
Openness as an Architectural Quality

Authors:
Taslim Arif
Thorsten Keuler
Jens Knodel
Matthias Naab
Dominik Rost

IESE-Report No. 075.12/E
Version 1.0
November 2013

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
(Executive Director)
Prof. Dr.-Ing. Peter Liggesmeyer
(Scientific Director)
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Abstract

Openness of software systems constitutes a new way of collaboration between
software development organizations – on the one hand the open system pro-
ducer and on the other hand the extension producer (i.e., the consumer of the
open system).

Open system producers share information on internal concepts and mecha-
nisms and provide architectural documentation about them in order to enable
third party producer to extend the open system. The extensions themselves are
typically unknown at development time of the open system. The extension
developed third party organizations utilize the mechanisms either at configura-
tion time or at run time (without requiring the open system to be modified or
recompiled). Such contributions are either system extensions (e.g., Eclipse plug-
ins or Apps) or adapters to enable interoperation with other systems (e.g., ma-
chine2machine communication).

In this report we define the term “open architecture” and present a conceptual
model for openness within a software ecosystem (see Section 1). We character-
ize the organizational roles involved the software ecosystem and discuss the
cooperation between open system producers and system extension producers
(see Section 3). Furthermore, we elaborate on concepts for integration of open
systems and extensions.

Key contributions of this report is a classification schema (see Section 4), which
helps organizations in characterizing the situation of their systems and gives
guidance to development organizations on whether or not to invest into open-
ness and what consequences to expect.

Examples from the commercial vehicle domain characterize sample situations of
development organizations (Section 2) and show how the schema to classify
open system can be applied (see Section 4).

The foundations of this report are basis for a follow-up report, which discuss
engineering principles to achieve openness in software systems.

Keywords: software architecture, open architecture, classification of open sys-
tems, commercial vehicles, openness, software ecosystems

Project: Digitaler Nutzfahrzeugtechnologie (DNT)
Commercial Vehicle Technology (CVT)

Copyright © Fraunhofer IESE 2012 v

Copyright © Fraunhofer IESE 2012 vi

Table of Contents

1 Introduction 1
1.1 Project Context 1
1.2 Purpose of the Report 1
1.3 Openness in Software Engineering 1
1.4 Open Architectures 4

2 Example Scenarios Characterizing Openness 6
2.1 Agriculture Scenario 6
2.2 Eclipse Desktop Application Scenario 9
2.3 Cloud Service Scenario 10

3 Conceptual Model of Open Architectures 13
3.1 Foundations of Openness 13
3.2 Business Motivations for Open Systems 15
3.3 Organizational Settings 18
3.4 Open Systems and Extensions 22
3.5 Integration of Open Systems and Extensions 28
3.6 Openness and other Quality Attributes 29

4 Classification of Open Systems 34
4.1 Classification Schema 34
4.2 Revisiting the Example Scenarios 36

5 Summary 40

References 41

Copyright © Fraunhofer IESE 2012 vii

Introduction

1 Introduction

1.1 Project Context

Digital Engineering for Commercial Vehicles is the main subject of the Fraunho-
fer "Innovation Cluster" that Fraunhofer ITWM and IESE have initiated in coop-
eration with regional companies.

The current project activities of the institutes together with industrial partners
from the commercial vehicles industry form the basis of the Innovation Cluster
“Digitale Nutzfahrzeugtechnologie (DNT)”.

The Fraunhofer Innovation Cluster "Digital Commercial Vehicle Technology" is
funded by the European Union and the state of Rhineland-Palatinate in the
context of the Ziel 2-Programm Rheinland-Pfalz.

This work has been conducted in context of the project DNT2 in work package
“7-Integration von Fahrzeugen in die IT-Welt”.

1.2 Purpose of the Report

The purpose of this report is to define the term “open architecture” and delin-
eate the term with related terminology. The report starts with sketching open-
ness in general and then focuses on the role of open architecture in particular.

The intended audiences of the report are:

• Members of the DNT2 project: This report provides the definition of open
architecture and serves to achieve a common understanding of project-
related terms.

• Software architects: This report introduces a conceptual model for open ar-
chitecture and provides a classification schema where development organi-
zations can relate to characterize the situation of their own systems

• Commercial vehicle software engineers: This report provides examples from
the commercial vehicle domain to illustrate open architectures and its under-
lying concepts.

1.3 Openness in Software Engineering

Openness is a term first coined in the field of thermodynamics, where it de-
scribes a system that continuously interacts with its environment. With the
open source movement the term was adopted in software engineering, and

Copyright © Fraunhofer IESE 2012 1

Introduction

many instantly still think about open source when they hear the term openness
or open system. However, openness and open system have a great variety of
different meanings and also for open source there are more aspects than just
the possibility to browse the source code of a system (cf.[1]). In the following
some aspects to consider for openness are explained.

Availability vs. Transparency vs. Participation: Matt Zimmerman outlines the dif-
ferent aspects of openness in open source as availability, transparency and par-
ticipation [2]. He understands availability as the possibility for everyone to ac-
cess the source code of a system, transparency as the possibility to witness the
development of the project in terms of discussion forums, source code history,
bug reports, etc. and participation as the possibility to get involved in the de-
velopment of a system. Although openness in this sense targets open source
exclusively, the different aspects are also relevant for open architectures.

Static vs. Contracted vs. Public: An aspect that is more directly related to the
notion of openness that underlies this report is the possibility to extend the
product with additional components. For this, the following classification can
be given. A static system does not support this possibility and cannot be
changed after it has been shipped to the customer. As such, it can be consid-
ered as simply closed. Other systems may offer the possibility to extend a prod-
uct with custom components, but limit this possibility to known organizations.
Therefore we refer to this variant as contracted. The variant with the highest
degree of participation is public. Here, an organization creates an open product
and allows any other organization or person to produce additional components
for it. It is also possible to bind this to certain regulations but in general the
producers of extensions are unknown at the time of the finalization and ship-
ping of the product.

Free vs. Charged: Openness, especially with regard to open source is often as-
sociated with being available without charge. Despite that this might be the
case for some open systems this cannot be considered as the standard. Hence,
open systems can be classified according to their price model. We can distin-
guish open systems that are freely available and such, for which license fees
have to be paid. For charged systems we can distinguish systems that have to
be paid for use, i.e. once for a certain period of time, or pay per use, where a
certain amount is due for every time the system is used.

The meaning of openness is highly dependent on the context. The following list
provides an overview of different common perceptions of openness.

• Open Content: The term open content was created by the Open-Content-
Initiative and describes content of any form that is freely available and may
be distributed, changed and used without conventional restrictions. The in-

Copyright © Fraunhofer IESE 2012 2

Introduction

itiative created corresponding licenses under which such content can be
published. As such, open content is directly related to open source.

• Open Source: Open source primarily refers to software, which source code
is freely available. Other related aspects have been explained above.

• Open Data: Open data refers in general to the availability and right to pro-
cess data of any kind. This is specifically related to the absence of conven-
tional copyright regulations to promote the creation of innovative ideas
and content.

• Open Standards: For standards it is a prerequisite to be open (i.e. available
to the public) to a certain degree to achieve relevance. Therefore the term
might be considered as redundant. Standards not being open would not
be used and thus lose their validity. Open in this case is independent of po-
tential royalty-fees that users might have to pay to the creator of the
standard, which is a common practice. However, in the combination of
“open” and “standard”, “open” is often more specifically defined by addi-
tional rights, like royalty-free usage, for example.

• Open Protocols: When an open standard defines a (communication) proto-
col, it can be referred to as open protocol. The same aspects apply then
analogously.

• Open API: Open API is a term that describes the possibility of systems to in-
teroperate with webpages or services in the internet. There for interfaces
are created and made available that can be used by application developers
to access data or functionality of the provider.

In this report, we focus on systems with an architecture that supports the in-
corporation of extensions. We refer to such architectures as open architectures.
Consequently, we define systems that possess such an architecture as open sys-
tems. We will use the term in this sense throughout the report. In the following
section, open architectures are defined and explained in detail.

Copyright © Fraunhofer IESE 2012 3

Introduction

1.4 Open Architectures

We define open architectures as:

Openness is the property of a system architecture to enable added-value ser-
vices by incorporating third party contributions (typically unknown in advance)
while retaining essential qualities. Explicit mechanisms for openness are estab-
lished at development time and third party contributions utilize such mecha-
nisms at runtime. The decision to open a system architecture is always based on
business rationale.

Thereby it is important to note that:

Contributions are either system extensions (examples like Eclipse plug-ins or
Apps) or adapters to enable interoperation with other systems (examples like
machine2machine communication).

In this definition, some aspects need to be emphasized:

Open architectures allow the incorporation of third party contributions. We re-
fer to such contributions as system extensions or simply extensions. They con-
tribute additional or enhanced system elements like data, functions or user in-
terfaces, to generate a benefit for the user of the system.

Such extensions are typically created by third party organizations. This is a cen-
tral part of the business model that underlies the idea of open architectures. It
includes the idea that a business ecosystem evolves, in which multiple inde-
pendent organizations contribute to the same product. Such an ecosystem shall
create a situation in which the system producer, third party contributor, and
the user all benefit from the same product. There is no pure technical motiva-
tion to choose this type of architecture. In the typical case open this architec-
ture style implies the need for an increased effort investment for creation or
maintenance of such a system. Only with the possibility of an increased income
on the basis of the corresponding business model, such a decision becomes
plausible. This is reason why the definition states that the decision to open a
system architecture is always based on business rationale.

In consequence the contributors and the concrete extensions are typically un-
known during the creation of the open system. Open system producers will
normally first create an open system and then third party organizations will cre-
ate extensions for it. This means that mechanisms for openness, that allow the
adding of contributions, are established in the system during development
time. These mechanisms are then utilized by extensions, after the system has
been delivered to the customer, i.e. during build- or runtime.

Copyright © Fraunhofer IESE 2012 4

Introduction

Openness as an architectural quality has trade-offs with other quality attributes
and thus constitutes a challenge in their achievement. It is therefore the re-
sponsibility of the architect to make such relations in a concrete project setting
explicit and to ensure the retaining of other essential quality attributes.

Although openness contains some similarities with interoperability, there are
foundational differences. Interoperability targets two independent and fully op-
erational systems that are integrated to generate a benefit. Openness in con-
trast targets one focus system, the open system that is capable of incorporating
extensions that have been created specifically for that purpose and are not op-
erational without the open system. However, openness can be utilized for in-
teroperability, with the help of the extensions that can establish the interopera-
tion with another system.

Copyright © Fraunhofer IESE 2012 5

Example Scenarios Characterizing Openness

2 Example Scenarios Characterizing Openness

Open systems can be of different types (e.g. Vehicles, Desktop Applications,
Cloud Platforms etc.). In order to characterize open systems, three representa-
tive scenarios are presented below.

In the first scenario a company producing agriculture machinery offers its ma-
chine to be extended by their customers or external software companies. A
software company extends the machine with one add-on software component.
As a result customers of the machines get more value added machines than be-
fore. The machine producing company, the external software company and the
customers – all get benefits from this newly created ecosystem by complement-
ing one another.

In the second scenario the Eclipse platform (a desktop application platform) is
described, which is open to their users, who can arbitrarily extend it. A soft-
ware company makes one business process modeler as extension to the Eclipse
platform. The customer company of this extended product further extends it to
fulfill their business goals.

In the third scenario SalesForce.com (cloud platform for collaboration with cus-
tomers) is open to be extended. A customer organization of Force.com identi-
fies the need to extend it to integrate their Microsoft Outlook application to
centralize all information in a single location. They outsource the task to anoth-
er software company. The software company builds the Outlook Integration for
Force.com. Now the customer company of Salesforce has their email system in-
tegrated to the force.com. It makes the customer company more productive in
collaborating with their customers as they eliminated the need to constantly
switch the tools they work with.

2.1 Agriculture Scenario

A well-known company in the agriculture domain manufactures machines to
cultivate and harvest the land. It provides products and services to transform
and enrich land. Their portfolio comprises a variety of tractors, machines for
planting and seeding, grain harvesting and so on. Their Customers are usually
the farmers, who buy this equipment for usage on their own land. Another
common setting is, that certain organization buy different agricultural equip-
ment and offer it on a pay-per-usage basis to farmers with smaller fields, for
whom buying all the equipment would be too expensive. Farmers often employ
field workers to work for them in the field and to operate those machines.

Copyright © Fraunhofer IESE 2012 6

Example Scenarios Characterizing Openness

The manufacturing company plans to introduce open architectures in their new
generation of agricultural machines. They plan to create a new market around
their products, create additional income and new business opportunities. To
make this possible, they open their machines for extensions with additional
functionalities, data and user interfaces.

They expect that the open architectures will create possibilities to make their
machines better integrated with their environment, like with other machines,
information systems and business processes of their customers. They hope that
additional functionalities will be created that make their products even more at-
tractive for customers. As they open the machine data for further processing, it
could additional advanced data visualization techniques could be developed.
For example, usage statistics or usage history can be visualized.

They expect the machines can be better integrated with the surrounding ma-
chines, information systems and processes if they allow additional software
components to be installed into their machine platforms. It would open oppor-
tunities for their machines to be extended with new functionalities. Some of
them can be visualizing the data produced by the machine. For example usage
statistics or usage history can be visualized the way customers’ want. Data can
be sent to other information system to be processed further. Data includes cur-
rent location, working history of the day, current status etc. Even a task sched-
ule can be uploaded into the machine to be carried out by machine without
any more user input. But this of course means they have given access of the
control of the machine available to the extension components too.

The usage and status data of these machines include the location of the ma-
chine, current operating status, usage history and so on. It can be used as valu-
able data for tracking, reporting, diagnosis, and even for financial calculation.
The company understands that this data is a valuable information and it can
enrich the value of the machine in many ways. The company offers the data to
be processed by the customers’ systems in various contexts. For example one
farmer might want to know whether his contractor or worker is currently work-
ing in the field or how much the worker worked in the whole day etc. With this
kind of additional functionalities, the company wants to create additional val-
ues of their machines and get a competitive advantage over their competitors.

To make the machine data available for further processing, the company plans
to build an application platform in their machine with access to machine opera-
tion data in read only manner and where additional software components can
be deployed. The machine data they have given access, can be used by the
farmers to better control their field remotely and also for different reporting or
financial calculations.

Copyright © Fraunhofer IESE 2012 7

Example Scenarios Characterizing Openness

2.1.1 A software Company Makes the Cloud-Loader Add-on for the Machine Platform

Figure 1 : Machine Data Accessible through Cloud Platform or Mobile Devices

A software company builds software in the agriculture domain. As the tractor
manufacturer made the platform of their machines available for externals, the
company found potentials to build add-ons to upload the machine data to a
cloud application. This cloud application can be used by the contractors/ farm-
ers to monitor their machines in real-time.

The software company developed the Cloud-Loader add-on for the machine
platform. The Cloud-Loader add-on periodically sends the location and status of
the machine to the cloud. At the end of daily work the operator can also up-
load the status report (what is done, what is still left, problems faced and so
on) to the cloud. The cloud application stores all those status reports, processes
and makes it available as web services for the contractors/ farmers to access
through iPhone app or some browser.

The software company’s plan is to sell the Cloud-Loader add-on and the cloud
services to the farmers and contractors. They can also provide consultancy ser-
vices to install the add-on in the machines, to set up the cloud environment for
the farmer.

The tractor manufacturer benefits from this external add-on as they do not
need to put effort to build such a helpful feature. The tractor manufacturer and
the software company both are complementing each other and achieve mutual
benefit.

Copyright © Fraunhofer IESE 2012 8

Example Scenarios Characterizing Openness

2.1.2 Farmer Gets Updated Instantly

Consider a farmer who owns several tractors of the above mentioned manufac-
turer. He decided buy one of the new models, because he wanted to try out
the possibilities that an open architecture has to offer. He expects that he can
easily upgrade his machine with new features that better support his business
process and make field work more efficient. He has some employees working
for him and now wants to track their farming activities, to be able to make
quick decisions if they run out of schedule.

He checked the store of the machine manufacturer where all the different ex-
tensions are listed for sale. There he finds the above mentioned software com-
pany who offer an add-on for the tractors that sends machine operation data
to the cloud which is accessible in real-time from his home via a cloud service.
As it is not very expensive he buys the software company’s add-on and cloud
services to access the progress and field data.

After installing the Cloud-Loader add-on, he instructs his workers to upload the
daily task status at the end of the day through it. The Cloud-Loader itself sends
the location and the current operation status to the cloud periodically. The
cloud application makes the location and the current operation status available
as web service directly without any processing. But from this information it pro-
cesses the usage statistics and makes that available too as a web service.

The farmer uses his mobile device to check whether his workers have already
started to work that day and what the current progress is. He also performs fi-
nancial calculations at the end of the month based on the usage history of the
tractors, working hours of workers and so on provided by the cloud applica-
tion.

2.2 Eclipse Desktop Application Scenario

Eclipse is a desktop application platform that uses plugins to provide functional-
ity within and on top of the runtime system. This architecture is different com-
pared to other desktop software where functionalities are rather built-in the
system. The plugin architecture of Eclipse allows extending Eclipse in any de-
sired way to the environment. Eclipse provides the Rich Client Platform for de-
veloping general purpose applications.

2.2.1 A Software Company Develops Eclipse Plugin

Consider a company that develops software to enhance the collaboration be-
tween business analysts, SOA architects and IT. They develop the application
Business Process Modeler for business analysts based on the Eclipse platform.

Copyright © Fraunhofer IESE 2012 9

Example Scenarios Characterizing Openness

The software supports BPMN modeling, sharing among all the team members,
processes reviewing, BPEL visualizing and document generation.

The software company is using Eclipse because it provides a proven robust plat-
form to build desktop applications. The platform already provides a runtime,
modeling framework, visualization and user interaction support. So it reduces
the development effort greatly. And as the software company is using the
Eclipse platform, their software can easily also be extended with other software
components based on the customers’ needs. The software company uses the
modeling framework and visualization functionalities of eclipse and builds the
business process modeler as an Eclipse plugin.

2.2.2 Customer Uses Eclipse Plugin and Extends It

Consider a company that buys the Eclipse based BPM software of the above
mentioned software company. They chose this application to support their
business project management tasks because they wanted a cheap and highly
flexible solution, which was easily adaptable to any changes.

For effort estimation of their business modeling tasks, this customer company
was using expert judgement before. They are now planning to track and save
all their actual effort data and then analyze this data for future effort estima-
tion. They want the process to be automatic with minimum interaction with the
workforce they have. They asked their in-house IT department to investigate
the possibilities. The IT department found that they can extend the software
with additional plugins to automatic tracking of effort, storing and analyzing
for future estimation tasks. Now the customer company has an integrated sys-
tem that supports all their business needs regarding business modeling and it
makes the company satisfied because of their choice of Eclipse based software.

2.3 Cloud Service Scenario

The cloud provides different levels of services, namely the software as a service
(SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS). In the
PaaS model, additional software components can be deployed by the PaaS cus-
tomer. The PaaS can be for generic purpose use (for example Google App En-
gine) or it can be domain specific (e.g. Force.com). In both cases customers
have the opportunity to deploy their software components and extend the pro-
vided functionalities of the platform.

2.3.1 Salesforce.com Provides Extendable Force.com Platform

Salesforce provides cloud apps and platform for the social enterprise. It helps to
connect to customers and employees. No hardware and software need to be

Copyright © Fraunhofer IESE 2012 10

Example Scenarios Characterizing Openness

installed to use the services. If somebody is just connected to the internet, she
can use the services.

The salesforce.com provides a broad range of services. The sales cloud is a SaaS
service that helps the sales representative the opportunity to collaborate with
company experts, complete customer profile, managing marketing campaign
etc. This SaaS service allows the companies to interact with their customers by
not only call center but with other social networking channels. Users can also
join in the conversation, can do video calls (through FaceTime etc.) and can get
prompt response.

Along with these services Salesforce also provides a PaaS platform known as
Force.com. It allows the users to create additional applications that integrate in-
to the main salesforce.com application and are hosted on the salesforce.com
infrastructure. Salesforce provides a marketplace named AppExchange for sell-
ing and buying apps. With Force.com Salesforce created a highly innovative
platform that attracts many additional customers to their main product. Offer-
ing the possibility to create extensions enhances their product with high flexibil-
ity, constantly added features and generates additional income through usage
fees and consultancy services. Salesforce.com allows additional or modifications
of user interfaces, user defined fields can be added or new tabs can be added
for example.

2.3.2 A Customer Company Identifies the Need to Extend Force.com

Consider one of the customers of the Salesforce.com. They are using Salesforce
to contact and collaborate with their customers. They use Outlook and Ex-
change as their internal email system. Often, information is exchanged internal-
ly but also with customers, which is then not available within the Salesforce
platform. However, the customer company expects that having all relevant in-
formation centralized in a single location would greatly improve the efficiency
in their business processes. The company contacts a software company to build
an extension app for integrating outlook with Force.com.

2.3.3 A Software Company Builds the App for the SalesForce.com Customer

Consider a software producing organization specialized in building apps for
Force.com. As a start-up they decided to specialize on Force.com as it already
has an established customer base to which they can easily offer their product.
Technically, Force.com provides an existing infrastructure which they could
simply reuse, which greatly decreased their initial development effort.

They build one app for the above mentioned company to integrate Outllook to
Force.com. They extend the collaboration history user interface of Force.com.

Copyright © Fraunhofer IESE 2012 11

Example Scenarios Characterizing Openness

Now sales persons can see all the collaboration data from Outlook and
Salesforce in one place. It makes them more productive during collaboration.

Copyright © Fraunhofer IESE 2012 12

Conceptual Model of Open Architectures

3 Conceptual Model of Open Architectures

In the following sections, a conceptual model for open architectures is intro-
duced. It serves as a foundation for the engineering approach, which is de-
scribed in section 4. The conceptual model includes foundations of openness as
an architectural quality, business motivations of the main roles, the organiza-
tional settings around open systems, a characterization of open systems and ex-
tensions, as well as their integration and a delineation of openness from other
quality attributes.

3.1 Foundations of Openness

In section 1.4 the definition of open architectures has been introduced and
some basic implications been explained. In the following, the main aspects that
constitute the conceptual model of openness are explained in a short overview.
The subsequent sections provide more detail on each of these aspects. Figure 2
provides an overview.

Figure 2. Foundational Aspects of Openness.

Copyright © Fraunhofer IESE 2012 13

Conceptual Model of Open Architectures

Figure 2 summarizes the definition of open architectures and shows the main
aspects covered in the conceptual model, which is explained in the following
sections. The aspects include the organizational settings, covered in section 3.2,
the business motivations, covered in section 3.3, openness and other qualities,
covered in section 3.6, as well as the technical and system setting, covered in
section 3.4 and 3.5.

As described in section 1.3 apart from other meanings of openness, in this re-
port we cover openness as a quality attribute of architectures, i.e. open archi-
tectures. The main idea of open architectures is systems that have an open ar-
chitecture (i.e. open systems) allow the incorporation of system extensions.
These system extensions offer value added services to the open system. This
means, that the system is able to provide additional benefits to the user by in-
tegration of extensions. This can include enhanced hardware, additional data,
additional features, an enhanced user interface or additional process steps.
Open systems can be of various different types like vehicles, mobile devices or
distributed systems.

System extensions are always created for a concrete open system. Unlike in-
teroperability for example, where independent and fully functional systems are
integrated, system extensions depend on the open system, which operates
them and makes them usable. Therefore, the integration effort of open systems
and system extensions is in the majority of cases very low. System extensions
are typically contributions of third party organizations and thus still unknown at
the point in time when the open system is created.

Openness as a quality can have possible conflicts or tradeoffs with other quality
attributes a system has to achieve. It is crucial for architects to ensure that other
qualities are retained when introducing an open architecture. Introducing an
open architecture is achieved by creating openness mechanisms during devel-
opment time of the system. These mechanisms are then utilized by system ex-
tensions after the system has been delivered to the customer.

Concerning the organizational settings, three main roles can be identified: the
open system producer, the extensions producer and the customer. In a typical
setting these roles are taken by different organizations. Each of these organiza-
tions has a business motivation concerning openness and open systems. An
open system producer makes the decision to create this kind of system only
based on business considerations as from a technical view, it only creates chal-
lenges. Business considerations can include obtaining an enhanced product
with increased flexibility and customizability, an increased visibility and new op-
portunities for additional income. Extension producers can benefit in several
ways from open systems. Apart from the technical infrastructure they can use
that significantly reduces the effort to produce a fully functional and sellable
feature, they can benefit from the image of the open system producer and

Copyright © Fraunhofer IESE 2012 14

Conceptual Model of Open Architectures

have a customer base at hand instantly. Customers may choose open systems
over conventional ones because of the high number of available additional fea-
tures and the increased customizability that may help to adapt the system to
changing requirements.

The following sections will explain each of these points in greater detail to pro-
vide a conceptual model for the classification and characterization of open sys-
tems and architectures.

3.2 Business Motivations for Open Systems

The decision to create an open system is always based on business considera-
tions. This means, the business benefits must outweigh the increased effort in-
vestments for creating and maintaining an open system. The following sections
list and explain considerable factors on which the decision to create an open
system may be based. But also possible motivations for the creation of system
extensions and factors that may lead a customer to choose an open system
over a conventional one are given.

3.2.1 Business Motivation for Creation of Open Systems

An organization producing software intensive systems may either migrate an
existing system to an open one or create an open system from scratch. In any
case a significant investment is necessary for the development and mainte-
nance of such a system and is even potentially higher than for conventional sys-
tems. Thus, the economic benefits must outweigh the additional effort invest-
ment. The following list describes beneficial factors that might be reasons for
the decision to create an open system.

We separate three groups of business motivations for the creation of an open
system: an enhanced product, additional income and strategic goals.

Enhanced Product
The following benefits may facilitate an enhanced product by utilizing openness
properties:

• New Features: Opening a product may lead to a substantially increased fea-
ture set in a short period of time. While the system producing organization
only provides the platform and an initial feature set, additional feature de-
velopment is outsourced to third-party developers. As numerous different
developers or development organizations are involved, feature development
is highly parallelized.

• Customizability: Additional features can be installed by customers or users at
will. As for an open system typically a high number of additional features are
available, this leads to a highly customizable product that can possibly be

Copyright © Fraunhofer IESE 2012 15

Conceptual Model of Open Architectures

adapted to customer needs. Customizability is a strong selling point, often
making customers choose such a product over a conventional system. The
iPhone or Android phones are examples where the high number of available
apps and thus high customizability makes them very successful products.

• Product Integration: Opening a system may lead to an improved integration
with other products. Third party organizations might utilize the openness
mechanisms to make their product interoperable. For example, in a setting
were John Deere provides tractors as open systems, an implement manufac-
turer could decide to create extensions for the tractors to make their imple-
ments interoperate with the tractor. Creating interoperable products is ben-
eficial for the producer of the open system as well as for the producer of the
extension as it attracts customers to choose such products.

Additional Income
Additional income may be generated because of the openness property of a
system. The following list provides an overview:

• License Costs: Openness allows additional income through license costs.
Thereby, different licensing models are imaginable. One example is keeping
a certain percentage of the selling price of system extension as license fees.
Also registration costs for the permission to publish extension in an app
store generate additional income. Apple applied similar concepts for their
products.

• Consulting Services: Products that allow extensions offer the possibility to
create a consulting business around it, which can generate additional in-
come. For example, JBoss is a company that generates most of their income
with consulting services around their open source application server product.
Such business models are imaginable for open systems also. Consulting ser-
vices for open systems can cover usage, operation or development of exten-
sions for the open system. The more system aspects are opened for exten-
sion, the higher is the need and potential for consulting services around the
product.

Strategic Goals
Openness might be an enabler to achieve strategic goals that contribute to the
success of the product. The following aspects can be named:

• Increased Visibility: Creating an open system can potentially increase the vis-
ibility of the product on the market. With a large number of developers
working with and communicating about the product can lead to an in-
creased popularity. An example for this is the Android platform.

• Lock-in Effect: The features and integration potential of open systems create
a lock-in effect that makes customers less willing to change from their exist-
ing product to a product of a different manufacturer. The effect is intensi-
fied, the longer the system is used and the more data is produced that

Copyright © Fraunhofer IESE 2012 16

Conceptual Model of Open Architectures

would have to be migrated. This is true in particular for open systems with
specific system extensions that might not be available for another product.
Preventing customers from changing to another manufacturer can be even
expedited by ensuring downward compatibility of all products so that creat-
ed data and existing extensions work also with new releases.

3.2.2 Business Motivation for Creation of System Extensions

Openness does not only offer additional business opportunities and benefits for
the producers of open systems but also for the producer of system extensions.
They can benefit from the existing infrastructure, the image and popularity of
the system producer and its products as well as from an existing customer base.
This can be beneficial in particular for start-up organization that lack large de-
velopment resources and an established customer base. In the following, some
aspects are described that might be considered as factors for organizations to
develop extensions for open systems.

We group the potential benefits in Technical Benefits and Strategic Goals.

Technical Benefits
• Infrastructure Usage: Big parts of the infrastructure functionality are already

present in open systems and must therefore not be implemented by an ex-
tension producer, but can simply be used. This reduces significantly the de-
velopment effort for creating fully functional features and is in particular
beneficial for organizations with limited development resources.

Strategic Goals
• Image Benefit: Extension producers can benefit from the image and popular-

ity of the open system producer and its products. It is possible to gain a cer-
tain visibility without the need for marketing efforts.

• Customer Base: Related to the previous factor, extension producers can
reach a much larger customer base, especially if a sales channel like an app
store is available. This largely eliminates the need for marketing efforts
which producers of conventional systems have to spend to raise the aware-
ness for their product.

• Low Prices: Reusing the infrastructure functionality and reducing the market-
ing effort allow organizations to keep the prices for their products low. This
can help to create an initial success as customers are typically willing to in-
vest a small amount of money to try out a new functionality. This might help
start-up organizations to achieve an early growth and further investments.

3.2.3 Motivation for Purchasing or Usage of Open Systems

Open systems provide also for customers and users benefits that often found
the decision to choose an open system over a conventional alternative. We see

Copyright © Fraunhofer IESE 2012 17

Conceptual Model of Open Architectures

a clear trend towards this kind of system in specific domains and in many other
domains the possibilities of transferring the concept are currently explored. Ad-
vantages of open systems for customers and users can be seen in the areas of
the product itself but also in the integration with other systems.

Product
• Features: Open systems offer a large variety of features with which custom-

ers can extend the capabilities of their product. Additionally, new features
are added after the system has been built and delivered. This means that
customers constantly receive new features to extend and customize their
system after the initial purchase.

• Customization: The rich feature set and constant evolution allow a high de-
gree of customizability. Systems can be constantly adapted to new or chang-
ing requirements. And additionally, new feature might possibly allow more
efficient and effective fulfillment of tasks.

Interoperation
• Reuse of Existing Systems: Open systems can allow smooth integration with

other systems, devices and products. For customers it is beneficial to choose
a product that allows interoperation with already present systems. A farmer
will more likely choose a new tractor that allows controlling of his available
implements, for example. Open systems facilitate such reuse as by utilizing
the openness mechanisms, achieving interoperation with other systems can
be simplified.

• Availability of Interoperable Systems: Opening a system for extensions also
facilitates the creation of interoperable systems. This means that open sys-
tems will motivate other manufacturers to build systems that are capable of
integration. The availability of interoperable systems can increase the possi-
ble alternatives for customers who plan to purchase additional systems in
the future and thus the probability to find the most adequate solution.

3.3 Organizational Settings

Throughout the lifecycle of open systems, several organizations take different
roles in the development, execution and operation of the open system. An
overview of the different roles is given in Figure 3. We distinguish the roles of
User, Customer, Integrator, Open System Producer and Extension Producer. It is
important to note that the allocation of roles (who takes which role in a con-
crete setting) with concrete organizations is highly dependent on the system
type. The user and customer might be the same person for a mobile device but
in the case of commercial vehicles they are most likely different. The following
sections describe each role with their tasks and responsibilities in detail.

Copyright © Fraunhofer IESE 2012 18

Conceptual Model of Open Architectures

Figure 3. Organizational Setting Overview.

3.3.1 Open System Producer

Open System Producer is the role that is responsible for the development of the
open system. The company that can fulfill this role is dependent on the type of
open system to be produced. It can be a vehicle manufacturing company like
John Deere, a car company like BMW or a plain software companies. Software
companies usually cover a large variety of possible open systems. For example
companies like Google (Android), Apple (iOS) or Microsoft (Windows Phone)
produce mobile platforms. IBM developed the Eclipse platform as a desktop
application. The Cloud service provider SalesForce developed Force.com as a
platform in the cloud. So, in summary, any producer of software intensive sys-
tems can be an Open System Producer.

Two main roles inside the open system producer company perform the devel-
opment of the open system. They are the Open System Developer and the
Open System Business Stakeholder.

The Open System Developer is a a technical role, responsible for the develop-
ment of the open system. To address the open system characteristics they need

Copyright © Fraunhofer IESE 2012 19

Conceptual Model of Open Architectures

to focus on some additional things. Their main responsibility is to create a high
quality system, on which additional system components can be deployed. Act-
ing as an architect, they need to provide the architectural guidelines for proba-
ble extensions as well. They need to perform transition planning and change
management carefully as the system usually needs to be backward compatible
to support all the existing extensions.

The Open System Business Stakeholder represents a class of stakeholders that
fulfill business responsibilities around the open system, like sales, finding stra-
tegic cooperations or creating short, mid, and long-term business strategies.
Additionally to conventional settings they need to focus on identifying ways of
trading with open architecture and also explore new alliances and outsourcing
opportunities in the context of the new ecosystem. The Business Stakeholders
also need to make the business process (realized in the open system) clear to all
future extension providers. Ill-defined and ad hoc business processes are not
suitable for extension. They need to bridge the semantic differences in the in-
terpretation of data among multiple business entities.

3.3.2 Extension Producer

Development of system extensions is in most cases done by other organizations
than the one developing the open system. However, in particular cases the
roles can be centralized to a single company and fulfilled by different internal
groups. For example Google develops Android as well as the Gmail-App run-
ning on it. But in most cases it will be a software producing company focusing
on producing system extensions for a specific or multiple open systems of the
same type. For example Rovio Entertainment produces Angry Birds for all mo-
bile platforms.

An Extension Producer can also be the customer company using the open sys-
tem. For example in case of Force.com, the customer companies can extend the
functionalities by themselves. In some cases, the task can also be outsourced
to an external software company. It can be even an expert user who has good
level of system knowledge. For example expert android mobile users can easily
make custom applications to support their daily needs.

Extension producing can be distinguished in two main roles in the organiza-
tional setting. These are the System Extension Developer and System Extension
Business Stakeholder. In general the developer and business stakeholder can be
from the company that is developing the extension but alternatives may exist as
well. For example if the customer company wants the open system to be ex-
tended, the business stakeholders of the customer company can make all the
business related reasoning and can outsource the technical development task
to some third party software companies. For example a company using the

Copyright © Fraunhofer IESE 2012 20

Conceptual Model of Open Architectures

Force.com platform can find out a new business plan and then outsource the
realization of the extension to a software company.

The System Extension Developer role technically creates the extension for the
open system. They need to master the development environment (if any) pro-
vided by the Open System Producer and follow the reference architecture for
the extension. They need to be updated with the development of the open sys-
tem. In the case some data format or API is changed or deprecated, they need
to address those in their extensions for better compatibility in the future ver-
sions of the open system. To have a really extendable architecture they also
need to provide possible extension points of the extension so that later it can
be extended for some other business goals.

The System Extension Business Stakeholder finds out ideas of possible exten-
sions of the open system. They need to understand customers’ changing needs
and explore new business opportunities in the context of the open system.
They explore the possible extension opportunities provided by the open system
and assess the impact of probable new extensions. They create processes that
span across the default open system.

3.3.3 Operator

The Operator role is responsible for the day to day operation of the open sys-
tem. Which organization is fulfilling that role is strongly dependent on the type
of open system. In the case of vehicles, they are operated by the company that
owns them, respectively the employees, like drivers, farm workers, etc. Desktop
applications are operated on workstations, by the company using it or the end
user. Mobile devices are usually operated by the users. Cloud platform services
are operated by the company developing it or subcontractors, like internet ser-
vice providers, hosting the application. So in summary the operator of an open
system might either be the customer (organization) or a hired subcontractor.

3.3.4 Customer and User

The Customer is the organization or person purchasing the open system. A Us-
er can be an employee of that company or the Customer herself (in the case of
a person). An example would be a farming company (customer) purchasing a
John Deere tractor and a field worker (user) driving it. In case of the iPhone the
customer and user is usually the same person.

Customers or users can identify their additional requirements and find out ex-
tensions to support their business goals. They can purchase those extensions,
can produce extensions by themselves or even can outsource the development
of the extensions to some third party software companies.

Copyright © Fraunhofer IESE 2012 21

Conceptual Model of Open Architectures

3.3.5 Integrator

The Integrator usually installs the extension and customizes the system if neces-
sary. The integration role can be taken by the user, the customer company, the
producer company or even by third party companies based on the type and
complexity of the open system.

The integration of an extension into an open system is generally done by the
user or operator without any dedicated integrator. The open system is intended
to be integrated with the extensions, so by creation the open system has inte-
gration capabilities. For example, the user can install any app in the iPhone by
herself.

But in case of complex open systems it might not be possible for the user or
operator to perform integration. In this case integration might be offered as
additional (paid) service. This may be offered by a third party.

If extension is produced by customer or some outsourced software company,
the integration is also performed by them. But if a large number of devices
need to be extended, integration can be taken as a paid service from third par-
ty. Moreover if customization or configuration is also required during integra-
tion, then dedicated integrator might be required.

3.4 Open Systems and Extensions

Open systems can come in very different forms and types. The form however
has a substantial influence on the engineering and evaluation of open systems
and their extensions. So, it is essential to be able to characterize both as com-
prehensively as possible. The following sections discuss the most important as-
pects of open systems and extensions, including e.g. system types, system bor-
ders or opened system levels.

3.4.1 Open Systems

To be able to characterize open systems, in the following sections the types of
systems, system borders, the opened system levels, possible access rights, the
initial capabilities of an open system and the provided support to build exten-
sions are described.

3.4.1.1 System Types
The type of the open system has a major influence on its organizational setting
and engineering. We distinguish the following types of open systems. An over-
view is given in Figure 4.

Copyright © Fraunhofer IESE 2012 22

Conceptual Model of Open Architectures

• Vehicles and Machines: Any kind of commercial or private vehicles like cars,
trucks or tractors, as well as production machines.

• Desktop Applications and Platforms: Applications that are executed on a
workstation, in contrast to applications being executed on a server or in the
cloud. The Eclipse platform is an example for this.

• Mobile Devices and Platforms: Smartphones or tablets, together with corre-
sponding mobile platforms like Android or iOS.

• Distributed and Cloud Services: Applications that are provided in a distribut-
ed manner or as cloud services and support extensions.

• Computing Hardware: Computing hardware that is opened for further ex-
tensions.

Figure 4. Open System Types.

3.4.1.2 System Boundaries
Any of the aforementioned system types can come in the form of an open sys-
tem and in an isolated consideration the system boundaries are quite obvious.
However, open system producers might also provide linked or compound sys-
tems as open systems to offer more features and extension possibilities to ex-
tension producers. An example for such a case would be a manufacturer of ag-
riculture vehicles that produces tractors that support apps and additionally of-
fers a cloud service to which the tractor uploads data and that can be extended
with custom software. So, the question arises, where the boundaries of the
open system are and what elements of such an integrated system can be re-
garded as the open system.

We can regard every system and system part as element of the open system
that either can be extended with third-party system extensions or that is pro-
vided to be used by system extensions to perform their functionalities. This
means, in the example given before, the vehicle as well as the cloud platform
would be regarded as an integrated open system.

In consequence, system extensions can consist of multiple parts as well. We
consider extensions as extension parts of the same extension if they are de-
ployed in the same open system and conceptually contribute to the same func-
tionality.

Figure 5 illustrates several different alternatives of open systems consisting of
linked individual systems. The blue lines illustrate the connections between the

Copyright © Fraunhofer IESE 2012 23

Conceptual Model of Open Architectures

single systems. At the bottom, multiple system extensions are illustrated that
are deployed onto the system parts. Accordingly, there are individual, as well as
compound system extensions given. So, in summary it is important to note that
both, open systems and system extensions can be individual or compound and
different compositions of system parts can be regarded as the open system,
depending on the openness mechanisms provided for extension.

Figure 5. System Boundaries.

3.4.1.3 Opened System Levels
A central characteristic of open systems is the system levels that are opened for
additions in the form of system extensions, or, from the view of the extensions,
what types of system elements can be added to the open system by one exten-
sion. We distinguish the levels of hardware, data, functionality, user interface
and process. It is important to note that an open system might open more sys-
tem levels than are extended by a single extension. For example, an open sys-
tem might open its user interface, functionalities and data for extension, a spe-
cific extension however only adds a new user interface. Accordingly it is also
possible that a single extension provides enhancements for more than a single
system level. An extension could for example provide additions for the user in-
terface and functionality. In Figure 6 an exemplary situation is illustrated in
which three system extensions provide additions on different system levels. In
the following the levels are explained in more detail.

Copyright © Fraunhofer IESE 2012 24

Conceptual Model of Open Architectures

Figure 6. Opened System Levels.

Hardware
A very fundamental way of opening a system is to allow adding or replacing
hardware of that system. It is imaginable that owner of such an open system
replace hardware components with others that offer more resources or that
new components are added that provide additional functionalities like sensors,
for example. Standard personal computers are examples for this category as
they allow adding and replacement of hardware components.

Data
Opening the data level may allow reading of existing system data or generation
of new data. With data reading, extensions can access the data of the open
system and process it. Concerning data generation it is imaginable that exten-
sions provide additional sensors that allow measuring new kinds of data, or
that extensions provide calculation, analytics or aggregation mechanisms that
process existing data. The generated data would then be provided as additional
data to the open system.

Functionality
Extensions may provide new functionalities to the system or alter existing ones.
A great variety of additional functionalities is imaginable and can reach from
basic features like a notepad app to advanced ones that provide complex calcu-
lations.

User Interface
Extensions may provide additional or alter existing user interfaces to allow bet-
ter control, quicker capturing and understanding of data or overall an en-
hanced user experience. According techniques could include data aggregation,
highlighting, notifications, etc.

Copyright © Fraunhofer IESE 2012 25

Conceptual Model of Open Architectures

Process
For systems that work with executable workflows it is possible to add or alter
existing process steps.

3.4.1.4 Access Rights
Open systems may grant different access rights to extensions. In general exten-
sions may read, write or modify elements of the system level to which they con-
tribute. For example, it can be distinguished whether an extension shall be al-
lowed to read the data of the open system or write additional or manipulate
existing data.

However, it is also possible to manage access rights not only for the system lev-
els, but more fine grained for specific data, functions or hardware parts. So, it
would be imaginable that one type of data is accessible while the access to an-
other type is restricted. Providing such information as documentation to exten-
sion developers is crucial for the success of the open system.

3.4.1.5 Initial State Capabilities
Another characteristic property of open systems is the capabilities that the sys-
tem has in its initial form. This determines the degree to which the system is
operational when it is delivered to the customer and consequently also the im-
portance of the openness-attribute for a particular system. There exist open sys-
tems that are as such only platforms and offer almost no functionality in their
initial state. The Eclipse RCP platform is a possible example. In such cases, sys-
tem extensions have major importance for the product. On the other hand
there are systems that are delivered to the customer in a fully functional form.
For such systems, openness is more an addition that is nice to have.

The importance of the openness quality has a major effect on the engineering
of the system and influences the tradeoff considerations between openness
and other system qualities.

3.4.1.6 Extension Building Support
A characteristic that has a vital influence on how many third party developers
are attracted to contribute to the product is the extension building support.
This includes all artifacts and their quality that are provided as basic support to
create system extensions.

A first artifact of this type is documentation. The quality of the documentation
is mainly determined by how well it guides developers to create their exten-
sions. Properties that influence this quality are among others the amount, the
degree of detail, the type (requirements, architectural, low level design, code),
or whether it is freely available or for purchase.

Copyright © Fraunhofer IESE 2012 26

Conceptual Model of Open Architectures

A second type of extension building support is consulting. Consulting can be
offered in different forms. This can include electronic support, for example with
chats or forums or on-site consultation. Consulting can also be provided for dif-
ferent tasks like for development, integration, or operation.

And yet another type of extension building support is the source code of the
open system. The availability of source code can support the understanding of
the functional principles of the open system and thus how to create an exten-
sion for it. Related to this, the programming language is also a factor that can
be considered as supportive or as hindrance. Offering a variety of popular pro-
gramming languages like Java, C# or Python to build system extensions from
will be considered as supportive by third party extension producers. In contrast,
only supporting extensions in a single programming language or just languages
that are rarely used will be considered as hindrance.

3.4.2 Extensions

System extensions exhibit certain characteristics that distinguish them from
other software systems. In the following such characteristic properties are ex-
plained in detail.

System extensions are always built for a concrete open system. Although it
might be possible to create an extension as a product line, as it is often done
for apps for different mobile platforms like Android and iOS, the final applica-
tion is always built for a concrete open system and its technical specifics. This
contains some implications:

System extensions are executed in the context of the corresponding open sys-
tem. This includes that it is executed on the same hardware and run under con-
trol of the open system software. We explicitly exclude the case of extensions
being executed on connected separate systems as we either regard this as parts
of the same open system if they are provided by the same producer, or as in-
teroperating systems if not.

Another implication is that a system extension is not or not fully functional
without its corresponding open system. iOS apps for example cannot be exe-
cuted without the iPhone or iPod and Eclipse extensions need the Eclipse plat-
form to run. Being built on top of existing features and reusing infrastructure
functionality makes extensions dependent on the open system.

And a third implication is that in contrast to interoperability, where a certain ef-
fort has to be invested to make to systems interoperate, the integration of
open systems and extensions requires in most cases few or almost no effort.
This is possible by openness mechanisms that have been implemented in the

Copyright © Fraunhofer IESE 2012 27

Conceptual Model of Open Architectures

open system during development time and that can be utilized by system ex-
tensions.

Details on the integration of open systems and extensions are given on below.

3.5 Integration of Open Systems and Extensions

Integration of open systems and extensions means installing the extensions on
the deployment platform provided by the open system. It might require addi-
tional configuration or customization on both of the sides (the open system
and the extension). Several aspects related to integration are described below.

3.5.1 Integration Effort

Open systems built for the integration of system extensions that are built exclu-
sively for this concrete open system. Therefore the integration effort should be
close to zero. During the development of the open system, integration mecha-
nisms are established. These integration mechanisms are later utilized by the
extensions when they are being integrated into the open system. For complex
systems like vehicles or machines it might be required to put some effort for in-
stallation and customization. Even in the case of large number devices (for ex-
ample in a company where hundreds of employees are working and one exten-
sion is required for their mobile devices), some integration effort is required.
But in general it should not be the main consumer of effort in the spectrum of
open system related activities.

3.5.2 Binding Time

The binding time describes the point in time when a system extension is inte-
grated in the open system. Typical categories for the binding time include early
and late binding, meaning integration during the system’s development or at
run-time. For open systems early binding typically does not apply, because open
systems are built without targeting a concrete extension. Extensions are in most
cases developed, when the open system is already available.

However, for open systems, different binding times are distinguished. A first
distinction is whether an extension is integration while the system is executed
(run-time binding) or while it is out of operation (configuration time binding).
For configuration time binding, a system has to be stopped, the extension be
integrated and the system restarted.

If extensions can be integrated while the system is executed, we can again dis-
tinguish between different forms. The binding of the extensions can be done in
a plug and play manner, where the extension can be installed while the open
system is in operation and the extension can be used immediately without re-

Copyright © Fraunhofer IESE 2012 28

Conceptual Model of Open Architectures

starting the system. For example in the case of mobile apps the user can access
the features of the extension just after installing it. Alternatively it might be
possible to install the extension during run-time, but necessary to restart the
system for the features to become available and usable. An example for this is
the Eclipse platform.

3.5.3 Integration Mechanisms

Integration mechanisms are means of integrating the extensions with the open
system. It covers the installation, configuration, customization and binding of
the extensions to the open system. Integration mechanism depends on the type
of the open system and also to the policy of the company producing the open
system. For example in case of mobile platforms, extensions can be installed di-
rectly or through some central extension repository maintained by the produc-
er. Currently iOS supports to install apps only through the App Store whereas
Android supports direct installation and also through Google Play. Restrictions
on the integration mechanisms give the open system producing companies
more control on their systems and can secure their system better. Cloud plat-
form providers also follow the mobile platform mechanism. For example
Salesforce provides AppExchange to host extensions for Force.com and those
can be directly installed onto the platform.

For desktop applications the extension provider needs to provide some update
or installation site so that customers or users of the extension can install the ex-
tension directly. Manual installation can also be possible. For example in case of
Eclipse, the plug-in providers maintain their update sites and plug-ins can be in-
stalled manually or through the update sites.

Extensions may be integrated manually for vehicles or for complex devices by
some expert who has in-depth knowledge about the open system. For example
the integrator needs to take care whether the system needs to be shut down or
some customization or configuration is required and so on.

3.6 Openness and other Quality Attributes

Openness is closely related to other software quality attributes, like interopera-
bility, Extensibility or Flexibility, for instance. However, there are also differences
between them. In the following, the similarities as well as the differences to
other qualities are discussed in detail. Additionally, the different qualities are
related to each other. Depending on the concrete system, openness might ei-
ther benefit from or challenge other quality attributes and vice versa. In section
3.6.2 some qualities are discussed for which either a positive or negative influ-
ence is likely.

Copyright © Fraunhofer IESE 2012 29

Conceptual Model of Open Architectures

3.6.1 Delineation of Openness from Other Qualities

In the following sections, differences and similarities of openness to other
common software qualities are discussed. This includes interoperability, flexibil-
ity, extensibility, and adaptability.

3.6.1.1 Interoperability
Interoperability is the “readiness” of two systems to interoperate (cf. [3]). As
such, the major difference to openness is that interoperability is concerned with
two independent and fully functional systems. Each of these systems is operat-
ed to fulfill its own designated purpose. The goal of making them interoperate
is decreasing the usage and operation costs and has therefore a high im-
portance, but it is typically not a fundamental necessity for their existence. Sys-
tem extensions in contrast cannot be operated without the corresponding open
system.

A second difference is that interoperability is always targeted towards an antic-
ipated system or system class and towards a concrete situation of interopera-
tion. This means that when interoperability mechanisms are implemented in a
system, there has to be a clear vision of which systems shall be integrated for
which purpose at a later point in time. For openness, this is typically not the
case. When openness mechanisms are created, it is mostly unknown what kind
of extensions will be created and what enhancements they will contribute.

A major difference can also be found in the business models that underlie both
qualities. For open systems, the openness quality is an essential, central and in-
herent quality. It is seen as unique selling point and competitive advantage. In-
teroperability on the other hand can also create a competitive advantage, but is
typically not such a central point as for openness. For interoperable systems
their own functionalities or qualities like user experience or performance are
the main focus points.

However, there are also similarities. As well as for openness, interoperability has
to be established at development time by introducing interoperability mecha-
nisms. These mechanisms are then utilized during runtime or configuration
time to realize the interoperation. Typically the more a system is prepared for
interoperation during development time, the less effort has to be spent later to
integrate two systems. Similar to interoperability, openness mechanisms have
to be constructed into systems and are then utilized later by system extensions.

3.6.1.2 Flexibility
Flexibility is the property of a software system to allow conducting certain antic-
ipated changes to the system (expressed in flexibility requirements) with ac-
ceptable effort for modifying the system’s implementation artifacts. This means
that the flexibility requirements are covered by the flexibility potential of the

Copyright © Fraunhofer IESE 2012 30

Conceptual Model of Open Architectures

system [4]. Although flexibility, in the sense of adapting a system to changing
requirements, might also be achieved by utilizing openness mechanisms, flexi-
bility as a quality attribute has some fundamental differences compared to
openness.

A first difference can be seen in the organizational setting and business models
on which openness is founded. Although flexibility might also generate a sell-
ing point, a business model in which an ecosystem evolves around a product as
for openness is not present. Also, third party organizational units are not fore-
seen for flexibility. Although, there is no definite organization set in the defini-
tion, in most cases it will be the developing organization that adapts the system
to changing requirements.

During the development of open systems, it is mostly unknown, what kinds of
system extensions will be built in the future and what kinds of enhancements
they are going to contribute. Flexibility in contrast always targets a concrete an-
ticipated system or class of systems. So, systems are never flexible in general.

3.6.1.3 Extensibility
Extensibility is a special kind of flexibility. It relates to the ability of a system to
allow change for adaptation to changing requirements without the need for
large investments of effort. In contrast to flexibility, it focuses on addition of
new elements or functionality, whereas flexibility focuses on change in any
way.

As it is so closely related to flexibility, the differences to openness are similar.
Extensibility is not related to business considerations in the way openness is. As
well it does not necessarily include third party organizations that contribute to
the system.

3.6.1.4 Adaptability
Adaptability refers to the ability of a system to allow substantial customization
through tailoring by users, which means, after it has been delivered. As such, it
has similarities to openness. High customizability is one of the main advantages
of open systems.

In contrast to openness, adaptability does not demand any specific mechanism
of how to achieve customizability. Specifically, customizability does not need to
be realized by a system extension concept as it is for openness. Extensive con-
figuration mechanisms hard coded in the system might fulfill adaptability re-
quirements in the same way as can be achieved with extensions.

Another fundamental difference is that adaptability does not demand any third
parties contributing to the adaptability of the system. It is more likely, that
adaptability mechanisms are implemented by the organization that produces

Copyright © Fraunhofer IESE 2012 31

Conceptual Model of Open Architectures

the system. This implies that one of the main ideas of openness, a business eco
system evolving around a product is not present as well for adaptability.

3.6.2 Potential Impacts on Other Quality Attributes

Introducing openness can have impacts on other quality attributes of the sys-
tem. This includes potential positive impacts, where achieving other quality at-
tributes can benefit from openness, as well as potential tradeoffs, where open-
ness challenges the achievement or retention of other qualities. In the follow-
ing, several of these potential influences are described. It is important to note
that these influences must not necessarily exist as described. There only a ten-
dency is given. In a concrete project context the real effects on other quality at-
tributes have to be analyzed separately and in detail. Figure 7 shows an over-
view of the potential conflicts on other qualities that are explained in the fol-
lowing.

Figure 7. Potential Impacts on Other Qualities.

Potential Positive Impacts
Primarily quality attributes that are related to openness may potentially benefit
from this property. In particular the ones described in section 3.6.1might be
achievable with less effort by utilizing openness mechanisms.

To establish interoperability between an open system and a target system it is
imaginable to use system extensions. The producer of the closed system could
provide a system extension to create the integration of both systems. For ex-
ample BluJet could create system extensions for open tractors created by John
Deere, to make their implements controllable through the tractor.

Achieving flexibility and extensibility can be supported by openness. Flexibility
mechanisms for anticipated change can be based on the openness mechanisms
that might already be present in the system. So it might be efficient to create a

Copyright © Fraunhofer IESE 2012 32

Conceptual Model of Open Architectures

system extension to add a new functionality that satisfies a changed require-
ment instead of changing the open system internally.

Finally, adaptability to a certain degree is implicitly given for open systems.
Normally the user or customer (they might be the same or different) are nor-
mally free to use and integrate any system extension they want to use. In this
way the system can be adapted according to their needs. However, there might
be cases in which the available system extensions do not provide the desired
form or degree of adaptability, which will make the implementation of other
adaptation mechanisms necessary.

Potential Tradeoffs
Openness can possibly challenge the achievement of other quality attributes.
The following qualities might need special attention of architects when design-
ing open systems.

Openness implies making internal system elements available to software con-
tributed by third party organizations. This contains an inherent security risk. So
it is vitally important to introduce adequate security concepts in open systems.
This mainly includes tactics to prevent access of restricted system elements that
have not been opened for usage or enhancement by system extensions. In this
way, extensions shall be prevented from running malicious code that could for
example, read protected data, access restricted functionality or write data to re-
stricted regions.

Accordingly open systems need to ensure that system extensions do not pre-
vent the system from fulfilling performance requirements. There might be risks
of extensions that perform long running computations prolonging the response
time of systems or allocating an inadequate amount of system resources. Open
systems need to apply mechanisms that ensure the open system to fulfill their
own performance requirements independently from the installed extensions.

Finally, availability and reliability might be challenged by openness. Installed ex-
tensions might possibly fail and affect the overall functioning of the system.
Therefore it is important to implement mechanisms that prevent effects of ex-
tension failures to spread onto the complete system. If, for example, a system
extension becomes unresponsive, the open system needs to detect and recover
from the failure.

Copyright © Fraunhofer IESE 2012 33

Classification of Open Systems

4 Classification of Open Systems

Based on the conceptual model, it is possible to characterize and classify each
system with an open architecture, together with corresponding extensions,
business and organizational settings and integration mechanisms. In the follow-
ing sections a classification schema is introduced that summarizes the single
aspects. The example scenarios that have been introduced in section 2 are then
revisited and using the classification schema completely characterized.

4.1 Classification Schema

The classification schema captures in a concise and structured form all the fac-
tors and possible corresponding values described in the conceptual model. Us-
ing this schema it is possible to characterize any situation in the context of
open architecture systems.

Table 1. Classification Schema.

Factor Values Description

Organizational Setting

Open System Producer The name of the organization
creating the open system.

The open system producer is
described in section 3.3.1.

Extension Producer The name of the extension
producing organization in a
concrete setting.

The extension producer is de-
scribed in section 3.3.2.

Operator The name of the organization
that operates the open sys-
tem.

The operator is described in
section 3.3.3.

Integrator The name of the organization
integrating the open system
with the extension

The integrator is described in
section 3.3.5.

Open System

Business Motivations • New Features
• Customizability
• Product Integration
• License Costs
• Consulting Services
• Increased Visibility
• Lock-in Effect

The business motivations that
found the decision of the sys-
tem producing organization to
create an open system. Details
are given in section 3.2.1.

Copyright © Fraunhofer IESE 2012 34

Classification of Open Systems

System Type • Vehicle / Machinery
• Desktop Applications and

Platforms
• Mobile Devices and Plat-

forms
• Distributed and Cloud Ser-

vices
• Computing Hardware

The type of the open system
as described in section 3.4.1.1.

System Boundaries • Single Open System
• Compound /Integrated Open

System

Open system can consist of
multiple linked single systems.
What can be regarded as open
system depends on what sys-
tem parts are provided for
extension. Details are ex-
plained in section 3.4.1.2.

Opened System Levels • Hardware
• Data
• Functions
• User Interface
• Process

The system levels for which
extensions are allowed. Details
are given in section 3.4.1.3.

Access Rights • Read
• Change
• Add

The access rights that are pro-
vided to system extensions for
the single system levels. The
rights are explained in section
3.4.1.4.

Initial State Capabilities • Platform
• Functional System

The capabilities that an open
system provides upon delivery
and thus, the importance of
the openness concept in the
corresponding system. Details
are given in section 3.4.1.5.

Extension Building Support • Documentation
• Consulting
• Source Code

Artifacts and activities that are
offered as support for building
extensions for an open system.
The factor is described in de-
tail in section 3.4.1.6.

Extensions

Business Motivation • Infrastructure Usage
• Image Benefit
• Customer Base
• Low Prices

The business motivation of
extension producers to create
an extension for the corre-
sponding open system. Details
are given in section 3.2.2.

Copyright © Fraunhofer IESE 2012 35

Classification of Open Systems

Contribution Levels • Hardware
• Data
• Functions
• User Interface
• Process

The system levels for which
the extensions provide contri-
butions. Details on the system
levels are described in section
3.4.1.3.

Integration

Needed Integration Effort An effort value (PH, PD,
PM,…)

The effort needed to integrate
a concrete extension into the
corresponding open system.
Details are given in section
3.5.1.

Binding Time • Runtime
• Configuration Time
• Build Time

The time at which an exten-
sion has to be integrated in an
open system. Details are given
in section 3.5.2.

Integration Mechanisms An integration mechanism
(expert engineer, app store,
…)

The integration mechanism
that is used to integrate the
extension with the open sys-
tem.

4.2 Revisiting the Example Scenarios

The three scenarios described in section 2 are revisited in this section following
the classification schema presented above.

4.2.1 Agriculture Scenario

Table 2. Classification Agriculture Scenario.

Factor Values

Organizational Setting
Open System Producer The tractor manufacturing company
Extension Producer The software company that develops Cloud-Loader add-on for

the tractor
Operator The farmer
Integrator The extension producer

Open System
Business Motivations • New Features

• Customizability
• Product Integration

Copyright © Fraunhofer IESE 2012 36

Classification of Open Systems

• License Costs
• Consulting Services
• Increased Visibility
• Lock-in Effect

System Type Vehicle / Machinery
System Boundaries Single Open System
Opened System Levels • Functionality

• Data
• User Interface

Access Rights Read
Initial State Capabilities Functional System
Extension Building Support • Documentation

• Consulting
Extensions

Business Motivation • Infrastructure Usage
• Image Benefit
• Customer Base

Contribution Levels • Functions
• User Interface
• Process

Integration
Needed Integration Effort 2 PH
Binding Time Configuration Time
Integration Mechanisms Through expert engineer

4.2.2 Eclipse Desktop Application Scenario

Table 3. Classification Eclipse Desktop Application Scenario

Factor Values

Organizational Setting
Open System Producer The Eclipse Foundation
Extension Producer The software company that built BPM plugin for Eclipse. And

also the customer company who further extends the BPM
plugin

Operator The customer company of BPM plugin
Integrator The operator.

Open System
Business Motivations • New Features

• Customizability
• Product Integration

Copyright © Fraunhofer IESE 2012 37

Classification of Open Systems

System Type Desktop Applications and Platforms
System Boundaries Single Open System
Opened System Levels • Functions

• Data
• User Interface

Access Rights • Read
• Change
• Add

Initial State Capabilities Platform
Extension Building Support • Documentation

• Source Code
Extensions

Business Motivation • Infrastructure Usage
• Low Prices

Contribution Levels • Functions
• User Interface

Integration
Needed Integration Effort No integration effort required
Binding Time Runtime
Integration Mechanisms Directly through update site

4.2.3 Cloud Platform Scenario

Table 4. Classification Cloud Platform Scenario.

Factor Values

Organizational Setting
Open System Producer SalesForce.com
Extension Producer The software company that produced app for Outlook inte-

gration
Operator The SalesForce’s customer company
Integrator In this case it is the extension producer

Open System
Business Motivations • New Features

• Customizability
• Product Integration
• License Costs
• Consulting Services
• Increased Visibility
• Lock-in Effect

System Type Distributed and Cloud Services

Copyright © Fraunhofer IESE 2012 38

Classification of Open Systems

System Boundaries Single Open System
Opened System Levels • Functions

• User Interface
• Process

Access Rights • Read
• Change
• Add

Initial State Capabilities Functional System
Extension Building Support • Documentation

• Consulting
Extensions

Business Motivation • Infrastructure Usage
• Image Benefit
• Customer Base
• Low Prices

Contribution Levels • Data
• Functions

Integration
Needed Integration Effort 2 PH
Binding Time Runtime
Integration Mechanisms Through AppExchange (app hosting site)

Copyright © Fraunhofer IESE 2012 39

Summary

5 Summary

Openness of software systems constitutes a new way of collaboration between
software development organizations – on the one hand the open system pro-
ducer and on the other hand the extension producer (i.e., the consumer of the
open system).

In this report we defined the term “open architecture” and present a concep-
tual model for openness within a software ecosystem. We further provided a
classification schema, which helps organizations in characterizing the situation
of their systems and gives guidance to development organizations on whether
or not to invest into openness and what consequences to expect.

This report forms the basis for other reports in the Innovation Cluster “Digitale
Nutzfahrzeugtechnologie (DNT)”, which provides guidance on architecture-
significant requirement for open systems and characterize engineering patterns
for open systems and provide examples application and implementations in the
context of the Living Lab “Smart Farming”.

Copyright © Fraunhofer IESE 2012 40

References

References

[1] Skud, “Defining openness: open source, open data, open APIs, open
communities, and more,” infotropism, 2009. [Online]. Available:
http://infotrope.net/2009/11/16/defining-openness-open-source-open-
data-open-apis-open-communities-and-more/.

[2] M. Zimmerman, “Open vs. open vs. open: a model for public collabo-
ration,” We’ll see | Matt Zimmerman, 2009. [Online]. Available:
http://mdzlog.alcor.net/2009/10/26/open-vs-open-vs-open-a-model-
for-public-collaboration/.

[3] Olbrich, Steffen ; Weitzel, Balthasar ; Rost, Dominik ; Naab, Matthias ;
Kutepov, Glib: "Decomposing Interoperability: A Quality Attribute in
the Balance of System Usage, Operation and Development" Kaisers-
lautern, 2012. (IESE-Report; 104.12/E). - Reportnr. 104.12/E

[4] M. Naab, “Enhancing Architecture Design Methods for Improved Flex-
ibility in Long-Living Information Systems”, PhD Theses in Software
Engineering, Fraunhofer IRB Verlag, 2012.

Copyright © Fraunhofer IESE 2012 41

Document Information

Copyright 2012 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Openness as an
Architectural Quality

Date: November 2013
Report: IESE-075.12/E
Status: Final
Distribution: Public Unlimited

	1 Introduction
	1.1 Project Context
	1.2 Purpose of the Report
	1.3 Openness in Software Engineering
	1.4 Open Architectures

	2 Example Scenarios Characterizing Openness
	2.1 Agriculture Scenario
	2.1.1 A software Company Makes the Cloud-Loader Add-on for the Machine Platform
	2.1.2 Farmer Gets Updated Instantly

	2.2 Eclipse Desktop Application Scenario
	2.2.1 A Software Company Develops Eclipse Plugin
	2.2.2 Customer Uses Eclipse Plugin and Extends It

	2.3 Cloud Service Scenario
	2.3.1 Salesforce.com Provides Extendable Force.com Platform
	2.3.2 A Customer Company Identifies the Need to Extend Force.com
	2.3.3 A Software Company Builds the App for the SalesForce.com Customer

	3 Conceptual Model of Open Architectures
	3.1 Foundations of Openness
	3.2 Business Motivations for Open Systems
	3.2.1 Business Motivation for Creation of Open Systems
	3.2.2 Business Motivation for Creation of System Extensions
	3.2.3 Motivation for Purchasing or Usage of Open Systems

	3.3 Organizational Settings
	3.3.1 Open System Producer
	3.3.2 Extension Producer
	3.3.3 Operator
	3.3.4 Customer and User
	3.3.5 Integrator

	3.4 Open Systems and Extensions
	3.4.1 Open Systems
	3.4.1.1 System Types
	3.4.1.2 System Boundaries
	3.4.1.3 Opened System Levels
	3.4.1.4 Access Rights
	3.4.1.5 Initial State Capabilities
	3.4.1.6 Extension Building Support

	3.4.2 Extensions

	3.5 Integration of Open Systems and Extensions
	3.5.1 Integration Effort
	3.5.2 Binding Time
	3.5.3 Integration Mechanisms

	3.6 Openness and other Quality Attributes
	3.6.1 Delineation of Openness from Other Qualities
	3.6.1.1 Interoperability
	3.6.1.2 Flexibility
	3.6.1.3 Extensibility
	3.6.1.4 Adaptability

	3.6.2 Potential Impacts on Other Quality Attributes

	4 Classification of Open Systems
	4.1 Classification Schema
	4.2 Revisiting the Example Scenarios
	4.2.1 Agriculture Scenario
	4.2.2 Eclipse Desktop Application Scenario
	4.2.3 Cloud Platform Scenario

	5 Summary
	References

