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Abstract— Most cable-driven parallel robots are kinemati-
cally over-constrained mechanisms. This results in a nordial
computation of the forward kinematic transformation. It is
well known that the forward kinematics of parallel robots
may have multiple solutions and in general the convergence
of numerical methods is unknown. In recent works, it was
proposed to formulate the forward kinematics as optimizaton
problem that models the cables as linear springs in order
to compute the platform pose which has minimal potential
energy in the cables. In this paper, we analyzed this objeaté
function. Using the Hessian matrix, we show that under certin
conditions the problem at hand is convex and we can expect a
unigue and stable minimum. The computations are exemplified
for point-shaped platforms as well as for the planar case. Fo
the spatial case, we present an encouraging numerical studgn
ordinary least squares method is then applied to find a positin  Fig. 1. CAD draft of the spatial cable-driven parallel rot@&nema with
approximation and an improvement to previous methods is eight cables and six degrees-of-freedom.
demonstrated.

. INTRODUCTION

In the last decade, a lot of research has been carried out3gd €lastic deformation in the cables was also shown in
study both, theory (see e.g. [1], [2], [3]) and implememati [10]. ch_er possible methods include neural networks or
[4] of cable-driven parallel robots. combinational approaches [11].

For a mobile platform withn degrees-of-freedom, in  Merlet also presented forward kinematics for under-
general, at leastn = n + 1 cables are required to fully constrained robots [12]. A closed-form kinematic code for
control the motion [5]. Therefore, many cable robots ar¢he so-called 3-2-1 configuration is well suitable for real-
under-determined with respect to distribution of forces itime application [13][14], but relies on a special non-géne
the cables and over-determined with respect to forwargeometry. Bruckmann [15] presented a method to cope with
kinematics (Fig. 1). As a consequence of the latter, it iwinches using pulley mechanisms to guide the cables. An
challenging to calculate the forward kinematics of the eablefficient real-time capable numerical scheme for forward
robot in real-time. Thus, one has to estimate the pose of thkéematics of over-constrained robots was proposed by [16]
mobile platform from given length of the cables. and extensions for pulley mechanisms have been imple-

In the literature, different approaches for that problenmented [17].

were suggested. In general, the forward kinematics of lgéral  \wjithin this contribution, we follow the line of research
robots, with six legs but almost identical topology as cablgf the |atter contributions where we provided numerical
robots, can have up to 40 solutions and the algorithm ygyits for the convergence in order to achieve real-time
Husty [6] gives deep insight into the number of solutions angfﬁciency_ In this paper, we analyze the convergence of
their mathematical structure. Unfortunately, it is cuthem-  tpe energy minimization method for forward kinematics.
adequate for real-time implementation and adding additiongyrthermore, using this knowledge of the convergence, we
cables or lengths does not necessarily reduce the numberpgsent a new pose estimation method in order to generate the
solutions in the general case and special geometries Maintaarting position for a numerical optimization techniqieis

this maximum solution set [7]. An incremental forwardestimation scheme is employed in global navigation stdelli
kinematics to follow a trajectory was presented in [8]. Merl system receivers, which constitutes a very similar problem

[9] used interval analysis to calculate the forward kindgosat statement of finding position from distances to satellife],[
of Stewart-Gough platforms in a robust and guaranteed way.o], [20].

A more specialized method for cable robots with linear drive
Verhoeven created and proved the completeness of the
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In order to compute derivatives, we introduce a parameter-
ization of the rotation matrixk through an angular model
with the angles, b, c. This can be chosen to be e.g. Euler
angles or Bryant angles. The pose is thus denoteg by
(z,y, z,a,b,c). Computing the gradient of ¢ yields

9g
ox

G =Vyg(y) = : )

containing six partial derivatives of the objective fulcti
Since the objective functiop is differentiable, the sought
optimum corresponds to the pose wh&fg = 0, given exact
cable lengths. Furthermore, we will consider the Hessian
matrix H of the functiong in order to characterize the
number and type of extremal values @f The Hessian of

_ _ _ g is given by
Fig. 2. Geometry and kinematics of a general cable robot.
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For better reference, the kinematic foundations of cablghere the Hessian is symmetric according to the theorem of

robots are briefly reviewed to introduce our notation. Fig. Schwarz because the functignis continuous differentiable
shows the kinematic structure of a spatial cable robot, hefy, y.

the vectors,; denote the proximal anchor points on the robot

base, the vectorb, are the relative positions of the distal Il. ANALYSIS OF THE CONVERGENCE

anchor points on the movable platform, ahddenote the BEHAVIOR

vector of the cables. The length of the cables is abbreviatedNumerical studies as well as experimental results from

by I; = ||1;||2. Applying a vector loop, the closure-constraintseveral years of operation of the robot controller indicate

reads that the kinematic code built from Levenberg-Marquardt

. optimization ofg shows both stable and reliable performance

aj—r—Rb;—1;=0 for i=1....m, (1) iy pactice. However, little analysis have been made yet to

where the vector is the Cartesian position of the platform elaborate a theoretical foundation. In the following st

and the rotation matri;R represents the orientation of thewe present some case studies for point-shaped platforms

platform frameXC,, with respect to the world frami€,. From as well as for planar robots with one rotational degree-of-

(1) we receivern nonlinear equations; for the forward freedom and two translational degrees-of-freedom (1R2T).

kinematics A. The 2T and 3T case

vi(Lr,R)=|la; —r —Rb;|5-17=0,i=1,...,m (2) In this section, we analyze the procedure for the gener-

that form an over-constrained system for the considereel ca I'Zed. robot geometry. The 2T apd 3T robot. types, can be
escribed as the 2D and 3D motions of a point respectively.

with m > n. In general, we cannot expect to solve the abov. L L .
m>mn.ng P herefore, when considering the objective functigrrota-

equation analytically, but we can minimize the error whic ion can be ignored. The geometric condition for robots with
can be interpreted as minimizing the potential energy in pr gne ) 9eq
hese two motion patterns is that all cables are connected

tensed springs [16] which yields the function for forwar to the same point on the platform and thus that all vectors

kinematics m b, are equal. Without loss of generality, we can therefore

®(1) =min Y (L1, R), (3) assumé; = 0. Consequently, the equations of the objective
rR% function are greatly simplified. To further characterize th

where the given vectot = [i1,...,l,,]7 is the vector optimization problem at hand, we consider the objective

containing the cable lengths. Then, the functifl) yields functiong: R™ — IR in 2T case as follows

the valuesr*, R* that minimize the right hand side of (3). m )

The function® : R™ — IR"™ can only be computed using a g(lr) = Z (IIr — a3 — 1) (7)

numerical procedure. i

To further characterize the optimization problem at handind substituting the parameters of the position (x,y) fer th
we consider the objective functign: R™ — IR as follows vectors into the expression gives
- 2 “ 2
gLr,R)=> [la,—r—Rbi|[5-17]". (4 9= (z—aiw)+y—ay’-5)" .  ©



TABLE |

Thus, the gradlenG can be CompUted as follows A SAMPLE PLANAR ROBOT WITH 1R2T MOTION PATTERN: PLATFORM

G i ( 4 ((x _ am)z + (y — aw)z _ llz) (z — aiz) ) VECTORSb AND BASE VECTORSa
L 4 ((x - air)Q +(y — aiy)Q - l?) (y — aiy) -

e 9) cables platform vectorb; [m]  base vector; [m]

. ( 1 [-2.0,2.0]T [-0.05,0.1]T

and the Hessiafl becomes 2 [2.0,2.0]T [0.05,0.1]T
m I I 3 [2.0,0]T [0.05,—0.0]T
_ zT zy i 4 —2.0,0|T —0.05,—0.0]T
H = ) ( He H ) with, (10) [ ] [ ]

i

Hyw = Y 12(x—ai)’ +4(y — aiy)* — 417 (11)

H,, = Z8(x — Gig) + 8(y — aiy) (12)

Hy, = > Az —aip)’ +12(y — ayy)® — 417 (13)
where for the 3T case the gradiefitis extended with the

respective terms for the-coordinate and the Hessian consists
of some additional trivial derivatives. A sufficient condit
for the optimum of the functiory to be unique is that the
gradientG = 0 and the HessiaH is positive definite. For a
symmetric2 x 2 matrix, this check can be done by testing if
the determinant is positive. The eigenvalues of a symmetr
matrix are real, therefore, both eigenvalues are posititheei
determinant is positive. To demonstrate the procedure sse u
the geometric parameters fay given in Tab. I. With actual
numbers for the geometry, the determinanttbfoecomes a
multivariate polynomial in the positiofw, y) and the cable
length ({1,...,1,,). This polynomial allows to consider the
general relation for arbitrary cable length. To remove th%ig. 3. Evaluation of the smallest eigenvalugs, of the HessiarH ; jcq;
dependency from the cable length, the inverse kinematigthin the frame of the 2T robot. (x and y in [m])
equation is to give the cable length is inserted iEOThis
corresponds to the ideal situation without measuremeatsrr
or disturbance in the cable length. Executing the subsiitut the geometryb; of the platform cannot be removed from
with computer algebra gives a surprisingly simple expm@ssi the equation and we deal with the general case of having
. 2 2 arbitrary vectorsb,;. Substituting the known quantities into
det Higea = 1024(z” + 4(y = 1)" +4), (14) the general over-constrained objective function (4) yseld

where for the determinant df;..; the geometric param-
eters a; listed in Tab. | where used. This expression is .
obviously always positive. Therefore, we have shown for 9 — Z((JS + cos(@)biz — sin(p)byy, — aiz)?
the sample robot that the solution of the forward kinematics ! .

by the energy method is always unique. The result is also +(y + sin(¢)biz + cos(@)biy — aiy)
illustrated in Fig. 3 that shows the eigenvalues of the matri —13)*. (15)
H,4.q; Over the area covered by the frame and in Fig. 4 we

plot the determinant in the same region. From the positid/e compute the gradiel = (G, G,,G4)" as follows
definiteness of the Hessian, we conclude that the objective

m

2

function is convex which means that we can find a unique - . 2
r = 4 bw: - bl — Uix
solution in our optimization problem to solve the forward ¢ zl: (@ + cos(¢) sin(@)biy = aia)
Kinematics. (9 + sin(@)biz + cos(@)biy — aiy)* — 17)
B. The planar case 1R2T (2 + cos(P)bix — sin(¢)biy — aiz) (16)
We apply the same approach to the 1R2T case where the ™ ) )
equations are slightly more complex. Again, we express the Gy = > 4((x + cos(¢)bix — sin(¢)biy — aia)
position of the platform with the coordinatas = (z,y) i ) s
and the rotation is given by the rotation matdk which (y + sin(@)biz + cos(@)biy — aiy)® — 1)

is parameterized by the angle Thus, for the 1R2T case (y + sin(@)biz + cos(@)biy — aiy) a7
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Fig. 4. Evaluation of the determinant of the HessHR,.,; within the
frame of the 2T robot. (x and y in [m])

Z A[(x + cos(¢)bix — sin(p)by, — aiz)?

+(y + sin(¢)biz + cos(¢ )b aiy)2 - 112]
[+ cos(6)bis — sin(6)biy — ais)

(= sin(@)bix — cos(@)biy)

+(y + sin(@)bic + cos(¢)biy — aiy)

(cos(6)bia — sin(6)bi)] (18)

Evaluating the Hessian is possible repeating the procedure
in case study for the 2T type; however, we do not reproduce
the coefficients of the matrix here due to space limitatian. T
study the expected convergence of the optimization proplem

we apply the procedure outlined above. Substituting both a
PPy P 9 Fig. 5. Evaluation of the determinant of the HessHp;.,; within the

geom_etry g'V_en by Tab. I_and the 'qeal cable length m_to thEame of the 1R2T robot. The upper plot shows the value of tterchinant
Hessian provides the desired equations for the determarfantfor ¢ = 0 in the zy-plane where the lower plot shows the value of the

the Hessian. The evaluation with computer algebra provid@gterminant fory = 0.5 in the z¢-plane. (x and y in [m] and in [rad])
an expression with around 250 operations to compute the
determinant for a pos¢ = (z,y,¢). Results from the
computation of the determinant are shown in Fig. 5. As on
can see in the figures, the determinant is positive for two
coordinate planes. A numerical search also shows no zero
crossings within the workspace. Therefore, we expect thgheres is the unknown parametey,the dependent variable
solution to be Unique inside the robot machine frame. andX the design matrix containing the regressors.
The common name for the estimation method is the line
IV. ESTIMATION OF POSITION FOR 3T3R of position, as the geometrical equivalent is finding a lifie o
position between two spheres (defined by the cable length
It was shown in the previous section that the 3T clasaround center point;), and then the estimate for the
problem is convex and therefore a much simpler problemosition from the line intersections using (19) is made.
than the general case. Simplifying the 3T3R to the 3T We begin with (1) and assume thRt= I5. This enables
problem in the first step gives the opportunity to obtain & faso combine the parameter vectersandb; to a single vector
and accurate position estimation. An estimate is made usinag by
tools for linear regression estimators, which in the siraple a; =a; —b; (20)

é)rm is the ordinary least squares estimator

3= (XTX>7 XTy (19)



TABLE Il
IPANEMA 1 GEOMETRICAL PARAMETERS PLATFORM VECTORSb AND
BASE VECTORSa

If errors are not equal for each cable, then the selection
of cables can be performed to reflect this. For example if
we do expect rotation, we can chose cables which have the
smallest||b;||» and thus are least effected by rotation.

cables platform vectorb; [m]  base vector; [m] " )

1 [-2.0,1.5,2.0]T [~0.06,0.06,0.0]T Since we have shown that the 3T case has a single
2 [2-071-5,2-0}TT [0-06,0.06,0-0}TT minimum, this method gives the exact position in one step
3 20,-1.5,201" ~ [0.06,-0.06,0.0] when no rotation is conducted. This is often the case in

4 [-2.0,-1.5,2.0] [~0.06, —0.06, 0.0] oL :

5 [-2.0,1.5,0.0]T [~0.06,0.06,0.2] T cable robots as the workspace is limited in rotating degrees
6 [2.0,1.5,0.0]T [0.06,0.06,0.2] T of-freedom. As far as rotation is concerned, the position is

7 2.0, —1.570.0]TT [0.06, —0-06,0.2]TT only an estimate which can be compared with the one based
8 [~2.0,-1.5,0.0] [~0.06, ~0.06,0.2] on maximal cable intervals presented in [16]. This "intérva

method” provided an estimate for further evaluation using
iterative techniques by bisecting the workspace into aa are

and coincidentally results in the same equation as shown ft5r Which the platform must be located due to the cable length

the 3T case (7). We expand this to get limits. An iterative technique needed to follow in order to
. give a precise estimate of the poseR, from (1).
g(,r,R) = Z e)2 + fles]l? = 2aTr — 2. (1) Fig. 6 shows two pose estimators for a grid of almost 4000
- ! ! poses for the IPAnema 1 robot (Tab. Il). For each pose the

cable lengths were calculated using the inverse kinematics
Now, the non-linear termjr[|3 can be eliminated by sub- (1) and from these the position estimated using the previous
tracting the equation of one cable from all others. Assumingyethod and the improved method. In a second test, the wire
perfect cable lengths to solve fay we generate a set of |engths generated have normally distributed error of up to
equations along the lines of 0.1m . We plot the estimation errar calculated from
llell3 — i ll3 = 17 + 174
- T -t @ e = flr £ (26)

fori=1,...,N — 1.

in a histogram for all evaluated poses. Each bar represents
an error range of 0.1 m. The generated poses were all inside

Interestingly enough, only four cables are needed to gHi€ frame defined by vectoes.
the estimate in three dimensional space. However, sinre
we expect some errors, all cables can be used to gener
the estimate. If we assumé& cables are used for the S Interval method
estimate,NV — 1 circle pairs are generated. A more detailec 3600} 1 |mmm new method
investigation of the possible pairs is given by [20]. Using 3400
ordinary least squares, we can now form an estimate fi
positionT. To form this, we use matrix representation of

3800

3200}

(22) using g 3000 "
T 2 _ 2 5
209 foallz — & g 800l
A = . 9 y: . (23) = 600/
207, llonll — 23
400}
D = [—1 IN,l} (24)

using (19) results in

0
00 02 04 06 08 10 00 02 04 06 08 10
Error per Pose in [m] Error per Pose in [m]

—1
F= (ATDTDA) ATD"Dy. (25)

Fig. 6. Errore for different pose estimation algorithms (left: perfecbiea

The choice which cables to use for the estimation igngih right: normalized error of 0.1m)

not arbitrary. If the distribution of error is unknown, then

all cables can be used. Mathematically, a singular matrix aos can be seen in Fig. 6, the pose estimation technique
(ATDTDA) should be avoided. This will occur when proposed here gives the exact minimum for the poses which
the vectorsa; are linearly dependent or congruent withhave perfect cable lengths. This is to be expected as shown
the axes of the coordinate system (only likely when using section IlI-A the rotation-less robot in 3D has one local
only four cables). While the first case is not a likely robominimum which is quickly estimated by the ordinary least
configuration, the second can be avoided through rotatirgguares. Even when cable length errors are considered, it
the entire world coordinate systeniC{ in Fig. 2) when will find an acceptable solution within the cable length erro
necessary. magnitude. Whether this is the case for the rotational 3R3T



is not determined, but the estimate is consistently cldsan t [10]
the previous pose estimation method. When repeated for one
million poses with rotation, the previous estimate had anmea
¢ of 0.395m and the new estimate 6f050 m. [11]
As in the previous real-time algorithm from [16], starting
with the position estimate, a numerical algorithm can beluse
to iterate the platform pose through a least square approachi
of the over-constrained nonlinear equations. This can be a
Gauss-Newton Method, or a Levenberg-Marquardt algorithm
as used by the IPAnema controller. [13]

V. CONCLUSIONS

In this paper, we investigated the forward kinematic&*
problem by minimizing the potential energy in the cables.
Analysis of the second derivatives showed that the forwardd]
kinematic problem is actually conditioned well. For the
2T and 3T case, a numerical evaluation of the Hessian
determinant can show that a unique solution exists withil36]
the bounds of the workspace. This implies good convergence
for numerical optimization tools. Rotation greatly incsea
complexity of this problem, but can be tackled using thi$l7]
approach. Calculating the terms numerically can be used as a
check on the geometry of the cable robot, separating feasibis)
from infeasible designs.

We have also shown that an ordinary least squares estim
gives the solution for robots without rotation and thus can b
used as a good starting point for iterative solvers. It resai
to be seen if iterative techniques can be optimized further {ZO]
provide more certainty in calculations of the kinematics in
real-time. Interval bounds defined through the rotatiorhef t
platform and the longedb; could be a reasonable starting
point for further techniques.
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