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Pumping-kite power generation 
consists of two phases
 generation phase
 consumption phase

The success of the approach is based on the fact

 consumption phase is economic in time and power 
 short time comparing with the generation phase
 the energy consumption of the electric machine is low

Pm

t

Power production

Power consumption

Schematic concept
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Experimental data

Optimization is possible, but where is the limit….

 to obtain a simple model for the estimation
 to set some assuptions
 to study the most common approaches
 to calculate same examples
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 Assumptions

 Possible control of angle of attack at zero 
lift

 Generator/motor with identical power 
curve

 Recovery starts without dead time

Modelling

 Estimation for lift and drag coefficients 

 Dynamic model

 Steady-state model

Introduction
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 For the ram-air kite
(following Lingard 1995)
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0

0 (1 )

a k
a

a k


 




  
0

0

2
tanh

2

a
k

a









1

3,33 1,33 1 2.5

0 2.5
k

  
 

ub A /c A 

A: kite surface
: aspect ratio
: angle of incidence
zL: angle of incidence for zero lift
a0: 2D lift curve slope

Lk L LcC C C 
2( ) cosL ZLC a    

2
1sin ( ) cos( )Lc ZL ZLC k      

Modelling
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Drag coefficient for the kite

A: kite area
Ap: area of stabilizer
: aspect ratio
: angle of incidence
zL: angle of incidence for zero lift
a0: 2D lift curve slope

=DkC  profile drag + induced drag + drag of lines
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Induced drag

 is a small factor to allow for non-elliptic loading
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• Basic airfoil drag (for typical section):

• Surface irregularities and fabric roughness

• Open airfoil nose

• Drag of pennants and stabilizer panels

0 0.029 0.5( / / )D p uC A b c t c  
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nℓ: number of lines

dℓ	: diameter of a line

l: mean line length

bu c: kite area

: angle of incidence

32 2
3

0 1

0.5 cos( ) (1 )
sin ( ) pZL

Dk D Ds ZL
u

A n d la
C C C k

b c

    


 
     


 

Drag of lines

3cos
Dlines

u

n d l
C

b c


  

Total drag

Store drag

store drag area
0.006Ds

u

C
b c

 



06.11.2015

5

© Fraunhofer 

AWEC 2015, Delft, 15th-16th of June 2015

ModellingModellingIntroduction

Modelling: Aerodynamic Coefficients

9

Approaches Approaches Models Examples Conclusions

 For a wing
(following Hoerner 1965)

Lift coefficient for the kite
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A: kite surface
: aspect ratio
: angle of incidence
zL: angle of incidence for zero lift
a0: 2D lift curve slope
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• Basic airfoil drag (for typical section):

• Open airfoil nose 0 0.015 0.5 /DC t c 
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 For a wing (other approach)
(Jae Lim 2015)

Vortex lattice method and 
the Kutta-Joukowski theorem
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nℓ: number of lines

dℓ	: diameter of a line

l: mean line length

bu c: kite area

: angle of incidence
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dt diameter of tether 

lt : length of tether

nt : number of tethers

ncl : number of control lines

0.004fC 

2
0sin  cosLt DC C  

3
0 0cosDt D DC C C 

 For the tether
(following Hoerner 1965)

0.5
0 0.44( / ) 4 ( / ) 4 ( / )D t t f t t f t tC d l C l d C d l  

0D fC C 

0 0 0D t D t cl D clC n C n C 

© Fraunhofer 

AWEC 2015, Delft, 15th-16th of June 2015

ModellingModellingIntroduction

Modelling: Aerodynamic Coefficients

14

Approaches Approaches Models Examples Conclusions

lt: length of tether

dt : diameter of tether

Ak : area of the kite

 Effective glide ratio
(from Houska and Diehl, 2009)
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Modelling: Aerodynamic Coefficients
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Very simple dynamic model
(following Goela et al., 1986)
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Fly to Zenith
(F2Z)

Pitch and Pull
(P&P)

Free and Pull
(F&P)

All kites Rigid  or semi rigid kites Arc kites

Modelling: Dynamic model
Approaches
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Approach: Fly to Zenith

Option 1: 0 , 0 0, 0         
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Approach: Fly to Zenith

Option 2:
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Approach: Fly to Zenith

0 , 0    
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Design examples (reference systems)

Reference systems (Yo-Yo concept)

(vw = 10 m/s; hm= 300 m; 3 tethers)

Area of kite [m²] 15 18 213 2812

Aspect ratio 6.7 5 5 7

Number of cells 37 20 40 80

Span [m] 10.02 9.49 32.63 140.3

Cohr [m] 1.5 1.9 6.53 20.04
Mass [kg] (kite) 1.37 1.5 22 342

Density of mass [kg/m] 0.0883 0.0883 0.9654 6.5436

Diameter [mm] 4 4 12 39

Max. force [kN] 17 17 148 1475

Rated power [kW] 23 20 200 2000

Approaches Models

Approaches: Pitch and Pull
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Design examples (reference systems)
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Design examples (reference systems)

Reference systems (Yo-Yo concept)

(vw = 10 m/s; hmax= 400 m; hmin = 200 m, 3 main tethers)

20 kW 
Angle [°] 0 30 30 30

Angle [°] 0 45 60 90

Time [s] 24.83 39.38 37.32 1934.1

200 kW 
Angle [°] 0 30 30 30

Angle [°] 0 45 60 90

Time [s] 32.23 46.46 273.16 2991.1
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 The recovery phase is essential, it depends on the 
system dynamic and cannot be approximated as 
a percentage of the generation phase 

 F2Z exploits the recovery outside the power zone 
and the positioning of the kite for zero lift

 The drawback is the time necessary for reaching 
the zenith plane

 P&P also utilises the positioning for zero lift

 The disadvantage: the recovery takes place in the 
power zone

Approaches Models


