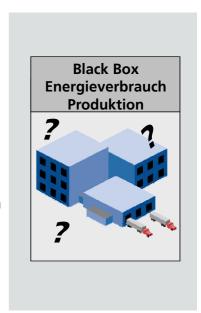
ENERGIEMANAGEMENT: ANALYSE UND OPTIMIERUNG DES ENERGIEEINSATZES IN DER PRODUKTION

Sylvia Wahren

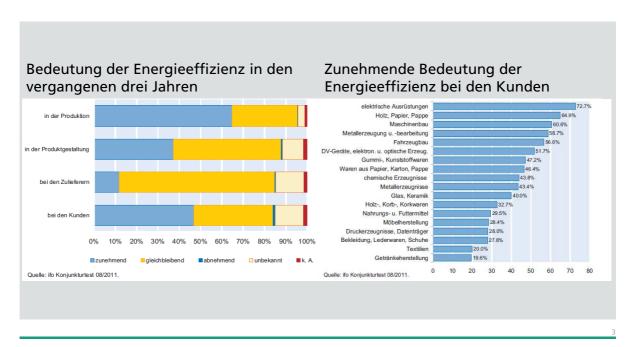
Optimierung und Analyse des Energieeinsatzes in der Produktion

Energieeffizienz durch Energiemanagement


Dipl.-Wi.-Ing. Sylvia Wahren

Fraunhofer IPA, 06.12.2011

© Fraunhofer IPA

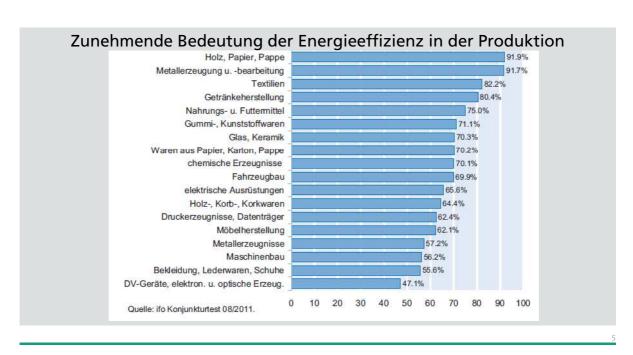

Energieeffizienz als Wettbewerbsfaktor Ausgangssituation

- Ziel verantwortungsvoller Umgang mit der Ressource Energie, weil...
 - Steigende Energie- und Rohstoffpreise
 - Verstärktes gesellschaftliches Interesse an Energiethemen
 - Kundenanforderung
- ...aber zahlreiche Hemmnisse für den Einsatz von Energieeffizienzmaßnahmen
 - Energieverbrauch unbekannt (Energiekosten intransparent)
 - fehlendes Know-how (komplexes Thema)

Energieeffizienz als Wettbewerbsfaktor

Ausgangssituation

© Fraunhofer IPA



Energieeffizienz als Wettbewerbsfaktor Ausgangssituation Energiepolitischer Kontext

- "20-20-20" Zielsetzung der EU
 - Steigerung der Energieeffizienz um 20 Prozent,
 - Steigerung des Anteils der erneuerbaren Energie am Gesamtenergieverbrauch um 20 Prozent
 - Verringerung der Treibhausgasemissionen gegenüber 1990 um 20 Prozent bis 2020.
- Energiemanagementsysteme als Instrument um Unternehmen anzuregen Energieeffizienzpotenziale zu erschließen
- Absicht: Spitzensteuerausgleich ab 2013 nur gewähren, wenn Beitrag zu Energieeinsparung geleistet wird
- Begrenzung der EEG-Umlage nach §41 Erneuerbaren-Energien-Gesetz (Nachweis eines Energiemanagementsystems)

Energieeffizienz als Wettbewerbsfaktor

Ausgangssituation

© Fraunhofer IPA

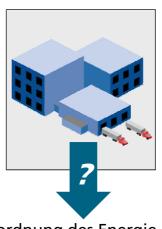
Energieeffizienz als Wettbewerbsfaktor

Lösungsansatz Energiemanagement

Energiemanagement

"die vorausschauende, organisierte und systematisierte Koordinierung von Beschaffung, Wandlung, Verteilung und Nutzung von Energie zur Deckung der Anforderungen unter Berücksichtigung ökologischer und ökonomischer Zielsetzungen" [VDI 4602]

Energiemanagement bietet die Möglichkeit Energieflüsse zu erfassen und zu bewerten


Energiemanagement als Grundlage um Maßnahmen zur besseren Ressourcennutzung abzuleiten und umzusetzen

Verteilen und Nutzen von Energie

Erfassen des Energieverbrauchs

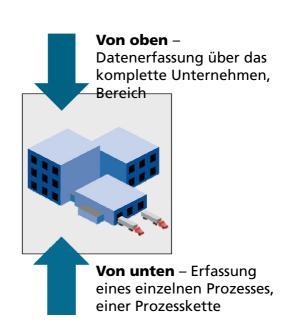
Input

- Eigene Quellen / Erzeugung
- Relevante Versorgungsmedien (Strom, Wärme, etc.)

Zuordnung des Energieverbrauch auf einzelne Bereiche, Prozessketten, Anlagen Output

- Produktionszahlen
- Umsatz
- Einspeisung von Energie

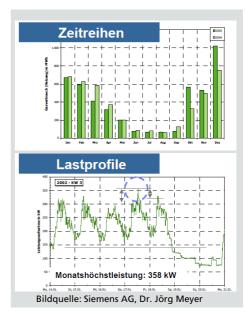
© Fraunhofer IPA



Verteilen und Nutzen von Energie

Erfassen des Energieverbrauchs

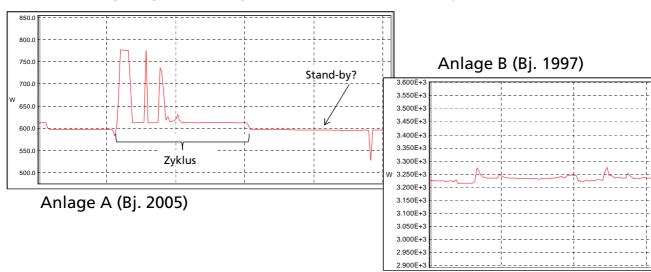
... zu beachten ist dabei die


- Zielsetzung und Planung der Datenerfassung
- Welche Daten (Energieträger) soll erheben werden
- Zuordnung der Daten
- Verifizierung der Daten

Verteilen und Nutzen von Energie

Auswertung der Ergebnisse

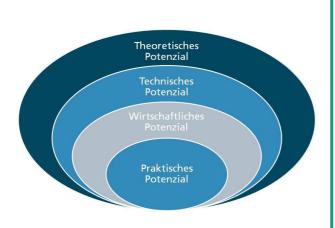
- Je nach Erfassungstiefe unterschiedliche Erkenntnisse:
 - Erfassungsebene Unternehmen/ Bereich: Zeitreihenvergleiche, Identifizierung von energieintensiven Bereichen
 - Erfassungsebene Prozesskette:
 Verbesserung des Einsatz Querschnittstechnologien, Konzepte zur
 Wärmerückgewinnung im Prozess
 (Energiekreisläufe schließen)
 - Erfassungsebene Maschine:
 Verbesserung der Maschinensteuerung,
 Ergreifen von Maschinenindividuellen
 Maßnahmen



© Fraunhofer IPA

Auswertung der Ergebnisse Beispiel Erfassungsebene Maschine

Zwei Anlagen, gleiche Aufgabe, unterschiedliches Baujahr...


Fraunhofer

10

Auswertung der Ergebnisse

Herausforderung Ableitung und Auswahl von Maßnahmen

Potenziale versus Maßnahmen

- Basistechnologien:
 - Elektrische Antriebe, Pumpen
- Querschnittstechnologien:
 - Druckluft, Beleuchtung, Wärmerückgewinnung
- Prozessunabhängige Handlungsmaßnahmen:
 - Reduzierung des Stand-by-Verbrauchs, Erhöhung der Materialausnutzung
- Prozessindividuelle Maßnahmen

11

© Fraunhofer IPA

Auswertung der Ergebnisse

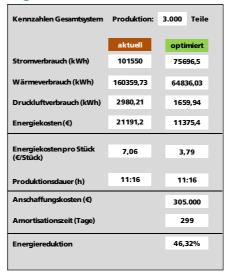
Herausforderung Ableitung und Auswahl von Maßnahmen

Generierung von Verbesserungsmaßnahmen:

- Identifikation von potenziellen Maßnahmen
- Auswahl von relevanten Maßnahmen
- Gewichtung der Maßnahmen
- Ableitung konkreter Handlungsempfehlungen

Ergebnisse

Мавланте	investitions- kosten	Energie- einsparung	Energiekos- tenersparnis	CO2- Ersparnis	Amorti- sations- zeit
Austausch aller S745 und S845 Tester	ca. 2.000.000 €	375.000 kWh/a	45.000 €/a	213,75 t CO ₃ /a	> 10 Jahre
Begutachtung Druckluftnetz durch Experten	ca. 1.200 € bis 1.500 €	Abhängig von Ausgangssituation			Sofort- maßnahme
Lecksuchgerät Druckluft	ca. 1.200 €	Ca. 10 % bis 15% Energieverbrauch Druckluftanlage	Abhängig vom Jahresver- brauch		1 Jahr
Ausweitung des Einsatzes von Elektroschrauber	Preis je 1Nm zw. 400 € und 800 €	je nach Anwen- dung zw. ca. 10 % bis 20 % geringer		Reduzierung der CO ₂ um bis zu 90%	ca. 2 Jahre
Reduzierung der Wärmeabstrah- lung Lötanlagen durch Heizdecken	60.000 €	213.998 kWh/a	25.680 €/a	121,98 t CO₂/a	2,4 Jahre
Reduzierung Stand-by bei frei- stehenden Bürs- tenmodul	0 €	100 kWh/a	12 € /a	0,057 t CO₂/a	Sofort- maßnahme
Abschalten aller UFT-Tester in pro- duktionsfreien Zeiten	0€	3.024 kWh/a	362,88 €/a	1,72 t CO ₂ /a	Sofort- maßnahme


Auswertung der Ergebnisse

Maßnahmenkontrolle

Generierung von Verbesserungsmaßnahmen:

- Ableitung konkreter Handlungsempfehlungen
- Kontrolle der Umsetzung

Ergebnisse

Fraunhofer

© Fraunhofer IPA

Energiemanagement nach DIN EN 16001/ ISO 50001 Zielsetzung der Norm

- Unterstützung von Organisationen beim Aufbau von Systemen und Prozessen zur Verbesserung der Energieeffizienz
 - Prozesse zur Erfassung und Bewertung der Energieflüsse
 - Prozesse zur Sicherstellung der Umsetzung der Verbesserungsmaßnahme
- DIN EN 16001 / ISO 50001 = bieten einen Rahmen zum Aufbau und zur Gestaltung von Energiemanagementsystemen
- Kontinuierliche Verbesserung der Energieeffizienz durch systematischen Ansatz
- Effiziente und nachhaltige Energienutzung

Energiemanagement nach DIN EN 16001/ ISO 50001

Motivation für Energiemanagement

- Transparenz in der Energieverwendung und Energieverteilung
- Energiekosteneinsparung
- Verbesserte Versorgungssicherheit
- Risikominimierung gegenüber schwankenden Energiepreisen
- Aber auch...
 - nicht-energetische Vorteile aufgrund der detaillierten Betrachtung von Produktionsprozessen und Anlagen
 - Erfüllung gesetzlicher Rahmenbedingungen
 - Sicherung des Absatzmarktes ("grüne Produkte grün produzieren")

15

© Fraunhofer IPA

Energiemanagement nach DIN EN 16001

Hauptkapitel der Norm im Überblick

3.1 Allgemeine Anforderungen

- EnMS in Übereinstimmung mit der Norm einführen, dokumentieren, verwirklichen und aufrechterhalten
- Festlegen des
 Anwendungsbereiches
 und der Grenzen des
 EnMS

3.2 Energiepolitik

- Energiepolitik festlegen (muss bzgl. Art und Umfang der Energienutzung durch die Organisation angemessen sein)
- Energiepolitik kommunizieren und vermitteln

3.3 Planung

- Ermittlung und Überprüfung von Energieaspekten
- Rechtliche
 Verpflichtungen und
 andere
 Anforderungen
- Strategische und operative Energieziel und Programme

1

Energiemanagement nach DIN EN 16001

Hauptkapitel der Norm im Überblick (2)

3.4 Verwirklichung und Betrieb

- Ressourcen, Aufgaben, Verantwortlichkeiten und Befugnisse
- Bewusstsein, Schulung und Fähigkeit
- Kommunikation
- Dokumentation des EnMS
- Lenkung von Dokumenten
- Ablauflenkung

3.5 Überprüfung

- Überwachung und Messung d. Verbrauch
- Bewertung der Einhaltung von Rechtsvorschriften
- Nichtkonformität, Korrektur- und Vorbeugemaß-nahmen
- Lenkung von Aufzeichnungen
- Interne Auditierung des EnMS

3.6 Überprüfung durch Top-Management

Top-Management
(Unternehmensleitung) muss das
EnMS in festgelegten
Abständen auf
Eignung und
Wirksamkeit
überprüfen

1

© Fraunhofer IPA

Energieeffizienz als Wettbewerbsfaktor Fazit

Erfolgreiche Verbesserung der Energieeffizienz in der Produktion (im Unternehmen) als Kombination aus

- Unternehmen mit Bewusstsein für den (Wettbewerbs-) Faktor »Energie« und
- strukturierte und kontinuierliche Ansatz zur Analyse und Verbesserung der Energieverwendung (Transparenz in der Energieverwendung, Energiemanagement)

18

Ansprechpartner

Dipl.-Wi.-Ing. Sylvia Wahren

Abteilung Produkt- und Qualitätsmanagement

Fraunhofer IPA | Nobelstraße 12 | 70569 Stuttgart

Telefon: +49 (0) 711 / 970 – 1115 E-Mail: wahren@ipa.fraunhofer.de

19

Fraunhofer

© Fraunhofer IPA

EXFO 2011 Expertenforum Abschlusstagung INTERNATIONALE STOFFVERBOTE, ROHS, REACH, EUP SOWIE ELEKTROG/WEEE IN DER PRAXIS

Vorausschauendes unternehmerisches Handeln für alle Beteiligten der Elektroindustrie und des Elektroaltgeräte-Recyclings

Fraunhofer IPA Tagung 6. Dezember 2011 Stuttgart