realize? If so, please state why.

3. For which change request is it possible to reduce the affected statecharts

and statechart elements? If any please state how this is possible.

4. Can you think of improvements of the structure of the statecharts that help
to reduce their complexity? If any please state it.

Copyright © Fraunhofer IESE 2003 31

Conclusion and Further Research

7 Conclusion and Further Research

In this report, we presented an approach to detect defect in statechart models
using inspections. A survey of the state of the art of statechart inspection
showed that not much is published regarding this topic. Only two approaches
deal explicitly with the topic of inspection of requirements statements. Thus,
this report gives guidance how to apply the ideas of inspections to verify state-
chart models. In order to validate the approach, further research is needed. We
plan to apply the checklist and the reading scenarios in a controlled experiment
to evaluate their usefulness to detect defects and to continuously improve the
checklist and the reading scenarios. In a second step, the approach needs to be
evaluated in an industrial setting or in an industrial strength case study.

Another research question that should be addressed in future work is the ques-
tion for which defect classes checklist based inspections are more suitable and
for which defect classes perspective based inspections are more suitable. A first
hypothesis is that checklists are more suitable to detect syntactical defects and
reading scenarios are more suitable to detect subtle defects. This hypothesis
should also be checked in a controlled experiment.

Copyright © Fraunhofer IESE 2003 32

References

References

[Amb02] Ambler, Scott W.; Modeling Style Info, UML State Chart Diagram-
ming Guidelines, Online tips and techniques for creating better
software diagrams; www.modelingstyle.info; 2000

[Bas97] Basili, Victor R.; Evolving and Packaging Reading Techniques; Jour-
nal of Systems and Software 38 (1); 1997

[Bin99] Binder, Robert V.; Testing Object-Oriented Systems. Patterns, Mod-
els and Tools; Addison-Wesley Object Technologies Series; 1999.

[BGL96] Basili, Victor R.; Green S.; Laitenberger, Oliver; Lanubile, Filippo and
others; The Empirical Investigation of Perspective-based Reading;
Journal of Empirical Software Engineering, 2(1); 1996

[BL02] Bunse, Christian; Laitenberger, Oliver; Improving Component Qual-
ity through the Systematic Combination of Construction and Analy-
sis Activities; In the Proceedings of Quality Week Europe; 2002.

[Bry99] Brykczynski, Bill; A Survey of Software Inspection Checklists; Soft-
ware Engineering Notes vol. 24 No 1; ACM SIGSOFT; 1999.

[DKK02] Denger, Christian; Kerkow, Daniel; Knethen, Antje von; Paech, Bar-
bara; Von Use Cases zu Statecharts in 7 Schritten; Technical Report
at the Fraunhofer Institute for Experimental Software Engineering,
IESE-Report No. 086.02/D; 2002.

[Fag76] Fagan; Michael E.; Design and Code Inspections to Reduce Errors in
Program Development; IBM System Journal, 15 (3); 1976.

[GG93] Gilb, Thomas; Graham, Dorothy; Software Inspections; Addison-
Wesley Publishing Company; 1993.

[IEEE] The Institute of Electrical and Electronics Engineering, Inc.; IEEE
Recommended Practice for Software Requirements Specifications,
IEEE Std. 830-1993; 1993.

[Joh] Johnson, Philip M; The WWW Formal Technical Review Archive;
http://www2.ics.hawaii.edu/~johnson/FTR/

Copyright © Fraunhofer IESE 2003 33

http://www.modelingstyle.info/

References

[Lai00] Laitenberger, Oliver; Cost-effective Detection of Software Defects
through Perspective-based Inspections; PhD Thesis in Experimental
Software Engineering; Fraunhofer IRB Verlag; 2000.

[LA99] Laitenberger, Oliver; Atkinson Colin; Generalizing Perspective-based
Inspections to handle Object-Oriented Development Artifacts; In
Proceedings of the 21th International Conference on Software En-
gineering; 1999.

[LK01] Laitenberger, Oliver; Kohler, Kirstin; Reading Techniques for Soft-
ware Inspections; Technical Report at the Fraunhofer Institute for
Experimental Software Engineering, IESE-Report No. 020.01/E;
2001.

[MM99] Major, Melissa L.; McGregor John D.; Using Guided Inspection to
Validate UML Models; 1999
http://sel.gsfc.nasa.gov/website/sew/1999/topics/major_SEW99pap
er.pdf

[NASA] National Aeronautics and Space Administration; Software Formal
Inspection Guidebook; Washington;1993.
http://satc.gsfc.nasa.gov/fi/gdb/fi.pdf

[Sch02] Schlich Maud; Inspektion des Systemlastenheftes; Technical Report
at the Fraunhofer Institute for Experimental Software Engineering;
to be published (IESE); 2003

[Shu99] Shull, Forrest; Travassos, Guilherme H.; Carver, Jeffrey; Evolving a
Set of Techniques for OO Inspections; Technical Report CS-TR-
4070, UMIACS-TR-99-63; University of Maryland; 1999.

[SE93] Strauss, S.H.; Ebenau, R. G.; Software Inspection Process; McGraw
Hill Systems Design&Implementation Series; 1993.

[The02] Thelin, Thomas; Empirical Evaluations of Usage-Based Reading and
Fault Content Estimation for Software Inspections; PhD Thesis at
the Department of Communication Systems, Lund University; 2002

[TSF99] Travassos, H. Guilherme; Shull, Forrest; Fredericks Michael; Basili,
Victor; Detecting Defects in Object Oriented Designs: Using Read-
ing Techniques to Improve Software Quality; In the Proceedings of
the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA); Denver, Colorado; 1999

Copyright © Fraunhofer IESE 2003 34

References

[UML] UML Semantics – Part; Behavioural Elements – Behavioural ele-
ments package: State Machines; http://etna.int-
evry.fr/COURS/UML/semantics/semant11b.html

[Win97] Winter, Mario; Reviews in der objekt-orientierten Softwareentwick-
lung; Softwaretechnik-Trends 17:2; Mai 1997.

Copyright © Fraunhofer IESE 2003 35

Document Information

Title: Inspection of High Level
Statecharts

Date: April 24, 2003
Report: IESE-030.03/E
Status: Final
Distribution: Public

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	�
	Abstract
	Table of Contents
	Introduction
	Brief introduction to Inspections
	Inspections of large scaled documents
	State of the art in Statechart-Inspections
	Checklist-based Inspections of Statecharts
	Scenario-based Inspections of Statecharts
	Conclusion and Further Research
	References
	Document Information

