
foxBMS - free and open BMS platform focused on functional safety
and AI

Stefan Waldhör, Steffen Bockrath, Martin Wenger, Radu Schwarz, Dr. Vincent R. H. Lorentz

Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany

Corresponding author: Radu Schwarz, radu.schwarz@iisb.fraunhofer.de

The Power Point Presentation will be made available after the conference.

Abstract
The last years have shown a strong market demand for lithium-ion battery systems with higher energy
densities, longer lifetimes, and lower costs, but at the same time without compromising safety. To help
developers, engineers and researchers worldwide, Fraunhofer IISB has established the free and open
source Battery Management System (BMS) development platform ”foxBMS”. The foxBMS platform consists
of a modular hardware and software architecture and a complete software development toolchain. Based
on the experience providing foxBMS-based solutions to customers and the research community, the next
generation of foxBMS is strongly focused on functional safety standards. The hardware architecture and
the hardware components themselves help to ensure that functional safety standards are met. Additionally,
foxBMS supports a workflow for implementing Artificial Intelligence (AI)-based battery state estimators for
the BMS. Using foxBMS as a data generator within this workflow a Neural Network (NN) based on a Long
Short-Term Memory (LSTM) is trained offline to estimate the state of charge (SOC) based on the current
and voltage measurement input. The simulation results, obtained with the trained NN running online on
the device, are shown in this paper.

1 Introduction

Worldwide the markets are demanding battery
systems with higher energy densities, longer
lifetimes, and lower costs, but without compromising
safety. Consequently, the efforts to design
suitable battery management systems according
to these requirements are getting higher. To help
developers, engineers and researchers worldwide,
Fraunhofer IISB has established a free and open
Battery Management System (BMS) platform called
foxBMS1 in 2016 [1]. This BMS platform consists
of a modular hardware and software architecture
and includes a full-featured toolchain for software
development. The second generation of the
foxBMS platform will keep up the success of the
foxBMS project by adding important aspects of
functional safety to the hardware and software and
their respective development processes [2]. By
providing certification ready hardware and software

1https://foxbms.org

function blocks, the time to market including the
certification process according to specific norms
(e.g., ISO 26262, IEC 61508, DO-254, DO-178)
can be reduced. The other challenging domain in
the field of batteries is bringing advanced algorithms
rapidly from development environments into the
embedded domain of the BMS. foxBMS enables
developers to easily share battery related data from
the battery system with an algorithm running on a
connected device. This paper shows how to use
foxBMS to generate battery usage data, preprocess
this data and use these results to train a Long Short-
Term Memory (LSTM) Neural Network (NN). The
resulting NN is then transferred to a Processing
Unit (PU), which can be directly integrated on the
edge of the foxBMS hardware or reside in the
cloud. The PU is connected to foxBMS with a
communication interface (Controller Area Network
(CAN), Serial Peripheral Interface (SPI) or Ethernet)
and continuously fed with the data stream of battery
usage data. The model is able to precisely predict
the state of charge (SOC) of the battery. To illustrate



the simplicity in the workflow, a Raspberry Pi has
been used, but any other CPU can be connected
to the BMS and thus algorithms can be easily
developed and tested.
In addition, the OSI approved open source license
of the software (BSD 3-Clause) and the open
license of the hardware and the documentation
(both CC BY 4.0) allows developers and users to
freely adapt and enhance the existing source base
to their specific requirements and applications.
The paper is structured into two main parts: first an
overview of the hardware architecture and function
safety considerations are given, followed by the
description of the workflow of integrating an AI
based battery state estimator into the BMS.

2 BMS for Automotive Applications

The foxBMS platform serves to developers
and engineers of battery systems and battery
management systems, not only in the automotive
domain, by providing a bleeding edge BMS
development platform. The following design
resources are provided free of charge and free
for commercial use through adapted open source
licenses:

– Hardware design files including complete
Altium Designer source files (schematics and
board layout) and bill of materials

– Embedded software source code including
operating system, low level drivers and high
level configurable BMS application software

– Toolchain for the development, debugging and
deployment of the embedded software

– Battery management system users manual
and documentation

As foxBMS is meant to be a development and
evaluation platform for BMS applications, it is not
focused on costs or size, but optimized for features,
modularity, configurability and compatibility. The
foxBMS development was driven by the experience
gained over 2 decades in the field of BMS
development in various domains (e.g., automotive,
aviation, railway, marine) and is designed to cover
most state-of-the-art use-cases in these domains.

This design philosophy and the implementation
makes the foxBMS platform versatile starting from
the first concept and proof of concept phase, to
the first prototype and industrialized product. By
adding high data rate communication interfaces,
the foxBMS platform not only helps BMS hardware
and embedded software designers, but also
enables faster algorithm and battery state estimator
development. Through its Ethernet and CAN)
interfaces it serves as a data generator to be used in
the development of AI based state estimators. The
next sections describe the hardware architecture
and the according functional safety approach more
detailed.

2.1 Hardware Architecture

The architecture of foxBMS is designed similar to
automotive state-of-the-art systems: BMS Slave
Unit are mounted on each battery module. The
BMS Slave Units are then connected to a central
BMS Master Unit via a proprietary communication
interface depending on the used analog frontend.
The following list gives a short overview of
the functions the BMS Master Unit of foxBMS
incorporates:

– Data acquisition from battery sensors: BMS
Slave Unit (e.g., battery cell voltages and
temperatures), global pack current sensor, and
other sensors

– Processing of the sensor data for monitoring
the Safe Operating Area (SOA) of the battery
and state estimation of the battery (e.g., state
of charge, state of health, state of function,
state of safety)

– Communication with higher level vehicle
control units (e.g., VCU)

– Control of actors (e.g., contactors, pumps, fans)
and additional safety components

In addition, various communication interfaces and
components (e.g., large non-volatile data storage)
are added, meant to be used during BMS and
algorithm development and may not be part of a
industrialized automotive BMS solution. Further, a
flexible selection of monitoring solutions provided
by various battery monitoring IC vendors is covered



by a modular approach: the interface electronics
between the microcontroller and the proprietary
communication interface of the IC vendor is kept as
an addon board. Complementary, the embedded
software interface is kept lean to enable easy
selection and integration of one of the many
supported monitoring solutions.

2.2 Functional Safety

At first sight the idea of having a development
platform covering multiple domains and various use-
cases in these domains might seem contradictory
to any functional safety approach. It is clear that any
certification is strongly use-case dependent and has
to take the surrounding system, environmental and
regulatory conditions into consideration. However,
after analyzing many use-cases it becomes obvious
that certain functional blocks are present in the
majority of battery systems and it would make sense
to re-use these blocks and the documentation
required in the certification process. Over the
course of the foxBMS II project, several battery
systems for use-cases in different domains will be
developed in a manner that they can be certified.
From a high level perspective all these projects
differ, however, following a top-down approach,
similar functional blocks will be required towards
the lower system levels. The system architecture,
as well as the according documentation and
processes will be set up to support this modular
approach, in order to end up with reusable units of
hardware, software and documentation suitable for
certification.
In a next step, this idea can also be transferred
to certification processes in other domains, e.g.,
in industrial and aerospace applications. In fact,
both, ISO 26262 in the automotive sector DO-254
in the aerospace sector are derived from IEC 61508,
defining the functional safety development process
in the industrial domain. In order to facilitate
cross domain use, foxBMS II is based on a Texas
Instruments TMS570 microcontroller, which is a
well-established safety controller in automotive
domain as well as in aerospace applications.
Moreover, in foxBMS II only fully automotive
qualified electronic components were selected. This
is of relevance, as high component costs and
certification efforts, especially in the aerospace
sector are the driver for the increased use

of commercial off-the-shelf (COTS) components,
focusing on automotive qualified components.
Although the acceptance of automotive reliability
figures and qualification processes in the aerospace
industry is currently not straightforward, the need for
safe and affordable battery systems will eventually
leverage this cross domain approach.

3 Artificial Intelligence for State
Estimation

For the purpose of safe and economically viable
usage of an energy storage system based on
lithium-ion batteries, a precise state estimation
is needed. Based on these state estimations
foxBMS is able to optimize the control of battery
systems and its cells. However, due to dynamically
changing environment conditions, traditionally
state estimation approaches like equivalent circuit
models are frequently limited due to their poor
stability. Data-driven methods, like NN, are able
to overcome these problems through their high
adaptability and self-learning ability. In addition,
the computing power of embedded devices such as
microcontrollers has increased dramatically over
the last few years. This evolution, in parallel
with the emerging AI technologies and popular
frameworks for AI development, makes it possible
to compile offline generated NN (i.e., on a dedicated
High Performance Cluster (HPC)) for an embedded
device such as the Battery Management System
foxBMS. By using highly adaptable and real-time
capable data-driven approaches like NN, foxBMS is
able to accurately model the eminently non-linear
behavior of lithium-ion batteries.

3.1 Data Generation and Preprocessing

In order to obtain a NN which is able to model
the lithium-ion cell even for dynamic changing
environment conditions, reliable training is essential.
For this purpose, a big amount of data representing
the diverse environment and operating conditions
has to be collected. The measurement of the data
was done by the foxBMS platform. The experiment
setup consists of a foxBMS Master Unit and one
Slave Unit per battery module. The hardware is
integrated into a commercially available battery
electric vehicle with an approved roadworthiness
certification by TÜV Süd. Multiple foxBMS Slave



foxBMS Current Sensor

CANU, T I

Datalogger

Database

NN-Generation

Neural Network

Validation

C
al

ib
ra

tio
n

Processing
Unit

Distribution

Data Stream

Fig. 1: foxBMS provides detailed battery usage data
(e.g., U, T, I) to a database . An AI framework
is used to train a NN on this data sets, like
in this example the SOC. The trained NN is
transferred to the PU and continuously fed with
the current battery usage. The NN is able to
accurately predict battery states and provide
feedback to foxBMS to support e.g., extended
lifetime through optimized operational strategies.

Units measure the cell voltages of each individual
cell in the battery system and an additional high
precision current sensor is integrated into the
battery system to measure the battery current
accurately. The precise measurement of the current
is used to derive a reference SOC. Both, the
voltages and the current, are measured with a
frequency of 50 Hz. The measured data from
foxBMS and the current sensor along with others
such as vehicle speed, acceleration, and vehicle
position are transmitted over CAN to a data logger
integrated into the vehicle. The raw data is
regularly uploaded to a server, converted to a
readable format and subsequently shared with a
HPC. With this setup, real-world driving data has
been accumulated for more than one year. During
this period, more than one terabyte of driving data
has been logged. For a better insight into the
data, clustering algorithms are used, which partition
and divide the driving profiles into most relevant
clusters. Based on the clustering, the most relevant
information is extracted, and used for optimized
training regarding computational efficiency and
generalizability of the NN. The same procedure has

already been applied by the team in [3].

3.2 Long Short-Term Memory

LSTM networks are a type of Recurrent Neural
Network (RNN) [4]. RNNs generally and LSTMs
in particular, are both specially designed for
processing, detecting and memorizing patterns of
sequence problems [5]. The core idea behind
LSTMs is to have feedback loops inside the
network architecture whereby results from previous
computation steps are memorized instead of
getting forgotten [6]. This mechanism allows the
network to learn and store temporal contextual
information. To train a RNN for long sequences,
many computation steps are required. As a result,
the memory of the first input gradually fades. With
its sophisticated memory management through
separate cell states which model short-term and
long-term memory effects, the LSTM is able to
overcome this drawback. In the following the
architecture of the LSTM, provided by the machine
learning framework TensorFlow, is explained. The
general architecture of a LSTM cell is provided in
Fig. 2, where xt describes the input and yt the
output. The long-term state is taken into account
by ct while ht describes the short-term state. The
current input xt and the state of the short-term
memory ht−1 are passed to four gates (it, ft, ot, gt,
see Eqs. (1) to (4)) [6]. The input modulation gate
gt analyzes the current input xt and the previous
state ht−1. The output of gt is partially stored in the
long-term memory. The other three gates are the
gate controllers. The forget gate ft controls which
parts of the long-term memory should be no longer
taken into account. The input gate it controls which
parts of gt should go into the long-term memory.
Finally, the output gate ot controls which parts of
the information are considered for the short-term
state ht.

it = σ
(
W T

xi · xt +W T
hi · ht−1 + bi

)
(1)

ft = σ
(
W T

xf · xt +W T
hf · ht−1 + bf

)
(2)

ot = σ
(
W T

xo · xt +W T
ho · ht−1 + bo

)
(3)

gt = tanh
(
W T

xg · xt +W T
hg · ht−1 + bg

)
(4)

As the long-term state ct−1 traverses the network
from left to right, it first passes the forget gate ft
which is responsible that irrelevant information is not
considered anymore. Subsequently, new inputs are



ct−1

ht−1

xt

ct

ht

ht

× +

×

σ

ft
σ

it
tanh

gt

σ

ot

×

tanh

Fig. 2: Basic structure of a Long Short-Term Memory
(LSTM) cell [7].

added via an addition operation. The new long-term
state ct is output without further transformations. In
addition, the long-term state ct is copied, applied
to the tanh-function and filtered by the output gate.
The result is the state of the short-term memory ht.
ct and ht are described in Eqs. (5) and (6).

ct = ft × ct−1 + it × gt (5)
ht = ot × tanh(ct) (6)

The LSTM with the described architecture is able
to describe the behavior of the lithium-ion battery
over its entire life-time. The training of the LSTM
NN is done offline on a HPC. As input data, the
cell voltage, current, and temperature are used.
The input is mapped to the corresponding SOC. In
order to receive a precise prediction of the battery’s
SOC, an appropriate reference is needed. The
reference SOC is computed using the Coulomb
Counting (CC) approach. This is a straightforward
method for determining the SOC by using current
integration. The charge or discharge current is
summed over time and then subtracted or added to
the current SOC. However, the integrated value has
to be initialized and the computed SOC shifts over
time due to small integration errors. Therefore, time-
consuming re-calibrations were done periodically.
The deviation between the LSTM estimated SOCt

and the reference SOC∗
t is defined by the loss

function L in Eq. (7).

L =

√√√√ n∑
t=1

1

n
(SOCt − SOC∗

t )
2 (7)

Furthermore, a hyper-parameter optimization
approach is applied in order to determine the

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Time (h)

S
O

C
(%

)

LSTM
CC

Fig. 3: Simulation of the SOC during a three hours
drive with the trained NN compared to the CC
reference. The cycle started with a fully charged
vehicle and performed two highway drives with
varying speeds and an intermediate fast charging
stop.

optimal architecture of the NN. As a result, the
NN obtains very good generalizability, whereby
a precise and stable SOC estimation is ensured
for dynamically changing environment and working
conditions.

3.3 NN Implementation and Results on
Embedded System

The NN was implemented using TensorFlow [8].
The model was generated on a HPC and transferred
on the embedded device. For demonstration
purposes a Raspberry has been chosen. The
trained NN is continuously fed with a data stream
of battery usage data in real time as shown
in Fig. 1. Figure 3 shows the simulation result
of a three hour road test drive. It is possible
to transfer battery usage data from a battery
system from foxBMS to any PU that supports
common communication interfaces such as CAN,
SPI or Ethernet. These PUs are able to overcome
computational limits that classic microcontrollers
suffer from. With the additional computational
power advanced algorithms are possible to find
optimal operation strategies online and enable e.g.,
longer battery system lifetimes.



4 Conclusion

In the next steps, the workflow, described in this
paper, and used for bringing AI-based algorithms
on edge devices, has to be further developed.
Besides that, additional research should focus on
analyzing and optimizing the architecture of the
LSTM in order to achieve a more accurate SOC
model of the lithium-ion battery.
Based on the improvements from foxBMS,
foxBMS II provides researchers and engineers
with a well documented, configurable, already
considering functional safety aspects, hardware
platform including a full-featured software
development framework. foxBMS II enables to
effortlessly bring advanced algorithms, well-known
physics based as the 2D Single Particle Model or
innovative AI based ones, into the application stage
at an early stage of the development process and
thus enabling fast time-to-market cycles.

Acknowledgment

Part of the research leading to these results
has received funding from the European Union’s
Horizon 2020 research and innovation programme
under grant agreement No. 769900 (DEMOBASE).
Part of the research leading to these results
has received funding from the ECSEL Joint
Undertaking under grant agreement No. 826060
(AI4DI). This Joint Undertaking receives support
from the European Union’s Horizon 2020 research
and innovation program and the ECSEL member
states (i.e., BMBF for Germany).

References

[1] M. Giegerich, M. Akdere, C. Freund, T. Fuhner,
J. Grosch, et al., “Open, flexible and extensible
battery management system for lithium-ion
batteries in mobile and stationary applications,”
in 2016 IEEE 25th International Symposium on
Industrial Electronics (ISIE), IEEE, Jun. 2016.
DOI: 10.1109/isie.2016.7745026.

[2] M. Akdere, M. Giegerich, M. Wenger,
R. Schwarz, S. Koffel, et al., “Hardware
and software framework for an open
battery management system in safety-
critical applications,” in IECON 2016 - 42nd

Annual Conference of the IEEE Industrial
Electronics Society, IEEE, Oct. 2016. DOI:
10.1109/iecon.2016.7793001.

[3] S. Bockrath, A. Rosskopf, S. Koffel, S. Waldhor,
K. Srivastava, and V. Lorentz, “State of Charge
Estimation using Recurrent Neural Networks
with Long Short-Term Memory for Lithium-
Ion Batteries,” in IECON 2019 - 45th Annual
Conference of the IEEE Industrial Electronics
Society, IEEE, Oct. 2019. DOI: 10.1109/iecon.
2019.8926815.

[4] I. Goodfellow, Y. Bengio, and A. Courville,
Deep Learning (Adaptive Computation and
Machine Learning series). MIT Press, 2016,
http://www.deeplearningbook.org.

[5] C. Loukas, F. Fioranelli, J. L. Kernec, and
S. Yang, “Activity Classification Using Raw
Range and I & Q Radar Data with Long
Short Term Memory Layers,” in 2018 IEEE
16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf
on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech),
IEEE, Aug. 2018. DOI: 10.1109/dasc/picom/
datacom/cyberscitec.2018.00088.

[6] S. Hochreiter and J. Schmidhuber, “Long
Short-Term Memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997. DOI:
10.1162/neco.1997.9.8.1735.

[7] B. Moons, D. Bankman, and M. Verhelst,
Embedded Deep Learning - Algorithms,
Architectures and Circuits for Always-on
Neural Network Processing. Berlin, Heidelberg:
Springer, 2018.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, et al., TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,
Software available from tensorflow.org, 2015.


