
A publication by Fraunhofer IESE

REFSENO: A Representation Formalism for
Software Engineering Ontologies

Report

Authors:
Carsten Tautz
Christiane Gresse von Wangenheim

IESE-Report No. 015.98/E
Version 1.1
October 20, 1998

Fraunhofer Einrichtung
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

5Copyright © Fraunhofer IESE 1998

Table of Contents

1 Purpose of Report 1

2 Introduction 2
2.1 Basic Terms 3
2.2 Modeling Levels 5
2.3 The Representation Formalism REFSENO 7
2.4 Structure of this Report 9

3 Notation 10
3.1 Concept 10
3.1.1 Synonyms 10
3.1.2 Definition 10
3.1.3 Description 11
3.1.4 Representation 13
3.1.5 Example 14
3.1.6 Alternate Representation 14
3.2 Terminal Concept Attributes 14
3.2.1 Synonyms 15
3.2.2 Definition 15
3.2.3 Description 15
3.2.4 Representation 16
3.2.5 Example 17
3.2.6 Alternate Representation 20
3.3 Types of Terminal Concept Attributes 20
3.3.1 Synonyms 21
3.3.2 Definition 21
3.3.3 Description 22
3.3.4 Representation 26
3.3.5 Example 28
3.3.6 Alternate Representation 29
3.4 Nonterminal Concept Attributes 29
3.4.1 Synonyms 29
3.4.2 Definition 29
3.4.3 Description 30
3.4.4 Representation 31
3.4.5 Example 31
3.4.6 Alternate Representation 32
3.5 Kinds of Nonterminal Concept Attributes 33
3.5.1 Synonyms 33
3.5.2 Definition 33

6 Copyright © Fraunhofer IESE 1998

3.5.3 Description 33
3.5.4 Representation 35
3.5.5 Example 35
3.5.6 Alternate Representation 36
3.6 Instances 36
3.6.1 Synonyms 36
3.6.2 Definition 37
3.6.3 Description 37
3.6.4 Representation 37
3.6.5 Example 38
3.6.6 Alternate Representation 38
3.7 Formulas 38
3.7.1 Synonyms 38
3.7.2 Definition 38
3.7.3 Description 39
3.7.4 Representation 44
3.7.5 Example 44
3.7.6 Alternate Representation 44

4 Semantics 46
4.1 Retrieval of Context-Specific Knowledge 53
4.1.1 Relation to Software Engineering 54
4.1.2 Description 55
4.2 Insertion of New Context-Specific Knowledge 61
4.2.1 Relation to Software Engineering 62
4.2.2 Description 62
4.3 Removal of Context-Specific Knowledge 65
4.3.1 Relation to Software Engineering 65
4.3.2 Description 65
4.4 Change of Existing Context-Specific Knowledge 66
4.4.1 Relation to Software Engineering 66
4.4.2 Description 66

5 Applying REFSENO: Benefits and Lessons Learned 67
5.1 Linguistic Level 67
5.2 Conceptual Level 67
5.2.1 Building an Ontology 68
5.2.2 Evolving an Ontology 70
5.2.3 Validating an Ontology 71
5.3 Epistemological Level 72
5.3.1 Benefits of REFSENO 72
5.3.2 Validation of REFSENO 75
5.4 Implementation Level 76

6 Summary and Outlook 78

7Copyright © Fraunhofer IESE 1998

7 Acknowledgments 79

Appendix A:Example Ontology 83
A.1 Concept Glossary 83
A.2 Terminal And Nonterminal Concept Attributes 87
A.3 Type Table 127
A.4 Symbol Glossary 132
A.5 Predefined Kinds 140

8 Copyright © Fraunhofer IESE 1998

1

Purpose of Report

Copyright © Fraunhofer IESE 1998

1 Purpose of Report

The purpose of this report is to define the current state of the representation
formalism for software engineering ontologies (REFSENO). The document
begins with an introduction and overview of the state of the art (Chapter 2).
Based on the state of the art, the notation (Chapter 3) and semantics
(Chapter 4) of the basic constructs of REFSENO are defined. Experience gained
so far with the application of REFSENO is documented (Chapter 5). The report
ends with a summary and outlook (Chapter 6). The appendix illustrates REF-
SENO with an exemplary ontology in the domain of software measurement
planning based on the GQM approach.

The definition of REFSENO and the example in the appendix are subject to
change as more experience in the application of REFSENO (in particular for GQM
planning) is gained. These changes will result in new versions of this report.

2

Introduction

Copyright © Fraunhofer IESE 1998

2 Introduction

»Reuse practice appears to exhibit considerable [improvement] potential, far
more than other ongoing activities.« [ZS95, p. 167] The benefits of software
reuse are manifold. Among them are improved productivity, improved reliability,
better estimates, and faster time-to-market [SPDM94]. Traditionally, the empha-
sis has been on reusing code. However, reuse does not have to stop there. In
order to continuously improve the software quality and productivity and transfer
innovative software technologies into practice, several kinds of software-related
knowledge can be reused [GB97, GRA+98, Hen97]. This includes

• products created by a software project (e.g., design document, code),
• processes (e.g., requirement analysis, inspection),
• quality and resource models (e.g., effort and reliability prediction models), or
• any lessons learned regarding the software process or products (e.g., using

scenario-based inspections more faults are found than using checklist-based
inspections in the organization Y).

As software engineering is a fairly young discipline, its technologies are not as
mature as those of other engineering disciplines. On the other hand, require-
ments to software systems are steadily growing concerning their complexity,
performance, etc. Therefore, the capturing and reuse of explicit software devel-
opment know-how is essential for continuous improvement. What represents
relevant software know-how differs among companies regarding their environ-
mental context and their specific goals. Therefore, organization-specific soft-
ware know-how which comprises the core of a mature software organization,
has continuously to evolve based on experiences gathered in software projects.
In that endeavor, software organizations require support in collecting experi-
ences from their projects, packaging those experiences (e.g., build models from
empirical data, formalize informal knowledge), and in validating and reusing
experiences in future projects. The support of these tasks requires comprehen-
sive learning information systems which are based on explicit knowledge repre-
sentations [MBY97].

For the continuous build-up of software knowledge in an organization, the
experience factory approach [BCR94] has been proven to be a successful solu-
tion [Rom96]. The experience factory organization complements the project
organization by enabling the continuous learning on software development
from examples of individual software projects and communication of software
knowledge across the organization.

In order to enable the reuse of software engineering knowledge and the opera-
tionalization of the experience factory in practice, the domain of the software

3

Introduction

Copyright © Fraunhofer IESE 1998

engineering knowledge has to be modeled explicitly defining a structure of an
experience base where the experiences are stored. Such a model must:

• define all artifact types to be stored in the experience base as well as the
kinds of relationships between the artifacts,

• guide software engineers to specify the knowledge to be retrieved,
• facilitate the maintenance of an experience base,
• allow similarity-based retrieval.

This report presents a representation formalism to adequately model the struc-
ture of an experience base. It can be used to:

• model software engineering knowledge explicitly in a precise, consistent, and
complete manner using alternate representations,

• conceptualize software engineering knowledge explicitly for various applica-
tion domains and contexts resulting in conceptual models,

• validate conceptual models of software engineering knowledge,
• communicate conceptual models of software engineering knowledge,
• operationalize an experience base based on the conceptualization of soft-

ware engineering knowledge.

In the following some basic terminology underlying the definition of the nota-
tion is introduced.

2.1 Basic Terms

Knowledge In the context of this report

knowledge is the set of all statements about the represented world that are
believed to be true by the knowledge source and are really true. [Rei91]

This means that knowledge is always defined with respect to a knowledge
source. According to the definition above, knowledge does not include state-
ments about the represented world which:

• are not believed to be true by a knowledge source
• are believed to be true by a knowledge source, but are not really true

The latter case requires hypotheses and opinions to be marked as such. For
example, the general statement »perspective-based reading is better than ad-
hoc reading« alone is (usually) not considered as knowledge whereas the state-
ments »perspective-based reading can be better than ad-hoc reading« and
»perspective-based reading has been more effective than ad-hoc reading in
projects X, Y, and Z« are considered as knowledge, because there is empirical
data proving the statements to be correct. This means that the latter two state-

4

Introduction

Copyright © Fraunhofer IESE 1998

ments are really true and not just believed to be true by a single knowledge
source.

Representation A representation is a set of representation constructs together with the inter-
pretation how the constructs map onto the characteristics of the represented
world. [Rei91]

A representation stands as a substitute for a set of facts – called represented
world. Therefore, it is a model of the world. A representation fulfils the follow-
ing properties [Rei91]:

1 A representation captures some characteristics (= regularities of a general
nature as well as properties and relationships between objects) of the repre-
sented world.

2 A representation does not necessarily capture (usually never) all characteris-
tics of the represented world.

3 Not all characteristics of a representation stand necessarily for some charac-
teristics of the represented world.

Representa-
tion formalism

A representation formalism is a notation for specifying representations plus a
definition of the meaning of the notation (cf. »knowledge representation
model« [Rei91]).

Usually, a representation formalism is defined by primitives with a defined
meaning from which representations can be assembled. In this sense, all pro-
gramming languages can be interpreted as a representation formalism. The
actual program code is then the representation of the program (i.e., a represen-
tation of a process to be performed by the operating system of a computer).

Conceptualiza-
tion

A conceptualization is a special type of representation:

A conceptualization is a set of concepts, instances, and other entities that are
assumed to exist in some area of interest and the relationships that hold
among them. [Gru93]

In contrast to the definition of the term »representation«, this definition
assumes the existence of primitives such as concepts1, instances, and relation-
ships.

1 Concepts can be seen in analogy to classes in object-oriented modeling.

5

Introduction

Copyright © Fraunhofer IESE 1998

Ontology An ontology is the explicit specification of a conceptualization [Gru93].

All programs are based on a conceptualization of a portion of a world they are
developed for. For example, a tool for requirements elicitation may provide
means to capture different types of requirements such as functional and non-
functional requirements as well as predefined design decisions. This can be done
without explicitly specifying how these terms are related and what properties
they have. Only if such an implicit conceptualization is made explicit, it is called
an ontology.

The term ontology can be seen in analogy to the term data model used in the
area of database management systems. The (up to now) differing focuses in the
areas of databases and knowledge representation imply, however, different rep-
resentation constructs and types of operations defined upon the structures.
[Rei91, p. 13]. In the area of databases, simple but efficiently implemented con-
structs prevail, while more complex constructs are typical for the area of knowl-
edge representation. Another difference is that in the database world change
operations are strongly emphasized, while inference processes on static struc-
tures are emphasized by the knowledge representation community. This is a
knowingly polarized characterization since the two areas have been approach-
ing each other in recent years.

Epistemistic
primitives

An epistemistic primitive stands for a class of alike characteristics. Its level of
generality does not limit its occurrence to a single area of discourse (or class
of discourse areas). [Rei91]

As can be deduced from the definition, an epistemistic primitive is domain-inde-
pendent. Typical examples for epistemistic primitives are the elements of a con-
ceptualization (concepts, instances, …).

Standard
vocabulary

An element of a standard vocabulary can be used to represent characteristics
which are

• specific enough not to occur in every discourse area and
• general enough to describe several more complex characteristics

Thus, a standard vocabulary is domain-specific.

2.2 Modeling Levels

Knowledge
level

Symbol level

Knowledge can be represented on different levels of abstraction. In this report
we differentiate between knowledge levels and the symbol level. On a knowl-
edge level, knowledge contents are visible, but not the internal structures in
which the contents manifest themselves. These internal structures are visible on
the symbol level. Thus, the symbol level is defined by the chosen implementa-

6

Introduction

Copyright © Fraunhofer IESE 1998

tion while the knowledge levels are implementation-independent. In other
words, a knowledge level describes »what« to represent while the symbol level
describes »how« to represent it.

For the purpose of this report, we distinguish three knowledge levels: the episte-
mological level, the conceptual level, and the linguistic level. [Rei91]

The basic characteristic of all knowledge levels is that descriptions on a particular
knowledge level can be specified using the constructs of the next lower level. In
the following, the three knowledge levels will be described in detail (Figure 1).

Epistemologi-
cal level

1 The epistemological level defines the epistemistic primitives such as concepts,
attributes, relationships, etc. Thus, the epistemological level is domain-inde-
pendent.

Conceptual
level

2 The conceptual level defines the standard vocabulary. It is domain-specific.
Exemplary constructs of this level (for the software engineering domain) are
process models, measurement plans, code modules, lessons learned, etc.

As an explicit specification of a conceptualization, an ontology is always
defined on this level. Thus, an ontology can be defined using epistemistic
primitives.

Linguistic level 3 Finally, the linguistic level defines concrete instances of the constructs
defined on the conceptual level. It is domain- and context-specific. An exem-
plary construct on this level (for a particular software development organiza-
tion) is a concrete measurement plan for measuring the effort of project X at
company Y.

Linguistic level

Conceptual level
(defines standard vocabulary)

Epistemological level
(defines epistemistic primitives)

Implementation level

Knowledge levels
(»what«)

Symbol level
(»how«)

domain-
specific

domain-
independent

Figure 1: Differ-
ent representa-
tion levels (defines context-specific knowledge)

7

Introduction

Copyright © Fraunhofer IESE 1998

2.3 The Representation Formalism REFSENO

In this paper, epistemistic primitives are defined in the form of a representation
formalism for software engineering ontologies (REFSENO). Ontologies defined
using REFSENO can be easily tailored to company-specific needs as they are not
hard-wired into an implementation (only the epistemistic primitives are) and ful-
fil all requirements of a structure model listed on page 3.

Thus, software engineering knowledge is modeled by defining a software engi-
neering ontology using our representation formalism REFSENO (domain knowl-
edge) and by instances of the concepts defined in the ontology (context-specific
knowledge). The next chapter will present the definition of the epistemistic
primitives of REFSENO. The primitives draw from ideas from several areas such
as database mechanisms (e.g., relationships between concepts and implied con-
sistency rules) [Che76], case-based reasoning mechanisms (e.g., similarity-based
retrieval with incomplete information) [Alt97], and knowledge-based mecha-
nisms (e.g., inference rules) [Rei91]. In addition, the representation formalism is
object-centered similar to the meta modeling in UML [Cor97].

It should be emphasized that none of the approaches alone would be sufficient
for implementing a software engineering experience base. Except for case-
based reasoning, none of the approaches consider similarity-based retrieval in a
detail necessary. On the other hand, case-based reasoning lacks the ability to
cope with relationships between concepts to the degree needed. However, in
our approach we integrated representation constructs from all approaches to
form a new consistent representation formalism for software engineering ontol-
ogies. The result is based on several years of experience in structuring experi-
ence bases [Gäß95, Stu95, Tau93, TA97].

It is important to realize that the ontologies defined using REFSENO serve the
purpose of software knowledge management and not as the basis for the
implementation of intelligent assistants in the sense of Mylopoulos et al.
[MBY97]. Depending on the purpose, the employed knowledge representations
and bases will differ (see Table 1). This means that intelligent assistants, which
are used to edit software engineering artifacts, should use different knowledge
representations and knowledge bases than the experience base.

Table 1: Software
knowledge manage-
ment vs. intelligent
assistants (accord-
ing to [MBY97])

Criterion Software knowledge management Intelligent assistant

Type of representa-
tion used

mix of formal, declarative and informal formal, often procedural

Type of knowledge
captured

descriptive information about artifact and
information about environment of arti-
fact

environment is less important; domain-
independent heuristics

Coverage of software
knowledge base

Quite broad Narrow, specific to the task the assistant
is intended to perform

8

Introduction

Copyright © Fraunhofer IESE 1998

In the literature there exist various representation formalisms for the purpose of
software knowledge management. However, they either provide no means for
similarity-based retrieval1 (e.g., RLF [SWT89], LaSSIE [DBSB91], and ES-
TAME [OB92]) or they are restricted to one type of artifact (e.g., faceted classifi-
cation [PDF87] and the Reusable Software Library [BAB+87]). Generic
approaches like information retrieval can in principle be applied to all kinds of
artifacts but are not adequate, because it is difficult to determine the relation-
ships between the various types of artifacts [SM83]. Even worse, not all informa-
tion necessary for retrieving software engineering artifacts can be found in the
artifacts themselves [BR91]. Thus, indexing of software engineering knowledge
cannot be totally automated, which takes away one of the biggest advantages
information retrieval has to offer.

One of the few formalisms that allow both, the storage of various types of arti-
facts and similarity-based retrieval, is the Extensible Description Formalism (EDF)
[Ost92]. Yet, REFSENO uses a more rigid type system, allowing more user guid-
ance for retrieval and maintenance of software engineering knowledge. More-
over, EDF does not provide a clear distinction between the conceptual and lin-
guistic level as REFSENO does. The clear distinction between the two levels has
the significant advantage that experts can provide their (linguistic) knowledge in
form of example cases guided by conceptual knowledge pre-defined by knowl-
edge engineers. On the other hand, knowledge engineers only have to focus on
the elicitation of the ontology, but not of context-specific knowledge as neces-
sary for conventional knowledge-based systems [FG90].

As linguistic knowledge tends to be volatile, this is important because it reduces
considerably the effort for acquiring and storing such knowledge. In contrast,
knowledge on the conceptual level is typically much more stable, but requires
more effort to be captured. However, we aim at providing basic ontologies that
can be tailored to organization-specific needs with a comparably low amount of
effort. When all basic ontologies are integrated, they model the complete struc-

Completeness of soft-
ware knowledge base

Useful even if it is incomplete Sufficiently complete to support infer-
ences required for performance of task

Criteria for success of
knowledge capture
activity

1. time saved in chasing for information
2. accuracy and completeness of knowl-
edge

how well the knowledge-based system
performs intended task

1 As no two software development projects are alike, it is unlikely that a candidate matching
exactly the requirements is available in the experience base. Thus, similarity-based retrieval is
vital for the success of an experience factory [BR91].

Criterion Software knowledge management Intelligent assistant

9

Introduction

Copyright © Fraunhofer IESE 1998

ture of an experience base. One such basic ontology is the GQM planning ontol-
ogy, which we will use to illustrate the representation formalism.

2.4 Structure of this Report

The next chapter defines the epistemistic primitives needed for describing soft-
ware engineering ontologies. The primitives are exemplified using excerpts from
an ontology for GQM planning artifacts. Chapter 4 completes this representa-
tion formalism on the epistemological level by defining the operations that are
allowed on ontologies defined using the epistemistic primitives. Chapter 5 gives
first lessons learned from applying the representation formalism for software
engineering ontologies (short REFSENO). A summary and outlook can be found
in Chapter 6. Finally, Appendix lists the complete ontology for GQM planning
artifacts using the representation formalism defined in this report.

10

Notation

Copyright © Fraunhofer IESE 1998

3 Notation

This chapter defines the notation used for the epistemistic primitives needed to
define a software engineering ontology. Each epistemistic primitive of REFSENO
is defined by:

• Synonyms. Under synonyms terms are listed which are used with other
modeling approaches or representation formalisms. The listed synonyms
have a similar meaning to the described epistemistic primitive of REFSENO.

• Definition. This section gives a terse definition of the epistemistic primitive
by listing its components. Components may be epistemistic primitives them-
selves. The definition specifies the abstract syntax, a term known from pro-
gramming languages [ASU86]. In addition, some identifiers, functions, and
predicates are defined which are used in subsequent descriptions.

• Description. This section explains the components using narrative text, that
is, it specifies the semantics of the abstract syntax.

• Representation. This section defines how the epistemistic primitive is repre-
sented in REFSENO (REFSENO uses a tabular representation mixed with for-
mulas). Thus, the representation specifies the concrete syntax [ASU86].

• Example. In order to illustrate the representation of the epistemistic primi-
tive, this section gives an example using excerpts from the ontology for GQM
Planning Artifacts (see Appendix).

• Alternate representation. For reasons of comprehensibility, it is sometimes
useful to represent the same issues in different ways (e.g., using a tabular or
graphical representation). This section presents alternate ways of represent-
ing epistemistic primitives.

3.1 Concept

Concepts model software engineering entities (e.g., a GQM plan, a process
model, or a development product), or are needed for modeling purposes.

3.1.1 Synonyms

Artifact type, class (UML), case model (CBR), entity, frame

3.1.2 Definition

A concept is a 10-tuple (name, extension, intension, simartif, simI/F, simctxt, asser-
tion, precondition, description, purpose, intended users).

11

Notation

Copyright © Fraunhofer IESE 1998

An intension is a 3-tuple (artif, I/F, ctxt). Each component consists of terminal
and nonterminal concept attributes.

The functions extension(concept), assert(concept), and precond(concept) return
the extension, assertion, and precondition of concept respectively. The functions
intensionartif(concept), intensionI/F(concept), and intensionctxt(concept) return
the respective components of the intension. The function intension(concept) is
defined as:

simartif(c), simI/F(c), and simctxt(c) denote the similarity functions simartif, simI/F,
simctxt associated with the concept c:

3.1.3 Description

NameThe name is used for reference purposes. All concepts used in an ontology
have unique names.

Extension The set of all instances belonging to the concept. The extension of the ontology
is restricted to those instances specified as part of the ontology (Section 3.6).
Since context-specific knowledge is also represented as instances (Chapter 4),
the notion of extension is extended to include the context-specific knowledge as
well. It should be clear, that the ontology’s extension (extension in the restricted
sense) does not change with the insertion or deletion of instances. In the rest of
the report, the term »extension« will be used with its extended notion. By the
same token, the function extension(concept) will return the union of the ontol-
ogy’s instances and the context-specific knowledge.

Intension The set of all attributes an instance which belongs to the concept must exhibit
(i.e., all instances of the extension are characterized using the same attributes).
There are two kinds of attributes: terminal (Section 3.2) and nonterminal
attributes (Section 3.4). Furthermore, each attribute belongs to one of three lay-
ers: artifact, interface, or context [BR91]. Attributes of artifact layer characterize
the instance itself (e.g., author and programming language for code modules).
Attributes of the interface layer characterize how a particular instance can be
integrated into the surrounding system (e.g., parameters and global variables
for code modules). Finally, attributes of the context layer characterize the envi-
ronment, in which the instance has been applied (e.g., application domain for
code modules). The context layer also contains attributes describing the quality
of the instance in the specified environment (e.g., reliability in context of the
specified application domain for code modules). The three components of the
intension mirror these layers.

intension c() intensionartif c() intensionI/F c() intensionctxt c()∪ ∪=

simartif c() simI/F c() simctxt c():extension c() extension c() 0 1;[]→×, ,

12

Notation

Copyright © Fraunhofer IESE 1998

simartif
simI/F
simctxt

The similarity functions [Alt97] associated with the concept. They compute the
similarity between two instances of the extension based on the intension of the
concept. More precisely simartif(c), simI/F(c), and simctxt(c) are based on
intensionartif(c), intensionI/F(c), and intensionctxt(c) respectively. The values of the
similarity functions1 are combined to a single similarity value as follows:

where wartif, wI/F, and wctxt are weights with which the similarity function can
be adjusted to the needs and/or skills of the user (Chapter 4). The sum of the
weights is always 1.

All similarity values are in the range between 0 (denoting total dissimilarity) and
1 (denoting total similarity, i.e., equivalence).

Assertion A condition, expressed as a formula (Section 3.7), which all instances of the
extension must fulfil.

Precondition A condition, expressed as a formula (Section 3.7), which must be fulfilled before
instances are inserted or changed.

Description A narrative text defining the software engineering entity.

Purpose In general, only a portion of the real world is represented by an ontology. Since
every representation serves some purpose, this purpose shall be stated explicitly.
For a concept, its purpose may be viewed as a justification for the existence of
the concept in the ontology. There are two types of concepts:

1 Concepts resembling a software engineering entity. For this type of concepts,
usage scenario(s) shall be stated showing for what type of »real-world que-
ries« the concept is used.

2 Concepts introduced for modeling reasons. For instance, sometimes the
intension of two concepts overlap. In such a case, a third concept can be
introduced capturing the intersection of both intensions even though there
might not be a software engineering entity corresponding to this new con-
cept.

1 The concept’s similarity functions are of a global nature because they are based on the local similarity
functions of the concept’s attributes.

sim c() i i',()
wartif simartif c() i i',() wI/F simI/F c() i i',() wctxt simctxt c() i i',()⋅+⋅+⋅=

13

Notation

Copyright © Fraunhofer IESE 1998

Intended users As mentioned for purpose, a query is started for a particular purpose. Different
users have different tasks. For each task, different information needs exist.
While purpose describes the tasks for which a concept is necessary, the
intended users describe who is expected to perform the task. Intended users are
described by their roles.

3.1.4 Representation

Concepts, their intensions, and their extensions are represented using separate
tables.

3.1.4.1 Concept Glossary

The concept glossary lists alphabetically all concepts of an ontology. One row of
the concept glossary corresponds to one concept. The columns are labeled
»Name«, »Description«, »Purpose«, and »Intended users« denoting the respec-
tive components of the concept definition.

3.1.4.2 Concept Attribute Table

The intension of a concept is represented using a concept attribute table. The
representation is explained in the sections about terminal concept attributes
(Section 3.2.4) and nonterminal concept attributes (Section 3.4.4). The similarity
function is presented by a mathematical formula (Section 3.7.4) or by the term
»standard«. The standard similarity functions1 for a concept c are defined as:

1 Informally, the standard similarity functions compute the weighted sum of the local similarities (footnote
on page 12) of all attributes (Section 3.2 and Section 3.4) whose values are defined in both instances
(Section 3.6). An attribute value is defined if it is not a special value (»n/a«, »undefined«, or »unknown«).
If none of the attributes have defined values in both instances, the functions return 1 (first line). Other-
wise the similarity is computed (line 3) and normalized (line 2).

j artif,I/F,ctxt{ }∈ :∀ simj c() i q,()
0 i.at q.at∼⇔ undefined=
p at() otherwise⎩ ⎭

⎨ ⎬
⎧ ⎫

at intensionj c()∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

0? 1 :

0 i.at⇔ q.at∼ undefined=
p at() otherwise ⎭

⎬
⎫

⎩
⎨
⎧

at intensionj c()∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞ 1–

0 i.at⇔ q.at∼ undefined=
p at() i.at q.at∼()× otherwise⎩

⎨
⎧

at intensionj c()∈
∑×

= =

14

Notation

Copyright © Fraunhofer IESE 1998

Since the similarity functions are typically based on the similarity of the concept’s
attributes, they are represented with the table of concept attributes. By the
same token assertions and preconditions are represented with the table of con-
cept attributes because their definition is based on the concept’s intension, too
(Table 3).

3.1.4.3 Instance Table

Instances of the concept’s extension are represented using instance tables. The
representation is explained in the section about instances (Section 3.6.4).

3.1.5 Example

Table 2: Excerpt of a
concept glossary

3.1.6 Alternate Representation

none

3.2 Terminal Concept Attributes

The intension of a concept is a set of terminal and nonterminal concept
attributes. Here, a terminal concept attribute is viewed as an epistemistic primi-
tive.

Terminal concept attributes model how software engineering entities are speci-
fied for storage and retrieval.

Name Description Purpose Intended user(s)

Context Char-
acterization

describes the context of a GQM
measurement program concerning
its organizational, project-specific
and measurement-specific environ-
ment

Modeling: explicitly states the context
from which the knowledge originates

Experience
engineer

GQM Measure A GQM measure is an operational
definition of an attribute. The data
collected according to the measures
are used by a model to answer the
question in the GQM plan.

Usage scenario:
support development of GQM plan by
supplying adequate measures for a
model

Quality assur-
ance personnel

GQM Plan A GQM plan contains information
necessary to motivate and define
measures and interpret measure-
ment data. Elementary components
are GQM goal, questions, models,
and measures.

Modeling: structures GQM products Quality assur-
ance personnel

… … … …

15

Notation

Copyright © Fraunhofer IESE 1998

3.2.1 Synonyms

Dimension, data element, feature, property, terminal slot

3.2.2 Definition

A terminal concept attribute is a 9-tuple (name, description, cardinality, type,
default value, mandatory, value inference, inferred attributes, standard weight).

The predicate mand(attr) is true iff attr is mandatory where attr is the name of
the attribute. tattr denotes the type of a terminal concept attribute attr.

3.2.3 Description

Name The name is used for reference purposes. All concept attributes (both terminal
and nonterminal) of one concept’s intension have unique names.

Description A narrative text defining the meaning of the attribute.

Cardinality A range specifying the minimal and maximal number of values the attribute may
have. If the cardinality is unequal 1, the attribute values are specified as a list
where a cardinality of 0 denotes an empty list.1

Type Each terminal concept attribute is typed. The type is an epistemistic primitive
described in Section 3.3.

Default value The default value concerns the insertion of new instances (Section 3.6 and
Section 4.2). If the user entering the new instance does not specify a value for
this attribute, the default value is used instead.

Mandatory This component also concerns the insertion of new instances. It specifies
whether an attribute value of an instance has to be specified (i.e., the attribute
value may only be undefined if the attribute is not mandatory).

Value inference This component defines how to calculate the attribute value automatically (if
possible) based on other attributes’ values (of an instance of this concept and of
semantically related instances of this instance).

1 Some functions (see formulas in Section 3.7) interpret lists as sets. However, if no value inference is de-
fined for a particular attribute, the sequence of the elements of its value will be the sequence in which
they are specified (i.e., the sequence remains unchanged).

16

Notation

Copyright © Fraunhofer IESE 1998

Inferred
attributes

This component lists all attributes whose value is inferred using a value of this
attribute.1

Standard
weight

The standard weight may be used by the similarity functions of the concept this
attribute belongs to. It is a non-negative real number.2 A standard weight of 0
denotes an attribute whose value will not be used for querying (i.e., this
attribute cannot be specified for a query).

3.2.4 Representation

Concept
attribute table

A terminal concept attribute is represented using the concept attribute table.
The concept attribute table is concept-specific and contains one row for every
attribute. The columns are labeled as follows: »Layer«, »Name«, »Description«,
»Cardinality«, »Type«, »Default value«, »Mandatory«, »Value inference«, »To
infer«, and »Standard weight«. Attributes are sorted according to the layers
they belong to. Possible values for the first column are »artif«, »I/F«, and »ctxt«.
The rest of the columns represent the respective components of a terminal
attribute where »To infer« contains the inferred attributes.

The cardinality is specified using the UML notation, that is, a range is denoted as
low..high where low stands for the lower bound (≥ 0) and high (≥ low) for the
upper bound. Instead of a number, an asterisk (»*«) can be used which stands
for infinity. If low = high, the range may be abbreviated to a single number (e.g.,
»1« stands for »1..1«).

A default value is a value from the value range of the type (Section 3.3.4). An
undefined entry for a default value is denoted with »–«.

If the attribute value is mandatory, the entry in the mandatory column is »yes«,
otherwise »no« meaning that the attribute value may be undefined.

Value inferences are represented using a formula (Section 3.7.4). A »–« denotes
that the value cannot be computed.

Inferred attributes are represented by pairs, separated by commas, of the form
[concept]:[attribute] where concept and attribute stand for the names of the
respective constructs.

1 There is a mutual dependence between value inferences and inferred attributes. For every attribute used
in a value inference, the inferred attributes of the used attribute must include the attribute whose value
is inferred. Thus, inferred attributes can be derived from the value inferences automatically.

2 For the standard similarity functions of concepts, this weight defines the importance of this attribute re-
garding the global similarity.

17

Notation

Copyright © Fraunhofer IESE 1998

In addition, the similarity functions, the assertion, the precondition, and the
super concept (Section 3.5) are defined near the concept attribute table.
Attributes of the super concept are inherited by the concept which is specified
through the concept attribute table. Thus, the intension of the concept does not
only include the attributes specified in this concept attribute table, but also
those specified in the attribute tables of its super concept(s). The root concept is
denoted by »CONCEPT«.

3.2.5 Example

Table 3: Terminal
concept attributes
of the concept
»Measurement
Characterization«

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

I/F constraints on the measurement
program (e.g., fixed
amount of effort
assigned to the mea-
surement program)

0..* Text - no - - 0

18

Notation

Copyright © Fraunhofer IESE 1998

ctxt measure-
ment inte-
grated

measurement pro-
grams regularly estab-
lished accompanying
software development
and maintenance

1 Boolean false no - - 1

experi-
ences with
measure-
ment

specifies if no experi-
ences are available or
either positive or nega-
tive experiences have
been made with mea-
surement in the past

1 Measure-
ment-
Knowledge

“not
avail-
able”

no - - 1

core mea-
sures

specifies if a set of core
measures is collected in
each project in case
measurement pro-
grams are performed
regularly

1 Boolean - no - - 1

attitude of management and
project personnel con-
cerning software qual-
ity improvement in
general

1 Attitude - no - - 1

effort on the planning and
execution of the mea-
surement program in
person-months

1 EffortPM - no - - 1

duration of the measurement
program in calendar
months

1 DurationM - no - - 1

duration of
data collec-
tion

period in calendar
months

1 DurationM - no - - 1

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

19

Notation

Copyright © Fraunhofer IESE 1998

An example for a more complex precondition can be found in the concept
attribute table for »tTaxonomyNode« (Appendix):

ctxt frequency
of feedback
sessions

during the execution
phase per calendar
month

1 FreqM - no - - 1

training describes training(s) of
the participants regard-
ing the GQM approach
and its application
which took place during
the planning phase

1 Text - no - - 0

number of
goals

size of the measure-
ment program in terms
of number of GQM
goals

1 Cardinal - no card(union(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan].[gqm
goal]))

- 1

number of
questions

size of the measure-
ment program in terms
of number of questions
in the GQM plans

1 Cardinal - no card(union(un
ion(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan]).[gqm
question]))

- 1

number of
measures

size of the measure-
ment program in terms
of number of measures
in the GQM plans

1 Cardinal - no card(union(un
ion(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan]).[gqm
measure]))

- 1

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

20

Notation

Copyright © Fraunhofer IESE 1998

An example for a more complex assertion can be found in the concept attribute
table for »TCardinal« (Appendix):

3.2.6 Alternate Representation

The value inference can also be represented graphically as a tree structure. The
root is the attribute of the value inferred. The leafs are the attributes whose
value is used for the inference. In contrast to the formula in the table, the
attribute names are complemented by the names of the concepts they belong
to. All other nodes denote the operators used. Figure 2 shows an example.

Interpretation In order to understand the interpretation of the figure, the reader should have read the sections on
nonterminal attributes (Section 3.4) and formulas (Section 3.7). It may be advantageous to come back here
after having read the rest of this chapter.

The figure has to be read from bottom to top. In Table 3, »[context]« in the »value inference« column refers
to the nonterminal attribute »context« of the concept the value inference is part of (i.e., »Measurement
Characterization«). This is shown in lower left corner of the figure. The nonterminal attribute »context« has
the destination concept »Context Characterization« and the cardinality 1 (Table 7 on page 31). Thus,
»[context]« returns exactly one instance of »Context Characterization« and ».[measurement experience]«
refers to the attribute »measurement experience« of the concept »Context Characterization«. This is
denoted in the figure by »[Context Characterization]: [measurement experience]«. The destination concept
of the nonterminal attribute »measurement experience« is »Measurement Experience«. Since the cardinality
of »measurement experience« is »0..*« a list of instances of »Measurement Experience« is returned
(Figure 5 on page 32). However, to compute the number of questions in the GQM plan, we need to access
the attribute »gqm plan« of the concept »GQM Product Experience« which is a specialization of
»Measurement Experience«. Therefore, the list of instances is filtered (function »filter«). All instances which
are not instances of »GQM Product Experience« are removed from the list. The result of the function is a list
of instances of »GQM Product Experience«. The nonterminal »gqm plan« of »GQM Product Experience«
returns the set of GQM plans which belong to an instance of the »GQM Product Experience«. Thus, the
result of »filter(…).[gqm plan]« is a list of a lists of instances of a GQM plan. The function »union« takes this
list of lists and merges the GQM plans into a single list of GQM plans by removing all duplicates. For each
element of the list, the set of GQM questions is accessed through the attribute »gqm question« (denoted by
».[gqm question]« in the formula and »[GQM Plan]: [gqm question]« in the figure). The result is a list of lists
of GQM questions. This is again merged into a single list by the function »union«. Finally, the function
»card« counts the number of elements of the resulting list.

3.3 Types of Terminal Concept Attributes

All terminal concept attributes are typed. Here, a type is viewed as an epistemis-
tic primitive.

precond: pos 1 [RootLevel].[VRange].[Symbol] [Symbol].[Symbol], ,() 0=

assertion: LowerBound[] UpperBound[]≤

21

Notation

Copyright © Fraunhofer IESE 1998

Types model qualities of software engineering entities such as lines of code and
efficiency, or they are used to specify entities further, e.g., a type may specify
possible programming languages. Programming languages may be a terminal
concept attribute for concepts such as a code module (specifying in which lan-
guage the module is written) or a project (specifying what languages were used
in the project).

3.3.1 Synonyms

none

3.3.2 Definition

A type is a 5-tuple (name, supertype, value range, unit of measure, sim).

The function range(type) returns the value range of type.

Figure 2: Example
for the graphical
representation of
a value inference

[Measurement Characterization]: [number of questions]

card

union

[GQM Plan]: [gqm question]

•

filter

•

•

[GQM Product Experience]: [gqm plan]

[Measurement Characterization]: [Context Characterization]:
[context] [measurement experience]

[GQM Product Experience]

union

22

Notation

Copyright © Fraunhofer IESE 1998

simtype denotes the similarity function sim associated with type:

supertype denotes the supertype of type.

3.3.3 Description

Name The name is used for reference purposes. All types of an ontology have unique
names.

Supertype This component specifies the type’s supertype. Types differ from their supertype
in one or more of the following ways:

• Value range. For symbol types (see predefined types below) the value range
of the type includes the value range of its supertype:

The range of the predefined types »text« and »identifier« cannot be
changed. For all other types the range of the supertype includes value range
of the type:

• Unit of measure.
• Sim.

Value range The value range specifies the possible values for all attributes of this type. In
addition to the values specified the following special values are allowed: »unde-
fined«, »unknown«, »n/a« (not applicable). »undefined« means that the value
is currently not specified, but will be specified later; »unknown« means that the
value is not known and will not be specified later; »n/a« means that the
attribute is not applicable for the instance.

Unit of mea-
sure

This component specifies the measurement unit for numerical types (»integer«
or »real«). Otherwise this component is not applicable.

Sim The similarity function associated with the type. It computes the similarity
between two possible values of this type. The similarity function returns a real
number between 0 (denoting total dissimilarity) and 1 (denoting total similarity,
i.e., equivalence).

The similarity function is extended to terminal concept attributes as follows. Let i
and q be two attribute values1. Attribute values can be interpreted as sets (the

simtype: range type() range type() 0 1;[]→×

range type() range supertype()⊇

range type() range supertype()⊆

23

Notation

Copyright © Fraunhofer IESE 1998

minimal and maximal number of elements is defined by the cardinality). Then
the similarity value is computed in the following way:

This allows the computation of the similarity between two attribute values.
Informally, the similarity function considers for each element in the second argu-
ment the best match in the first argument and sums up the similarity values of
the pairs. Finally the similarity value for the attribute values is normalized result-
ing in a similarity value in the range [0; 1].

3.3.3.1 Predefined Types

Ordered types The following types are predefined. From each of these types, subtypes may be
derived (for an explanation of the representation see the next section). The fol-
lowing types are called ordered types: Integer, Real, Text (alphabetically ordered
according to ASCII), Identifier (alphabetically ordered according to ASCII), Date
(ordered according to year, month, and day), Time (ordered according to hour,
minute, and second), Timestamp (ordered according to year, month, day, hour,
minute, second), and OrderedSymbol. For these types, a total ordering is
defined.

Table 4: Predefined
types

1 Generally, the similarity is defined between two attribute values. However, similarity functions need not
to be symmetrical (i.e., sim(i, q) ≠ sim(q, i)). In practice, similarity functions are used for the similarity-
based retrieval (cf. Section 4.1). Here, a similarity value is computed between an instance stored in the
experience base and a query which is also specified in form of an instance. In the similarity functions, the
arguments i and q refer to the instance and the query respectively (or their attributes in case of type sim-
ilarity functions).

simattr i q,()

max simtattr
e1 e2,() e1 i∈{ }

card q()

e2 q∈
∑ card q() 0> card i() 0>∧⇔

0 card i()⇔ 0=
1 otherwise⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

Name Super-
type

Value rangeUnit of
Measure

Similarity

Boolean TYPE true, false n/a

sim i q,()
1 i⇔ q=
0 otherwise⎩

⎨
⎧

=

24

Notation

Copyright © Fraunhofer IESE 1998

Integer TYPE *..* n/a Let minvalue() and maxvalue() the lower and upper bound of
the value range respectively. Then, the similarity is computed
as follows:

Real TYPE *..* n/a Let minvalue() and maxvalue() the lower and upper bound of
the value range respectively. Then, the similarity is computed
as follows:

Text TYPE Any text n/a

Identifier Text Any text
consisting
of letters
(»a«..»z«,
»A«..»Z«),
digits
(»0«..»9«),
»-«, and
»_«.

n/a

Date TYPE (1..31;
1..12; 0..*)
[only valid
dates]

n/a Let daydiff(d,d´) be the number of days the dates d and d´ are
apart and date(1,1,1900) stand for Jan 1, 1900. Then, the
similarity is computed as follows:

Time TYPE (0..*; 0..59;
0..59)

n/a Let timediff(t,t´) be the number of seconds the times t and t´
are apart and time(0,0,0) stand for 00:00:00. Then, the simi-
larity is computed as follows:

Name Super-
type

Value rangeUnit of
Measure

Similarity

sim i q,() 1 i q–
maxvalue() minvalue()–
---–=

sim i q,() 1 i q–
maxvalue() minvalue()–
---–=

sim i q,()
1 i q=⇔
0 otherwise⎩

⎨
⎧

=

sim i q,()
1 i q=⇔
0 otherwise⎩

⎨
⎧

=

sim i q,()

1 daydiff i q,()
daydiff i q? i: q date 1 1 1900, ,(),>()
--

where i date(1,1,1900) and q date 1 1 1900, ,()> >

–=

sim i q,() i q? 1 :=

1 timediff i q,()
timediff i q? i: q time 0 0 0, ,(),>()
---–

⎝

⎠

⎛

⎞

=

25

Notation

Copyright © Fraunhofer IESE 1998

Timestamp TYPE (1..31;
1..12; 0..*;
0..*; 0..59;
0..59) [the
first three
compo-
nents con-
stitute a
valid date]

n/a Let tsdiff(t,t´) be the number of seconds the timestamps t
and t´ are apart and ts(1,1,1900,0,0,0) stand for Jan 1, 1900,
0:00:00. Then, the similarity is computed as follows:

Symbol TYPE {} n/a

OrderedSymbol Sym-
bol

{} n/a Each symbol in the ordered set is assigned a position. Let
pos(symbol) be an integer value representing the position of
symbol and rangesize() the number of symbols in the range.
Then, the similarity is computed as follows:

TaxonomySym-
bol

Sym-
bol

“ROOT” n/a A taxonomy is represented as a tree. Let the function d(n) be
the depth. of node n where d(“ROOT”) = 1. Moreover, let
cnode(n1, n2) be the deepest common father of the nodes n1
and n2. Then the similarity is computed as follows:

Intervala Inte-
ger,
Real,
Date,
Time,
Times-
tamp,
Order
edSym
bol

(low;high)
where low
and high
are the
value
ranges of
the underly-
ing type
(Integer,
Real, Date,
Time, Time-
stamp,
Ordered-
Symbol,
and their
subtypes)

n/a The similarity is defined in a footnoteb for space reasons.

a. In contrast to all other types, the interval type is actually a »type constructor«. Interval types can be con-
structed from all ordered types. Values of an interval type are pairs (l; h) where l ≤ h.

Name Super-
type

Value rangeUnit of
Measure

Similarity

sim i q,() i = q? 1 :

1 tsdiff i q,()
tsdiff i q? i: q ts 1 1 1900 0 0 0, , , , ,(),>()
--–

⎝

⎠

⎛

⎞

where i ts 1 1 1900 0 0 0, , , , ,()
and q ts 1 1 1900 0 0 0, , , , ,()>

>

=

sim i q,()
1 i⇔ q=
0 otherwise⎩

⎨
⎧

=

sim i q,() 1 pos i() pos q()–
rangesize()

---–=

sim i q,() d cnode i q,()()
d i() d q()? d i(): d q()<
---=

26

Notation

Copyright © Fraunhofer IESE 1998

3.3.4 Representation

Types are represented using a type table. The type table contains one row for
each type. The rows are sorted alphabetically according to the names of the
types. The columns of the table are labeled »Name«, »Supertype«, »Value
range«, »Unit of measure«, and »Similarity« corresponding to the components
of the type.

A supertype is represented by the name of the supertype. The root type is
denoted by »TYPE«.

The value range is represented by one of the following alternatives:

• set of ranges (separated by commas). Each range is represented in the form
low..high. If an asterisk is used for low, it stands for -∞. If an asterisk is used
for high, it stands for +∞. For each range low ≤ high must hold. If a set of
ranges is specified, the ranges may not overlap.

• enumeration of the possible values. For numeric types, the values are
written in ascending order. For symbol types, the values are quoted and
arranged as follows:
– Type »Symbol«. The symbols are ordered alphabetically.
– Type »Ordered Symbol«. The symbols are ordered from lowest to high-

est.
– Type »Taxonomy Symbol«. The symbols are arranged either graphically

as a tree or textually where the hierarchy is indicated through indentation.
• graphical representation. The possible values are enumerated implicitly

and completely by the nodes of a graph which is used for specifying the sim-
ilarity function (see below).

b. The similarity for the interval types is computed based on the similarity of their underlying types. Let
low(i) and high(i) be the lower and upper bound of the interval i respectively. Then the similarity is com-
puted as follows (the formulas can be simplified if expressed for a particular underlying type):

The motivation/derivation of this formula is beyond the scope of this report.

sim i q,()

low i() ~ low q() low i() ~ high q()+
2

-- high q() low i()<⇔

low i() ~ low q()
2

-- low q() low i()< high q() high i()≤ ≤⇔

1 low i() low q()≤ high q() high i()≤∧⇔
high q() ~ high i()

2
--- low i() low q() high i() high q()<≤ ≤⇔

low q() ~ high i() high q() ~ high i()+
2

--- high i() low q()<⇔

low i() ~ low q() high q() ~ high i()+
2

-- otherwise
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

=

27

Notation

Copyright © Fraunhofer IESE 1998

• tabular representation. The possible values are enumerated implicitly and
completely by the columns/rows of a table which is used for specifying the
similarity function (see below).

Symbol glos-
sary

For symbol types (see predefined types above) the representation also includes a
narrative text for each symbol defining the symbol. A symbol glossary is used to
capture the symbol definitions. The symbol glossary is represented as a table
consisting of the columns »Type«, »Symbol«, and »Description«.

In practice, the range of symbol types (including taxonomy symbol types) may
not be known completely at the time the ontology is being developed (i.e., more
possible values may be identified while the experience base is already in opera-
tion). Since it is expected that this situation will occur quite frequently, it must
be possible to extend symbol types at any time. Those symbol types which can
be extended during operation are marked with »DYNAMIC« in the range field.

The unit of measure is represented by text. If the type is not used for measure-
ment attributes, the entry in the respective column is »n/a«.

The similarity function can be represented using one of the following alterna-
tives:

• mathematical formula. See Section 3.7.
• graphically. This is only possible if the value range is finite. All possible val-

ues are represented by a node. Edges between the nodes are labeled with
the similarity value. If there is no edge between two possible values, the sim-
ilarity of the respective values is 0.

• tabular. This is only possible if the value range is finite. For each possible
value, the table contains a row and a column. The first argument of the simi-
larity function corresponds to the row, the second argument to the column.

• term »Standard«. For the predefined types (see above), a standard similarity
is defined. The application of the standard similarity function is specified
using the keyword »Standard«.

• term »Inherited«. The similarity function is inherited from the supertype.

Notes may be used for definitions which do not fit in the type table. In these
cases the corresponding note is specified by the name of the note.

28

Notation

Copyright © Fraunhofer IESE 1998

3.3.5 Example

Table 5: Example of
a type table

In Figure 3 a symmetric similarity function is specified. However, a nonsymmetric
similarity function can be defined as well using directed edges.

Table 6: Example of
a Symbol Glossary

Name Supertype Value range Unit of measureSimilarity

Attitude OrderedSymbol “rejecting”,
“disinter-
ested”, “moti-
vated”

n/a Inherited

DurationM Real 0..* calendar
months

Standard

Cardinal Integer 0..* n/a

Role Symbol Graph-1,
DYNAMIC

n/a Graph-1

sim i q,()
1 i⇔ q 0= =

1 i q–
i q? i : q>
--------------------------– otherwise

⎩
⎪
⎨
⎪
⎧

=

Configuration manager

Maintainer

0.5

Tester

User

0.5

Figure 3: Note
»Graph-1«:
graphical repre-
sentation of a
value range and a
similarity function

0.25

0.1

0.5

Type Symbol Description

Attitude rejecting refusing to accept and support measurement

disinterested without any interest wrt. measurement

motivated interested in and agreeing on the application of measurement

Role Configura-
tion Manager

integrates updates into the system, coordinates the production and
release of versions of the system, and provides tracking of change
requests.

Maintainer analyze changes, make recommendations, perform changes, perform
unit and change validation testing after linking the modified units to the
existing system, perform validation and regression testing after the sys-
tem is recompiled by the Configuration Manager.

Testers present acceptance test plans, perform acceptance test and provide
change request to the maintainers when necessary.

Users suggest, control and approve performed changes.

29

Notation

Copyright © Fraunhofer IESE 1998

3.3.6 Alternate Representation

The predefined types can be arranged in a taxonomy and be represented by a
tree.

3.4 Nonterminal Concept Attributes

Besides terminal concept attributes, nonterminal attributes may be part of a
concept’s intension. Here, a nonterminal concept attribute is viewed as an
epistemistic primitive.

Nonterminal concept attributes model how a particular software engineering
entity is related to other software engineering entities. For example, a GQM goal
is related to a GQM plan.

3.4.1 Synonyms

Association, pointer, nonterminal slot, reference

3.4.2 Definition

A nonterminal concept attribute is a 11-tuple (name, kind, destination concept,
reverse attribute, description, cardinality, default value, mandatory, value infer-
ence, inferred attributes, standard weight)

The function dest(attr) and reverse(attr) return the destination concept and the
reverse attribute of attr respectively. The function kind(attr) returns the kind of
attr. The predicate mand(attr) is true iff attr is mandatory.

For each nonterminal concept attribute a reverse nonterminal attribute exists.
Let c be the concept of which n is a nonterminal attribute. Further, let R(k) be

Figure 4: Type hier-
archy (taxonomy) of
the predefined
types

TYPE

Boolean Integer Real Text Symbol

Ordered
Symbol

Taxonomy
Symbol

Date

Identifier

TimestampTime

Integer Real Date Time Timestamp

OrderedSymbol

Interval Interval Interval Interval Interval

Interval

30

Notation

Copyright © Fraunhofer IESE 1998

the reverse kind of kind k (see Section 3.5.2). Then there exists the nonterminal
attribute n’=reverse(n) where reverse(n) ∈intension(dest(n)), kind(n’)=R(kind(n))
and dest(n’)=c and reverse(n’)=n.

3.4.3 Description

Name The name is used for reference purposes. All concept attributes (both terminal
and nonterminal) of one concept’s intension have unique names.

Kind Each nonterminal concept attribute is of a particular kind (e.g., »is-a« or »has-
parts«). The kind is an epistemistic primitive described in Section 3.5.

Destination
concept

This component specifies the concept associated with the concept, the nonter-
minal concept attribute belongs to. The values of a nonterminal concept
attribute is a set of instances of the destination concept.

Reverse
attribute

This component specifies the reverse attribute (see above).

Description,
cardinality,
default value,
mandatory,
value infer-
ence, inferred
attributes,
standard
weight

see Section 3.2.3

(Default) values of nonterminal attributes are specified using the instance names
of the referenced instances (see Section 3.6.3).

3.4.3.1 Predefined Similarity Functions

There are two predefined similarity functions for instance names. Let i, q, and k
be instance names of the same concept c and instance(k) the instance k refers
to. Then the similarity functions are defined as follows:

Informally, the first similarity function is based on the comparison of the names
whereas the second similarity function is based on the comparison of the
instances i and q refer to. Note that sim2 cannot be used exclusively, because it
has to be taken care that no circular computations are performed. Circular com-
putations are possible since nonterminal concept attributes allow instances to

sim1 i q,() simIdentifier i q,() i = q()? 1 : 0= =

sim2 i q,() simc ins ce i()tan ins ce q()tan,()=

31

Notation

Copyright © Fraunhofer IESE 1998

reference each other. One way to avoid circular computations is to mark all vis-
ited instances. If i or q refer to a marked instance then sim1 is used instead of
sim2. Implementations may restrict the usage of sim2 even further for perfor-
mance reasons (see Section 4.1).

3.4.4 Representation

Nonterminal concept attributes are represented using the same concept
attribute table as used for the terminal concept attributes (Section 3.2.4).

The entry for the »Type« column is a string of the form »<name of kind>
[<name of destination concept>].[<name of reverse attribute>]« or »<reverse
name of kind> [<name of destination concept].[name of reverse attribute>]«.
The default value is represented using instance names.

Nonterminal concept attributes of the predefined kinds (Section 3.5.3) »is-a«
and »has-instances« are not represented in the table.1 The »is-a« relationship is
expressed through the specification of the super concept (for an example, see
Table 3), whereas the »has-instances« relationships are represented by their
reverse kind »instance-of« as part of the instance tables (Section 3.6.4). Alterna-
tively these relationships can be represented graphically (Section 3.4.6 and
Section 3.5.6).

3.4.5 Example

Table 7: Nontermi-
nal attribute of the
concept »Measure-
ment Characteriza-
tion«

1 The reason that nonterminal concept attributes of these kinds are not part of the concept attribute table
is that they are not instantiated for the instances of a concept.

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

ctxt con-
text

references the respective
context characterization

1 part-of
[Context
Character-
iza-
tion].[meas
urement
context]

- yes - - 10

32

Notation

Copyright © Fraunhofer IESE 1998

3.4.6 Alternate Representation

Concept dia-
gram

Nonterminal concept attributes can be represented graphically in a concept dia-
gram. Concept diagrams use a notation similar to the class diagrams of UML
[Cor97]. Concepts are represented by boxes with their names written inside. A
nonterminal attribute is represented by an edge between two concepts. At the
side of the destination concept the cardinality is written. In addition, the name
of the attribute is written at that side, too (optionally). Since there always exists
a reverse nonterminal attribute, there will be a cardinality at both ends of the
edge. The edge is labeled with the kind of the nonterminal attribute (only one
direction is labeled) and a filled triangle pointing in the read direction.

Predefined kinds use a special notation (Section 3.5.6).

Figure 5: Graphical
representation of
nonterminal
attributes

defines

Measurement
Exp.

Experience

CONCEPT

GQM Product
Exp.

GQM Product

GQM Plan

Context
Characterization

Organization
Characterization

Project
Characterization

Measurement
Characterization

GQM Measure

GQM Model

1..*

1..*
1..*

1..*

1..*
1

1..*

0..*
0..* 0..*

1 1 1

0..*

1

1..*

33

Notation

Copyright © Fraunhofer IESE 1998

It is possible to:

• color each kind of nonterminal attribute differently
• use a separate figure for each kind of nonterminal attribute (for an example

see Appendix).

3.5 Kinds of Nonterminal Concept Attributes

Each nonterminal concept attribute is of a particular kind. Here a kind is viewed
as an epistemistic primitive.

Kinds of nonterminal concept attributes are analog to types of terminal concept
attributes. They model the semantic relationships between software engineering
entities. For example, the relationship that exists between a GQM Plan and a
GQM Measure is of the kind »has-parts«.

3.5.1 Synonyms

Type

3.5.2 Definition

A kind of a nonterminal concept attribute is a 5-tuple (name, reverse name, pur-
pose, structure, properties).

R(kind) denotes the reverse name of kind.

3.5.3 Description

Name The name is used for reference purposes. All kinds of nonterminal attributes
have unique names.

Reverse nameAs stated in Section 3.4.2, nonterminal attributes come pairwise.
This is illustrated by Figure 5. The relationship can be read in one direction (the
direction shown by the filled triangle). However, it can also be read in the other
direction using the reverse name.

Purpose Just as there is a reason for concepts to be part of an ontology, there is a reason
for defining a kind of nonterminal attributes. The purpose is a set of typical
usage scenarios which show how this kind of nonterminal attributes can be
used effectively.

34

Notation

Copyright © Fraunhofer IESE 1998

Structure Instances (Section 3.6) are related through kinds of nonterminal attributes. If
instances are interpreted as nodes and the values of the nonterminal attributes
as edges from a source to a destination instance1, a structure is defined which
has certain properties. The structure can be a set of trees, DAGs (directed acyclic
graphs), or graphs (without any restrictions).

Properties Besides the structure property, additional properties may hold true. Examples of
additional properties are: symmetry, transitivity, etc.

3.5.3.1 Predefined Kinds

There are four predefined kinds.

Table 8: Predefined
kinds

1 The source instance is an instance of the concept to which the nonterminal concept attribute belongs to.
The destination instance is an instance of the destination concept as defined by the nonterminal at-
tribute.

Kind Reverse name Description Structure Properties

is-a has-special-
ization

Denotes a specialization of a
concept.

tree (sin-
gle inher-
itance)

Transitivity

Every concept listed in the concept
glossary is a specialization of exactly
one concept (single-inheritance).
There is one predefined concept
»CONCEPT« which is the most general
concept. It has only one terminal
attribute with the name »Id« of the
type »Identifier«. Id corresponds to
the name of the instance.

Let c1 and c2 be concepts. If c2 is-a c1
then the following properties (inherit-
ance) hold:

intension c1() intension c2()⊆

extension c2() extension c1()⊆

assert c2() assert c1()⇒

precond c2() precond c1()⇒

35

Notation

Copyright © Fraunhofer IESE 1998

3.5.4 Representation

Kind table Kinds are represented using a kind table. The kinds are listed alphabetically by
name, one in each row of the table. The columns are labeled »Kind«, »Reverse
name«, »Purpose«, »Structure«, and »Properties« corresponding to the compo-
nents of a kind. Each row defines implicitly the reverse kind as an additional kind
which can be used for nonterminal attributes.

The »is-a« and »instances-of« relationships are represented outside the concept
attribute table (Section 3.6.4). If a concept c1 is-a concept c2 then the concept
attribute table of c2 is also relevant for c1 (i.e., the concept attributes of c2 are
not duplicated).

3.5.5 Example

Table 9: Example
representing kinds
of nonterminal
attributes

instance-of has-instances Denotes a special is-a rela-
tion. An instance is an ele-
ment of the extension of a
concept.

tree with
no inter-
mediary
nodes

Let i be an instance of the concept c.
Then the following properties hold:

has-parts part-of Denotes a decomposition.
Subparts may be shared
among concepts.

DAG Transitivity

has-decomposi-
tion

decomposi-
tion-of

Denotes a decomposition
where the subparts exist
only if the surrounding part
(aggregate) exists.

tree Transitivity

A concept may have at most one non-
terminal attribute of the kind »decom-
position-of«. The cardinality of a
nonterminal attribute of the kind
»decomposition-of« is always 1. If a
concept has a nonterminal attribute of
the kind »decomposition-of«, it may
not have any nonterminal attributes of
kind »part-of«.

Kind Reverse name Description Structure Properties

intension i() intension c()=
i extension c()∈

Kind Reverse name Purpose Structure Properties

defines defined-by Documents the dependency of instances. If an
instance is changed, it needs to be checked for
all instances defined by the changed instance
whether they need to be changed, too.

DAG transitivity

36

Notation

Copyright © Fraunhofer IESE 1998

3.5.6 Alternate Representation

In the graphical representation the predefined kinds are represented different
from »user-defined« kinds.

Note: In contrast to the concept attribute table, »instance-of« relationships can
be part of the graphical representation.

3.6 Instances

The extension of a concept is a set of instances. Here, an instance is viewed as
an epistemistic primitive. Usually, only a few instances (if any) are part of a soft-
ware engineering ontology because most instances belong to the linguistic level.
However, there is knowledge which is of importance to the modeled domain as
a whole and which can be easily represented as instances. For example,
instances of »GQM Measure« can be specified which are regularly used in a
given domain (called core measures).

3.6.1 Synonyms

Case, characterization, object

depends-on has-depen-
dents

A special kind used for data collection proce-
dures. The collection of data may depend on
the collection of other data. For example, the
finish date needs only be collected if the start
date has also been collected in order to com-
pute the duration of a process step. In this
case, the collection of the finish date depends
on the collection of the start date. If a measure
is deactivated (i.e., temporarily no data for this
measure is collected), all of its dependents
should also be deactivated.

tree transitivity

Kind Reverse name Purpose Structure Properties

Figure 6: Graphical
representation of
predefined kinds

is-a

instance-of

has-decomposition

⇒

⇒

⇒
has-parts ⇒

37

Notation

Copyright © Fraunhofer IESE 1998

3.6.2 Definition

An instance is a 3-tuple (name, concept, values).

There is an »instance-of« relationship between the instance and concept as well
as all super concepts of concept, that is, if c1 is a direct or indirect super concept
of c2 then:

The function val(attr) returns the value of the instance’s attribute attr.

The component values is a set of pairs (attr, value) where value is the attribute
value of the attribute denoted by attr (i.e., value = val(attr)). The following prop-
erties hold for all concept attributes attr of an instance:

3.6.3 Description

Name The name is used for reference purposes. All instances have unique names.

Concept This component specifies from which concept the instance is instantiated from,
i.e., the intension of the instance is defined by the intension of the specified
concept.

Values The attribute values of the instance. If a value list is specified for an attribute
(cardinality > 1) all values of the list have to be unique (e.g., »{2, 3, 4, 2,6, 3}« is
an invalid value because »2« and »3« are not unique)..

3.6.4 Representation

Instance table An instance i is represented by an instance table. The instance table has three
columns labeled »Layer«, »Attribute«, and »Value«. The first column corre-
sponds to the layers of the attributes of concept, while the latter two columns
correspond to the components of value. In addition, the most special concept
(i.e., concept) is documented near the table.

i extension c2(): i extension c1()∈∈∀

val attr() range tattr() for terminal concept attributes⊆

val attr() extension dest attr()() for nonterminal concept attributes⊆
mand attr() val attr() undefined≠⇒

38

Notation

Copyright © Fraunhofer IESE 1998

3.6.5 Example

Table 10: Example
instance

3.6.6 Alternate Representation

none

3.7 Formulas

Formulas are used for similarity functions, assertions, preconditions, and value
inferences. As such they model:

• the similarity between software engineering artifacts
• the similarity between software engineering quality values
• dependencies between software engineering quality values

3.7.1 Synonyms

Rules

3.7.2 Definition

A formula for a value inference is a mathematical term of type t where the vari-
ables are concept attributes and t is the type of the inferred attribute.

Concept: GQM Measure

Layer Attribute Value

artif id failure_count_1

definition count of failure reports turned in before
delivery

scale “ratio”

unit “n/a”

range decomposition [Type]

comments -

I/F assumption for each failure detected a failure report is
filled out

model “unknown”

data collections pro-
cedure

“unknown”

questionnaire ques-
tion

“unknown”

ctxt gqm plan “unknown”

39

Notation

Copyright © Fraunhofer IESE 1998

A formula for an assertion or a precondition is a mathematical term of type
Boolean where the variables are concept attributes.

A formula for a concept similarity function is of the form

where l ∈{»artif«, »I/F«, »ctxt«}, i and q are instances of the concept the similar-
ity function belongs to, and <mathematical term> returns a real number in the
range [0; 1]. The similarity is calculated from i to q.

A formula for a type similarity function is of the form

where i and q are values within the range of the type, and <mathematical term>
returns a real number in the range [0; 1] or the special value »undefined«. The
function computes the similarity from i to q.

A mathematical function may use the following operators and functions:

• Operators: (), ||, ., - (unary), NOT, ~, ×, /, +, - (binary), AND, OR, ?:, WHERE,
=, ≠, <, >, ≤, ≥.

• Functions: avg, card, cnode, d, date, day, daydiff, del, father, filter, high,
hour, ins, intersect, low, max, maxvalue, min, minute, minvalue, month, p,
pos, rangesize, secdiff, second, sum, sysdate, systime, systimestamp, time,
timestamp, undef, union, year.

3.7.3 Description

Operators The operators have the following signature and meaning (»int« is short for
»integer«):

Table 11: Signature
and meaning of
operators

siml i q,() <mathematical term>=

sim i q,() <mathematical term>=

Operator Signature(s) Description

() (any) -> any Changes sequence of computation

|| |int| -> int, |real| -> real Computes the absolute value

. name.attr -> any Computes an attribute value (see below)

- (unary) -int -> int, -real -> real Negates a numeric value

NOT NOT boolean -> boolean Negates a boolean expression

~ any ~ any -> real Computes the similarity between two attribute values.
Both values must be of the same type

× int × int -> int, int × real -> real,
real × int -> real, real × real -> real

Multiplies two numeric values

/ int / int -> real, int / real -> real,
real / int -> real, real / real -> real

Divides two numeric values

40

Notation

Copyright © Fraunhofer IESE 1998

The priority and associativity of the operators are defined as follows:

Table 12: Priority
and associativity of
operators

+ int + int -> int, int + real -> real,
real + int -> real, real + real -> real

Adds two numeric values

- (binary) int - int -> int, int - real -> real,
real - int -> real, real - real -> real

Subtracts two numeric values

AND boolean AND boolean -> boolean Logically ands two boolean expressions. A short-circuit
computation (i.e., the computation of the second argu-
ment is only performed if the first argument computes
to false) is not used because the second argument
could compute to a special value in which case the
whole expression would compute to the special value
(see page 44).

OR boolean OR boolean -> boolean Logically ors two boolean expressions. Short-circuit
computation is not used.

?: boolean? any : any -> any Returns the second argument if the boolean expression
is true. Otherwise it returns the third argument. A
short- circuit computation is used, i.e., either the sec-
ond or the third argument is computed but not both.

WHERE any WHERE boolean Returns »undefined« if the boolean expression is false.
Otherwise it returns the value of the first argument. A
short-circuit computation is used (i.e., the first argu-
ment is not computed if the boolean expression com-
putes to false).

=, ≠, <, >,
≤, ≥

num OP num OP num OP …-> boolean,
orderedSymb OP orderedSymb
OP orderedSymb OP … -> boolean,
date OP date OP date OP … -> boolean
where OP ∈ {=, ≠, <, >, ≤, ≥}
symbol OP symbol
OP symbol OP …-> boolean,
boolean OP boolean
OP boolean OP … -> boolean,
text OP text OP text OP … -> boolean
where OP ∈ {=, ≠},
interval OP interval OP … -> boolean
where OP ∈ {=, ≠}

Compares values. Value comparison expressions may
be specified as usual in mathematics, e.g., 10 < x < 100
or
x < y < z are legal expressions.

Operator Signature(s) Description

Priority
level

Operators Associativity

1 () left to right

2 - (unary), NOT right to left

3 ~, ×, / left to right

4 +, - left to right

5 AND left to right

6 OR left to right

7 ?: right to left

8 WHERE right to left

9 =, ≠, <, >, ≤, ≥ left to right

41

Notation

Copyright © Fraunhofer IESE 1998

Constants Formulas may use the following constants:

Table 13: Pre-
defined constants

Table 14: User
defined constants

Constants of type date, time, and timestamp may be generated using the date,
time, and timestamp functions respectively.

Attribute val-
ues

The specification of values depends upon for what type the mathematical for-
mula is used:

Table 15: Notation
for attribute values

Attributes with a cardinality of exactly 1 return a single value while attributes
with a cardinality range or a cardinality other than 1 return a list of values.

In case of the concept similarity function, the assertion, the precondition, and
the value inference, the ».« operator may also be used for navigational expres-
sions. For instance, the expression [gqm plan].[gqm questions] as part of a value
inference formula for the concept »Measurement Characterization« returns a
list of GQM questions lists.

Constant Type

true, false boolean

…, -1, 0, 1, 2, … int

.. real

undefined none (special value)

n/a none (special value)

unknown none (special value)

Notation Type Example

“<any text>” (quotes are
represented by »””«)

text “Hugo walks to his
““VW Golf”””

<type> (“<symbol
name>”)

symbol type
type

Attitude(“disinter-
ested”)

Type of formula Notation Meaning Example

Type similarity function i or q i refers to the first argument, q to the sec-
ond of the similarity function. The similarity

is computed from i to q.a

a. The notion of »from … to« is used here in analogy to distances (= dissimilarities) that are always com-
puted from one instance to another.

i

Concept similarity func-
tion

i.[<attr-name>]
or q.[<attr-
name>]

i refers to the first argument, q to the sec-
ond argument of the similarity function.
The similarity is computed from i to q.

i.[abstraction sheet]

Value inference, asser-
tion, precondition

[<attr-name>] [abstraction sheet]

42

Notation

Copyright © Fraunhofer IESE 1998

Functions The functions have the following signature and meaning (»int« is short for
»integer«):

Table 16: Signa-
tures and meaning
of functions

Function Signature(s) Description

avg avg(list of <elem>) -> <elem> Computes the average. <elem> must be a numerical
type (int or real)

card card(list) -> int Computes the number of elements in the list.

cnode cnode(taxonomySymbol, taxonomySym-
bol) -> taxonomySymbol

Computes the deepest common father of two symbols
of a taxonomy.

d d(taxonomySymbol) -> int Returns the depth of a symbol where d(“ROOT”) = 1.

date date(int1, int2, int3) -> date Assembles a date value (int1: day, int2: month, int3:
year)

day day(date) -> int, day(timestamp) -> int Returns the day of a date or timestamp

daydiff daydiff(date1, date2) -> int Returns the difference in days between two dates. If
date1 < date2, daydiff returns a negative number.

del del(list, int) -> list Removes an element from a list given by the first argu-
ment. The element to be deleted is specified by the sec-
ond argument (position in list). The resulting list is
returned.

father father(taxonomySymbol,
taxonomySymbol) -> boolean

Returns true iff the first argument is a direct or indirect
father of the second argument.

filter filter(concept name, list of instances) ->
list of instances

Returns all instances of a list which belong to the con-
cept identified by concept name. At the same time it
coerces the instances. This function is typically used in
conjunction with »is-a« relationships. The value infer-
ences in Section 3.2.5 show an exemplary application.

high high(interval of elem) -> elem Returns the upper bound of an interval value

hour hour(time) -> int, hour(timestamp) -> int Returns the hour of a time or timestamp

ins ins(list, pos, elem) -> list Inserts an element at a given position in a list. The
resulting list is returned.

intersect intersect(list of list) -> list Computes the intersection of the sublists

low low(interval of elem) -> elem Returns the lower bound of an interval value

max max(list of elem) -> elem Computes the maximum of a list of numeric values,
dates, or ordered symbols

maxvalue maxvalue(), maxvalue(attr-name) -> elem Returns the highest value of the range of an attribute
type. In case of »*« (positive infinity), an implementa-
tion-dependent maximal value is returned. The function
is applicable only for ordered types. The first signature
is used for type similarity functions, the second signa-
ture for concept similarity functions, assertions, precon-
ditions, and value inferences.

min min(list of elem) -> elem Computes the minimum of a list of numeric values,
dates, or ordered symbols

minute minute(time) -> int,
minute(timestamp) -> int

Returns the minute of a time or timestamp

43

Notation

Copyright © Fraunhofer IESE 1998

Special values The special values are propagated depending on the type of the mathematical
formula.

A type similarity function returns the special value »undefined« if any subcom-
putation returns a special value. A concept similarity function may not return a
special value, that is, it has to take care that all special values are »converted«

minvalue minvalue(), minvalue(attr-name) -> elem Returns the lowest value of the range of an attribute
type. In case of »*« (negative infinity), an implementa-
tion-dependent minimal value is returned. The function
is applicable only for ordered types. The first signature
is used for type similarity functions, the second signa-
ture for concept similarity functions, assertions, precon-
ditions, and value inferences.

month month(date) -> int,
month(timestamp) -> int

Returns the month of a date or timestamp

p p(attr-name) -> real Returns the parameter of an attribute (see Chapter 4
for details)

pos pos(orderedSymbol) -> int Returns the position of a value of an ordered symbol
type. The return value > 0.

pos pos(list, int, elem) -> int Returns the first occurrence of an element in a list start-
ing at the position of the second argument. If the ele-
ment is not found, 0 is returned, otherwise the position
of the first occurrence (> 0).

rangesize rangesize(), rangesize(attr-name) -> int Returns the number of elements in the range of an
attribute type. It is applicable only for types with finite
ranges. The first signature is used for type similarity
functions, the second signature for concept similarity
functions, assertions, preconditions, and value infer-
ences.

secdiff secdiff(time1, time2) -> int,
secdiff(timestamp1, timestamp2) -> int

Returns the difference in seconds between two times or
timestamps. If time1 < time2 or
timestamp1 < timestamp2, secdiff returns a negative
number.

second second(time) -> int,
second(timestamp) -> int

Returns the second of a time or timestamp

sum sum(list of elem) -> elem Sums up all elements of a list. Elements must be of type
int or real.

sysdate sysdate() -> date Returns the current date

systime systime() -> time Returns the current time

systime-
stamp

systimestamp() -> timestamp Returns the current timestamp

time time(int1, int2, int3) -> time Assembles a time (int1: hour, int2: minute, int3: second)

timestamp timestamp(int123456) -> timestamp Assembles a timestamp (int1: day, int2: month,
int3: year, int4: hour, int5: minute, int6: second)

union union(list of list) -> list Computes the union of the sublists

year year(date) -> int, year(timestamp) -> int Returns the year of a date or timestamp

Function Signature(s) Description

44

Notation

Copyright © Fraunhofer IESE 1998

into a numeric value (for an example, see the definition of the standard concept
similarity function).

For a value inference, assertion, or precondition, a subcomputation may return
any of the special values depending on the values of its arguments. The special
values are prioritized as follows: »n/a«, »unknown«, »undefined«, regular
value. Examples:

• n/a + 5 = n/a
• 6 - unknown = unknown
• 5 + 6 = 11
• p(undefined) = undefined
• n/a AND unknown = n/a
• unknown / undefined = unknown

but (see description of type similarity function):

• n/a ~ 5 undefined
• 7 ~ unknown = undefined
• n/a ~ n/a = undefined

If an inferred value is not in the value range of the inferred attribute’s type, the
attribute’s value is set to »undefined«.

If an assertion or precondition computes to a special value, it is interpreted as
false.

3.7.4 Representation

Concept similarity functions, assertions, and preconditions are represented in
the form as shown in the definition section together with its concept attribute
table. Type similarity functions are represented in the form as shown in the defi-
nition section in the »Sim« column of the type table. Finally, value inferences are
represented in the form as defined in the definition section in the »Value infer-
ence« column of the concept attribute table.

3.7.5 Example

See Section 3.2.5, Section 3.3.3, and Section 3.3.5.

3.7.6 Alternate Representation

Instead of »/« a fraction line may be used, i.e.,

45

Notation

Copyright © Fraunhofer IESE 1998

Instead of »?:« curly brackets may be used, i.e.,

The right curly bracket may be left out if nothing follows.

x y⁄ x
y
--→

cond? val1 : val2
val1 cond⇔

val2 otherwise⎩ ⎭
⎨ ⎬
⎧ ⎫

→

46

Semantics

Copyright © Fraunhofer IESE 1998

4 Semantics

The retrieval and maintenance of context-specific knowledge can be guided if
the model of the underlying structure is described explicitly. For this purpose,
the structure model description must be formal so it can be interpreted by a
computer system. The notation defined in the previous chapter was conceived
with this objective in mind.

In the approach presented, the context-specific knowledge is represented on
the linguistic knowledge level (see Section 2.2) and can be described using con-
structs of the conceptual level, i.e., using the standard vocabulary an ontology
defines. Technically, context-specific knowledge is represented as instances of
concepts.

This chapter describes how context-specific knowledge can be retrieved
(Section 4.1) and maintained (Section 4.2 through Section 4.4) based on REF-
SENO. For each of the two areas (retrieval and maintenance) it is shown what
operations are necessary. Operations are defined by their inputs, outputs, and
side-effects on the representation of the context-specific knowledge. Further-
more, the operations are related to the tasks for the maturing of an experience
base (cf. Figure 7).

The performance of the tasks is more complex than described in the following
sections, because the sections only address the changes in the representation of
context-specific knowledge on the linguistic level for single instances. Thus, only
elementary operations are described. These must be combined to provide »logi-
cal operations« (e.g., »remove GQM plan with all knowledge related to it«).

Figure 7: Matur-
ing of an Experi-
ence Base
(based on
[BR91])

mature

structure reuselearn

design EB

implement EB

packagerecord

store

qualify

collect off-line tailor

off-line generalize

off-line formalize

characterize

integrate

new artifact

evaluate

select

modify

on-line formalize

on-line generalize

on-line tailor

identify

matchcharacterize
needed artifact

mandatory task
optional task

task: affects structure model
task: affects characterization
task: affects artifact itself

47

Semantics

Copyright © Fraunhofer IESE 1998

Such logical operations require, however, semantic knowledge which is not
specified by REFSENO.

In order to show the effects of the various operations, the same contents of the
experience base will be used. Figure 8 gives an overview of the contents.
Table 17 through Table 29 show the instances while the intension is taken from
the example in Appendix .

Figure 8: Over-
view of the con-
tents of the
experience base
used in the
examples for
the descrip-
tions of the
operations

defines

reliability_01

Measurement
Exp.

Experience

CONCEPT

meas_prog_02

GQM Product
Exp.

GQM Product

GQM Plan

Context
Characterization

Project
Characterization

Proj_1

Proj_2

ctxt_2

ctxt_1

GQM Measure

reliability_02 effort_023

meas_prog_01

GQM Model

dter_01

effort_01

failure_count_01

failure_count_03

defines
1..*

1..*
1..*

1..*

1..*
1

1..*

0..*
1

0..*

1

1..*

48

Semantics

Copyright © Fraunhofer IESE 1998

Table 17: Instance
»proj_1«

Table 18: Instance
»proj_2«

Concept: Project Characterization

Layer Attribute Value

artif id “proj_1”

project name C: Z

project start 6-1-1997

project end undefined

duration 18

team size 2-20

effort unknown

application of stan-
dard software process

false

life-cycle model used “waterfall”

tools unknown

programming lan-
guages

unknown

estimated product
size

unknown

type of software {“embedded/real-time systems”}

number of installa-
tions

1

memory constraints “normal”

performance con-
straints

“normal”

target platforms {“embedded processors”, “workstations”}

newness to state of
art

“initial delivery”

functionality “important”

reliability “desirable”

usability “desirable”

efficiency “important”

maintainability “important”

portability “unimportant”

ctxt project goals {“Complete development in time and bud-
get”}

context {“ctxt_1”}

comments undefined

Concept: Project Characterization

Layer Attribute Value

artif id “proj_2”

project name C: X

project start 2-1-1997

project end 9-30-1998

duration 19

team size 3-10

49

Semantics

Copyright © Fraunhofer IESE 1998

Table 19: Instance
»ctxt_1«

Table 20: Instance
»ctxt_2«

artif effort unknown

application of stan-
dard software process

false

life-cycle model used “waterfall”

tools unknown

programming lan-
guages

{“Ada”}

estimated product
size

unknown

type of software {“embedded/real-time systems”}

number of installa-
tions

1

memory constraints “normal”

performance con-
straints

“normal”

target platforms {“embedded processors”, “workstations”}

newness to state of
art

{“initial delivery”}

functionality “important”

reliability “desirable”

usability “desirable”

efficiency “important”

maintainability “important”

portability “unimportant”

ctxt project goals {“Complete development in time and bud-
get”}

context {“ctxt_2”}

comments undefined

Concept: Project Characterization

Layer Attribute Value

Concept: Context Characterization

Layer Attribute Value

artif id “ctxt_1”

organization context …

project context “proj_1”

measurement context …

ctxt measurement experi-
ence

“meas_prog_01”

Comments undefined

Concept: Context Characterization

Layer Attribute Value

artif id “ctxt_2”

50

Semantics

Copyright © Fraunhofer IESE 1998

Table 21: Instance
»meas_prog_01«

Table 22: Instance
»meas_prog_02«

artif organization context …

project context “proj_2”

measurement context …

ctxt measurement experi-
ence

“meas_prog_02”

Comments undefined

Concept: Context Characterization

Layer Attribute Value

Concept: GQM Product Experience

Layer Attribute Value

artif id “meas_prog_01”

viewpoint “Maintainer”

representation form “structured text”

owner “Goofy”

status “incomplete”

version 0.02

last change 3-2-1997

readers “C: Z”

gqm plan “reliability_01”

measurement plan …

I/F preconditions for
reuse

undefined

ctxt acquisition technique “interview”

expected adaptations undefined

expected cost of reuse undefined

dates of reuse undefined

guidelines of reuse undefined

comments undefined

context “ctxt_1”

Concept: GQM Product Experience

Layer Attribute Value

artif id “meas_prog_02”

viewpoint “Maintainer”

representation form “structured text”

owner “Goofy”

status “incomplete”

version 0.11

last change 1-2-1997

readers “C: Z”

gqm plan “reliability_01”

51

Semantics

Copyright © Fraunhofer IESE 1998

Table 23: Instance
»reliability_01«

Table 24: Instance
»reliability_02«

Table 25: Instance
»effort_023«

artif measurement plan …

I/F preconditions for
reuse

undefined

ctxt acquisition technique “interview”

expected adaptations undefined

expected cost of reuse undefined

dates of reuse undefined

guidelines of reuse undefined

comments undefined

context “ctxt_1”

Concept: GQM Product Experience

Layer Attribute Value

Concept: GQM Plan

Layer Attribute Value

artif id “reliability_01”

comments undefined

gqm goal …

abstraction sheet …

gqm question {…}

gqm model {“dter_01”, …}

gqm measure {“failure_count_1”, “fault_count_03”, …}

ctxt gqm product experi-
ence

“meas_prog_01”

Concept: GQM Plan

Layer Attribute Value

artif id “reliability_02”

comments undefined

gqm goal …

abstraction sheet …

gqm question {…}

gqm model {“dter_01”, …}

gqm measure {“failure_count_1”, …}

ctxt gqm product experi-
ence

”meas_prog_02”

Concept: GQM Plan

Layer Attribute Value

artif id “effort_023”

comments undefined

52

Semantics

Copyright © Fraunhofer IESE 1998

Table 26: Instance
þ»failure_count_1«

Table 27: Instance
»fault_count_03«

artif gqm goal …

abstraction sheet …

gqm question {…}

gqm model {…}

gqm measure {“effort_01”, …}

ctxt gqm product experi-
ence

“meas_prog_02”

Concept: GQM Plan

Layer Attribute Value

Concept: GQM Measure

Layer Attribute Value

artif id “failure_count_1”

comments undefined

definition “count of failure reports turned in before
delivery”

scale “ratio”

unit n/a

range …

I/F assumption {“for each failure detected a failure report is
filled out”}

model {“dter_01”, …}

data collections pro-
cedure

…

questionnaire ques-
tion

…

ctxt gqm plan {“reliability_01”, “reliability_02”}

Concept: GQM Measure

Layer Attribute Value

artif id “fault_count_03”

comments undefined

definition “count of fault per life cycle phase where the
fault was introduced”

scale “nominal”

unit n/a

range …

I/F assumption {“the sw process includes the phases REQ,
HLD, LLD/IMP”}

model {…}

data collections pro-
cedure

…

questionnaire ques-
tion

…

53

Semantics

Copyright © Fraunhofer IESE 1998

Table 28: Instance
»effort_01«

Table 29: Instance
»dter_01«

4.1 Retrieval of Context-Specific Knowledge

Context-specific knowledge is retrieved using a query specification:

Input A query specification in the form of one »main« and optionally several related
instances. The »main« instance is an instance of any concept that is justified
with a usage scenario.

ctxt gqm plan {“reliability_01”}

Concept: GQM Measure

Layer Attribute Value

Concept: GQM Measure

Layer Attribute Value

artif id “effort_01”

comments undefined

definition “measures the effort spent on a project”

scale “ratio”

unit “person-month”

range …

I/F assumption {“the sw process includes the phases REQ,
HLD, LLD/IMP”}

model {…}

data collections pro-
cedure

…

questionnaire ques-
tion

…

ctxt gqm plan {“effort_023”}

Concept: GQM Model

Layer Attribute Value

artif id “dter_01”

comments undefined

type “quality model”

category “descriptive”

definition “distribution testing effectiveness per role”

I/F assumption {“testing is done by maintainers, testers, and
users”}

data source …

gqm measure {“failure_count_1”}

question {…}

ctxt gqm plan {“reliability_01”, “reliability_02”}

54

Semantics

Copyright © Fraunhofer IESE 1998

Output Either an error message telling which attribute value specified is out of range or
a list of instances similar to the »main« instance specified together with the sim-
ilarity value (from the returned instance to the specified instance1). The concept
similarity function is used for computing the similarity value. The first argument
to the similarity function is the instance in the experience base while the second
argument is always the specified instance.

The list of instances returned is limited to the extension of the concept of the
»main instance«2.

Side effects none

4.1.1 Relation to Software Engineering

The retrieval supports the identification, selection, and partially the evaluation
tasks:

1 Characterize needed artifact3. Characterization is performed by defining
the query specification.

2 Match. The query specification contains one distinguished instance, the
»main« instance. Only instances which have the same intension as the
»main« instance will be returned. This restricts the search space.

3 Select. For all instances returned a similarity value is computed using the
concept similarity function. By sorting the potential instances (from the
match mechanism) according to their similarity, a selection can be made by
cutting off the list at a reasonable point (e.g., only the first 10 instances are
displayed).

4 Evaluate. The similarity value and the position in the list give decision sup-
port for choosing the most appropriate instance. Of course, whether the
most appropriate instance will actually be reused depends on the effort
needed to tailor the instance to the needs at hand.4 In order to make the

1 Similarity functions are not symmetric. For instance, if the similarity between two modules is computed,
the similarity value depends on the services provided by a particular module in the experience base (e.g.,
the deletion of a service requires less effort than providing a new service).

2 The extension includes the instances of the subconcepts of the »main« instance’s concept (cf. Table 8).
3 In this report, the term »artifact« does not only refer to documents and/or files existing in reality, but also

to parts thereof (e.g., GQM questions as part of a GQM plan) as well as to »nondiscriminant attributes’
values«. »Nondiscriminant attributes« are attributes with a standard weight of 0. They cannot be speci-
fied by a query. For example, lessons learned can be stored completely as instances [GRA+98]. Therefore,
the term »artifact« is used for all concepts that are justified with a usage scenario in the concept glossary.

55

Semantics

Copyright © Fraunhofer IESE 1998

right decision, it also has to be estimated how much effort would be needed
to create the needed artifact from scratch.

4.1.2 Description

Simple query
specification

The simplest query specification is one that involves only the »main« instance.
Instances used for retrieval differ from instances stored in the experience base in
that the:

• values for attributes declared as »mandatory« in the ontology, may be of the
special value »undefined«.

• assertion does not need to be true.
• precondition does not need to be true.
• values can be specified for attributes whose values can be inferred. For

attributes whose value is not specified, the value inference is used to try to
infer a value before the actual query is performed.

• values for »nondiscriminant attributes« cannot be specified. An attribute is
nondiscriminant if its standard weight is 0.

However, if specified, attribute values have to be either within the value range
of the corresponding type or be of one of the special values »undefined«,
»unknown«, or »n/a«.

Table 30 shows such an example. In the example, nondiscriminant values are
shaded. The objective of the query is to find some kind of measure associated
with effort measured in person-months. Result of the retrieval is the list of
instances of the concept GQM measure (cf. Figure 8) together with the respec-
tive similarity values (see Table 31). The default values for the weights wartif, wI/

F, wctxt are 0.3. The result shows a total similarity for the instance
»failure_count_1«. The reason for this is that the value of »unit« for this
instance is »n/a«. Thus, the local similarity (cf. footnote on page 12) computes
to »undefined« (see Section 3.7.3) which is not considered in the concept’s sim-
ilarity function (see Section 3.1.4).

Table 30: Query
specification 1 for a
GQM measure

4 At this point it is unclear in how far the defined ontology can be of help for estimating the tailoring effort.

Concept: GQM Measure
Id of temporary instance: “tmp23042”

Layer Attribute Value

artif id undefined

comments

definition

56

Semantics

Copyright © Fraunhofer IESE 1998

Table 31: Result of
query specification 1

A system implementing REFSENO should also offer the possibility to inspect both
the instance (i.e., the characterization of the artifact) as well as the artifact itself
(possibly by invoking a specialized tool for the artifact). This inspection would
support the evaluation by a human.

Complex query
specification

In the first example only terminal attributes were specified. However, nontermi-
nal attributes may also be specified as part of a query specification. In the latter
case, the query specification is called complex query specification. There are two
possibilities for specifying a nonterminal attribute: relationships to instances that
already exist in the experience base, and relationships to temporary instances
that are part of the query specification. After the retrieval is complete, these
temporary instances will cease to exist. Also, temporary instances are user-spe-
cific. This means, if user A and user B query the experience base simultaneously,
A cannot use the temporary instances of B and vice versa. Relationships
between temporary instances are not bidirectional. The id of temporary
instances is provided by the retrieval system.

The similarity function associated with a given element1 of a nonterminal
attribute’s value depends on whether the element refers to an instance of the
experience base or to a temporary instance. sim1 is used for first case whereas

artif scale “ratio”

unit “person-month”

range undefined

I/F assumption

model undefined

data collections pro-
cedure

undefined

questionnaire ques-
tion

undefined

ctxt gqm plan undefined

Concept: GQM Measure
Id of temporary instance: “tmp23042”

Layer Attribute Value

Instance Similarity value

failure_count_1 1.0000

effort_01 1.0000

fault_count_03 0.8333

1 The term »element« refers to either the value itself if the cardinality is 1 or to any element of the list if
the cardinality is greater than 1.

57

Semantics

Copyright © Fraunhofer IESE 1998

sim2 is used for the latter (Section 3.4.3). The similarity function defined for the
elements is extended to the attribute’s value in exactly the same way as for ter-
minal attributes (Section 3.3.3).

The specification of nonterminal attributes allows a more precise specification of
the needed artifacts. Typically, context characteristics are specified using nonter-
minal attributes. Therefore, if no nonterminal attributes are specified, the con-
text is barely considered or not considered at all at retrieval time. The applicabil-
ity of suggested artifacts must be evaluated »manually«.

Table 32 through Table 39 show two complex query specifications. One specifi-
cation references existing instances in the experience base (here, the instance
»effort_023« is known by the user) while the other specification references tem-
porary instances. Of course, combinations of references to existing and tempo-
rary instances are also allowed.

To avoid circular computations (Section 3.4.3), the similarity function sim3 is
used:

where the predicate visited(q) is true iff q refers to either the »main« temporary
instance or to a temporary instance which has been involved in a sim2-computa-
tion, and the predicate in-eb(q) is true iff q refers to an instance in the experi-
ence base.

Table 32: Query
specification 2 for a
GQM measure
which is part of the
GQM plan
»effort_023«.

sim3 i q,() visited q() in eb q()? sim1 i q,(): sim2 i q,()–∨=

Concept: GQM Measure
Id of temporary instance: “tmp23841”

Layer Attribute Value

artif id undefined

comments

definition

scale “ratio”

unit “person-month”

range undefined

I/F assumption

model undefined

data collections pro-
cedure

undefined

questionnaire ques-
tion

undefined

ctxt gqm plan {“effort_023”}

58

Semantics

Copyright © Fraunhofer IESE 1998

Table 33: Result of
query specification 2

Table 34: Query
specification 3 for a
GQM measure

Table 35: Tempo-
rary instance used
for query specifica-
tion 3

Table 36: Tempo-
rary instance used
for query specifica-
tion 3

Instance Similarity value

effort_01 1.0000

failure_count_1 0.6333

fault_count_03 0.5333

Concept: GQM Measure
Id of temporary instance: “tmp39234”

Layer Attribute Value

artif id undefined

comments

definition

scale “ratio”

unit undefined

range undefined

I/F assumption

model undefined

data collections pro-
cedure

undefined

questionnaire ques-
tion

undefined

ctxt gqm plan {“tmp92387”}

Concept: GQM Plan
Id of temporary instance: “tmp92387”

Layer Attribute Value

artif id undefined

comments

gqm goal undefined

abstraction sheet undefined

gqm question undefined

gqm model undefined

gqm measure undefined

ctxt gqm product experi-
ence

“tmp24642”

Concept: GQM Product Experience
Id of temporary instance: “tmp24642”

Layer Attribute Value

artif id undefined

viewpoint undefined

representation form undefined

owner

status undefined

59

Semantics

Copyright © Fraunhofer IESE 1998

Table 37: Tempo-
rary instance used
for query specifica-
tion 3

Table 38: Tempo-
rary instance used
for query specifica-
tion 3

artif version undefined

last change undefined

readers

gqm plan undefined

measurement plan undefined

I/F preconditions for
reuse

ctxt acquisition technique undefined

expected adaptations

expected cost of reuse

dates of reuse undefined

guidelines of reuse

comments

context “tmp92653”

Concept: GQM Product Experience
Id of temporary instance: “tmp24642”

Layer Attribute Value

Concept: Context Characterization
Id of temporary instance: “tmp92653”

Layer Attribute Value

artif id undefined

organization context undefined

project context “tmp12576”

measurement context undefined

ctxt measurement experi-
ence

undefined

Comments

Concept: Project Characterization
Id of temporary instance: “tmp12576”

Layer Attribute Value

artif id undefined

project name undefined

project start undefined

project end undefined

duration 12

team size undefined

effort 120

application of stan-
dard software process

undefined

life-cycle model used undefined

tools undefined

60

Semantics

Copyright © Fraunhofer IESE 1998

Table 39: Result of
query specification 3

As can be seen in specification 3, queries can get quite complex. Therefore, it is
useful that specialized browsers provide »short cuts« for frequently used que-
ries. For example, for specification 3 a specialized tool could realize this query by
presenting only 2 temporary instances to be filled out by the user.

Filter Advanced implementations will also allow to filter the result, that is, only those
instances will be displayed that have attribute values within the range specified
by the filter. Filters are a means to discard irrelevant instances. A filter range can
be specified by:

• an interval for ordered types
• a set of values for types with a finite value range

artif programming lan-
guages

undefined

estimated product
size

undefined

type of software undefined

number of installa-
tions

undefined

memory constraints undefined

performance con-
straints

undefined

target platforms undefined

newness to state of
art

undefined

functionality undefined

reliability undefined

usability undefined

efficiency undefined

maintainability undefined

portability undefined

ctxt project goals undefined

context undefined

comments

Concept: Project Characterization
Id of temporary instance: “tmp12576”

Layer Attribute Value

Instance Similarity value

failure_count_1 0.8888

effort_01 0.8333

fault_count_03 0.7555

61

Semantics

Copyright © Fraunhofer IESE 1998

User-defined
weight

Actual weight

Another means of influencing the result of a query is the specification of user-
defined weights. If user-defined weights are specified, they will replace the stan-
dard weights specified in the concept attribute table. How the weights influence
the similarity value is defined by the similarity functions. Similarity functions can
recall the actual weight (user-defined weight if specified; otherwise the standard
weight) via the function p (see Section 3.7.3).

The weights above have to be distinguished from the weights wartif, wI/F, and
wctxt which can also be changed if the system provides a means to do so.

Query specifications using filters or user-defined weights cannot be defined
using the standard instance table. Instead, additional columns have to be pro-
vided. Table 40 and Table 41 show an example using a modified version of
query specification 2. In the result, »fault_count_03« is filtered out and
»failure_count_1« is rated slightly more similar due to the greater weight of the
artifact layer.

Table 40: Query
specification 4 for
GQM measures
using filters and
user-defined
weights

Table 41: Result of
query specification 4

4.2 Insertion of New Context-Specific Knowledge

New context-specific knowledge is inserted in the form of instances:

Input Set of instances.

Concept: GQM Measure
Id of temporary instance: “tmp23042”
wartif = 0.7, wI/F = 0, wctxt = 0.3

Layer Attribute Value Weight Filter

artif id undefined

comments

definition

scale “ratio” “interval”-”ratio”

unit “person-month”

range undefined

I/F assumption

model undefined

data collections pro-
cedure

undefined

questionnaire ques-
tion

undefined

ctxt gqm plan {“effort_023”}

Instance Similarity value

effort_01 1.0000

failure_count_1 0.7000

62

Semantics

Copyright © Fraunhofer IESE 1998

Output Either a message telling that the insertion was successful or an error message
telling which consistency rule was violated.

Side effects If a consistency rule would be violated, none. Otherwise the context-specific
knowledge of the experience base will be extended by the new instances. In
addition, all related instances will be updated by a reference to the new
instances. If attributes of the inserted instances are part of value inferences, the
corresponding value inferences will be performed.

4.2.1 Relation to Software Engineering

Once, context-specific knowledge has been collected, qualified (i.e., it was
decided that it should be part of the experience base), and stored (i.e., the arti-
fact itself – not its characterization – is physically stored), a characterization of
the artifact has to be provided. In addition, the new artifact has to be integrated
(i.e., it has to be specified which relationships exist to other already existing arti-
facts).

While the characterization is guided by the terminal attributes, the integration is
guided by the nonterminal attributes. Both terminal and nonterminal attributes
are part of an instance’s intension. Thus, the insertion operation supports both
the characterization and integration of new artifacts.

4.2.2 Description

New instances are specified using instance tables. Table 42 shows an example.
Figure 9 shows the result of the inserted instance.

Table 42: Instance to
be inserted in the
experience base

Concept: GQM Measure

Layer Attribute Value

artif id “test_role”

comments undefined

definition “records the test role”

scale “nominal”

unit n/a

range …

I/F assumption {““}

model {“dter_01”}

data collections pro-
cedure

…

questionnaire ques-
tion

…

ctxt gqm plan {“reliability_01”, “reliability_02”}

63

Semantics

Copyright © Fraunhofer IESE 1998

The insertion operation also updates the reverse relationships, i.e., the corre-
sponding nonterminal attribute values of the destination instances. Table 43
gives an example.

Table 43: Automati-
cally updated
instance »dter_01«

Figure 9: Over-
view of the con-
tents of the
after inserting
the new
instance

defines

reliability_01

Measurement
Exp.

Experience

CONCEPT

meas_prog_02

GQM Product
Exp.

GQM Product

GQM Plan

Context
Characterization

Project
Characterization

Proj_1

Proj_2

ctxt_2

ctxt_1

GQM Measure

reliability_02 effort_023

meas_prog_01

GQM Model

test_role

dter_01

effort_01

failure_count_01

failure_count_03

defines

defines
1..*

1..*
1..*

1..*

1..*
1

1..*

0..*
1

0..*

1

1..*

Concept: GQM Model

Layer Attribute Value

artif id “dter_01”

comments undefined

64

Semantics

Copyright © Fraunhofer IESE 1998

Several consistency rules have to be fulfilled when inserting new instances. If
any of the consistency rules is violated, the experience base remains unchanged.
The consistency rules are:

1 Mandatory attributes. For every mandatory attribute of an instance’s
intension a value must be specified.

2 Cardinality. The number of values supplied for an attribute must be in the
cardinality range as defined in the concept attribute table. If nonterminal
attributes are specified, the cardinality range of the affected nonterminal
attributes of the referenced instances must also be observed.

3 Terminal attributes. Values of terminal attributes must be within the value
range of the corresponding type of the attribute. In addition the special val-
ues »unknown« and »n/a« (and »undefined« if the attribute is not manda-
tory) may be used.

4 Nonterminal attributes. After the operation, all elements of a nonterminal
attribute’s value (in case of cardinality > 1) or the value itself (in case of cardi-
nality = 1) must refer to existing instances (i.e., dangling references are not
allowed). In addition the special values »unknown« and »n/a« (and »unde-
fined« if the attribute is not mandatory) may be used.

5 Assertion. After the operation, all applicable assertions must be true. Appli-
cable assertions are the assertions of the concepts of all affected instances as
well as all of the concepts’ super concepts.

6 Precondition. The precondition must be true for all instances to be inserted
before the insertion operation is executed. This means that the preconditions
are checked before the bidirectional relationships are established.

Consistency rules 1, 2, 4, 5 and 6 place constraints on the order in which
instances can be inserted.

artif type “quality model”

category “descriptive”

definition “distribution testing effectiveness per role”

I/F assumption {“testing is done by maintainers, testers, and
users”}

data source …

gqm measure {“failure_count_1”, “test_role”}

question {…}

ctxt gqm plan {“reliability_01”, “reliability_02”}

Concept: GQM Model

Layer Attribute Value

65

Semantics

Copyright © Fraunhofer IESE 1998

Advanced implementation will also provide the capability to copy already exist-
ing instances and allow changing the copies. The changed copies will then be
inserted into the experience base.

4.3 Removal of Context-Specific Knowledge

Context-specific knowledge is removed by deleting instances:

Input Specification of a set of instances to be deleted

Output Either a message telling that the removal was successful or an error message
telling which consistency rule was violated.

Side effects If a consistency rule would be violated, none. Otherwise the specified instances
will be removed from the experience base. In addition, all related instances will
be updated by removing references to the deleted instance. If attributes of the
concept of the deleted instances lead to value inferences, the corresponding
value inferences are performed.

4.3.1 Relation to Software Engineering

Removal of context-specific knowledge is not addressed explicitly in the tasks of
maturing a software development organization. However, some reorganizations
of the experience base will require the removal of outdated knowledge. For
instance, if software systems are no longer programmed in Fortran, all code
modules written in Fortran may be removed from the experience base. Another
example is the availability of a generic artifact. For instance, if a new stack mod-
ule becomes available that can be easily instantiated for any type, the type-spe-
cific stack modules may be removed.

4.3.2 Description

The removal of instances will affect nonterminal attribute values of referenced
instances by the instances to be deleted (references to the instances to be
removed will be deleted). If the deletion of references in these nonterminal
attributes violates any of the consistency rules 1–5, a removal of the instance is
not possible. In such a case the removal is not performed.

If the instance to be removed is an aggregate, i.e., it references other instances
via an »has-decomposition« nonterminal attribute, the referenced instances are
also removed because they are not to exist independently.

66

Semantics

Copyright © Fraunhofer IESE 1998

An example for the removal of an instance is given by the instance defined in
Table 42. If the operation is performed with the experience base contents
shown in Figure 9, the resulting contents of the experience base will be those
depicted in Figure 8.

4.4 Change of Existing Context-Specific Knowledge

Context-specific knowledge is changed by changing the attribute values of
existing instances:

Input Specification of a set of instances to be changed

Output Either a message telling that the change was successful or an error message tell-
ing which consistency rule was violated.

Side effects If a consistency rule would be violated, none. Otherwise the specified instances
will be changed. In addition, all related instances will be updated by adding and
removing references to the changed instance. If attributes were changed which
are part of a value inference, the inferences will be performed.

4.4.1 Relation to Software Engineering

As a software artifact is reused, application experience regarding the reused arti-
fact is collected. Such application experience may result in a change of certain
attributes of the characterization of the software artifact applied. For instance, if
the characterization of a software engineering artifact has a terminal attribute
for the timestamps of reuse, each reuse attempt will result in a change of this
attribute’s value. Also, with each successful application of an artifact, the validity
of the artifact increases. If the validity is part of the artifact’s characterization, it
too would have to be changed.

Just as the removal of context-specific knowledge, the change of context-spe-
cific knowledge is not addressed by the tasks for a maturing software develop-
ment organization. However, changing context-specific knowledge is a must as
the examples above show.

4.4.2 Description

The changed instances must comply with all consistency rules stated in
Section 4.2.2 (here, consistency rule 6 is applied before the change operation).
Otherwise the contents of the experience base will not be changed. In addition,
the value of a nonterminal attribute of the kind »decomposition-of« may not be
changed.

67

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

5 Applying REFSENO: Benefits and Lessons Learned

This chapter lists the benefits and lessons learned gained so far by applying REF-
SENO. It is subdivided into 4 sections mirroring the representation levels intro-
duced in Section 2.2.

5.1 Linguistic Level

Since there existed no system implementing REFSENO completely at the time
this report was written, not much experience on the linguistic level has been
gained. However, using an implementation of a very restricted version of REF-
SENO for demonstration purposes revealed:

• Knowledge as defined in Section 2.1 will only be acquired if there is a symbol
glossary defining the meaning of each symbol unambiguously. If such a sym-
bol glossary is not available or does not define symbols unambiguously, infor-
mation supplied by the knowledge sources will consist of statements which
are believed to be true by the knowledge source, but are not really true
(because the meaning of a symbol varies from user to user).

• The first time, knowledge sources should supply their knowledge in the pres-
ence of a knowledge engineer. First results of guided interviews (with the
knowledge engineer as the interviewer) were promising. This is probably due
to the fact that the knowledge engineer can explain the difference between
symbols. This increases the terminological control [Gau95] further.

But before knowledge can be acquired at all, the knowledge acquisition has to
be initiated, that is, it has to be assured that context-specific knowledge that is
to be stored (this is specified by the ontology) is actually collected. For instance,
for the ontology defined in Appendix the dates of reuse, expected adaptations,
and expected costs of reuse shall be recorded. Rules have to be established that
prescribe when to supply the knowledge. One possibility is to update the knowl-
edge when a new version of a GQM entity is checked-in.

5.2 Conceptual Level

At the conceptual level, ontologies are defined. This section takes a closer look
at the building, evolution, and validation of ontologies.

68

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

5.2.1 Building an Ontology

Just like software systems, ontologies should be built in an engineer-like fashion
[GP98, UG96]. At the time this report was written, a set of techniques existed
for developing ontologies [GP98, UG96, vHFAH+95]. However, these ontologies
do not use constructs known from case-based reasoning and database systems
as REFSENO does. Furthermore, the techniques have not been applied for soft-
ware engineering ontologies. Therefore, specialized techniques for developing
software engineering ontologies have to be devised.

A first step is the definition of major documents. Gomez-Perez [GP98] suggests
to have a specification of an ontology, the ontology itself (which corresponds to
the design of a software system), and an implementation operationalizing the
ontology. The latter requires that operations on the knowledge representation
are defined [Rei91] as it is done in Chapter 4 for REFSENO.

The specification of an ontology should contain the domain modeled, the pur-
pose of the ontology, the scope, and administrative information like the authors
and knowledge sources [GP98]. For software engineering ontologies it has been
shown that a refinement of the scope is helpful. The scope should list at least
(major) concepts, instances (as far as they are part of the ontology – for a discus-
sion on this topic see introduction to Section 3.6), and attributes common to all
concepts. Table 44 shows an example for the ontology defined in Appendix .

Table 44: Ontology
requirements speci-
fication

Domain Measurement program planning

Date June 25, 1998

Conceptualized by Christiane Gresse von Wangenheim, Carsten Tautz

Purpose Ontology about GQM entities to be used when information is required
for planning a GQM-based measurement program

Level of formality Semi-formal (REFSENO)

Scope List of concepts:
• GQM entities (Abstraction Sheet, Artifact Event, Context Character-

ization, Data Collection Event, Data Collection Instrument, Data Col-
lection Procedure, Experience, GQM Goal, GQM Measure, GQM
Model, GQM Outcome, GQM Plan, GQM Problem, GQM Problem
Cause, GQM Problem Solution Experience, GQM Product, GQM
Product Experience, GQM Question, GQM Solution, Item, Measure-
ment Characterization, Measurement Experience, Measurement
Plan, Organization Characterization, Periodic Event, Project Charac-
terization, Quality Item, Questionnaire, Questionnaire Question,
Variation Item)

• Software process entities (Software Object, Tool, Software
Attribute, Software Process, Software Product, Role)

Instances: none
Common concept attributes: none

Source of knowledge C. Gresse von Wangenheim, »GQM Domain Model« V1.0, May 15,
1998.

69

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

Care should be taken when defining the purpose of the ontology. REFSENO is
general enough to be used for structuring any kind of software engineering
knowledge. The purpose will determine to which level of detail the domain will
be modeled (defined by the scope of the ontology). For instance, in case of
GQM, retrieval on the level of GQM plans only would be an alternative to the
retrieval of all kinds of GQM entities (as shown in Appendix). The latter sug-
gests to provide logical operations such as »insert GQM Plan« that would insert
all instances related to a single GQM plan. Such a specialized operation cannot
be provided by a general purpose tool, but must be provided by a special GQM
tool.

Chapter 4 defines the basic operations allowing incremental storage. However,
for specialized operations it may be necessary to allow not only the insertion of
single instances, but also the insertion of a set of instances. The consistency
checks would then be performed after the insertion of all instances. Such a com-
plex operation would alleviate the deadlock problem described in Section 4.2.

The scope is the hardest part of the requirements specification to define. The
development of usage scenarios helps to determine the scope. The usage sce-
narios should cover those activities to be supported by the experience base. In
order to carry out the activities, knowledge is needed. This needed knowledge
must be structured and modeled by the ontology. At the specification stage,
concepts are identified that can be justified using usage scenarios (see discus-
sion on purpose of concepts in Section 3.1.3). These concepts are considered to
be the major concepts of the ontology. More concepts may be added later for
modeling purposes.

After the requirements specification has been written, the ontology itself using
REFSENO has to be developed. Here is a suggested process model for develop-
ing an ontology based on the experience gained thus far:

1 Take the concepts of the scope of the ontology requirements specification
and define the concept glossary for them.

2 Identify the semantic relationships between the concepts using the alternate
representation for nonterminal concept attributes described in Section 3.4.6.
Each time a new kind of relationship is used, define the kind in the table for
the kinds of nonterminal attributes (see Section 3.5.4).

3 Through relating concepts, common parts shared by two or more concepts
may be identified. These parts should become concepts themselves. These
are concepts introduced for modeling reasons. They also have to be defined
in the concept glossary.

4 Identify the terminal attributes for all concepts. For each concept define a
concept attribute table (see Section 3.2.4). Each time a new type of attribute

70

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

is used, define the type in the type table (see Section 3.3.4). If a symbol type
is defined, define each of the symbols in the range in the symbol glossary
(see Section 3.3.4). If the value can be computed automatically, define a
value inference. Define the »to infer« entry for the attributes needed in the
computation.

5 Complete the concept attribute tables by the nonterminal attributes. The
nonterminal attributes have to be consistent with the graphical representa-
tion defined in step 2.

6 Check the completeness of all concept attribute tables: are there attributes
describing the artifact itself, its interface, and its context? [BR91] Attributes
describing the artifact itself are typically terminal attributes while attributes
describing the interface are typically nonterminal attributes whose values ref-
erence the interfacing artifacts. The context is described using both terminal
(for artifact-specific qualities) and nonterminal attributes (for references to a
quality model valid for a class of artifacts, and for references to descriptions
of the application domain and development process models).

7 Define instances specified in the requirements specification using instance
tables (see Section 3.6.4).

Once an ontology is defined, it has to be implemented. In case of REFSENO, the
operations for an implementation are already defined (Chapter 4).

5.2.2 Evolving an Ontology

Over time, the knowledge needs of an organization will change. This requires
the evolution of ontologies. Evolving a software engineering ontology means
changing the structure of an experience base. Since REFSENO provides episte-
mological primitives, the implementation does not need to be changed (i.e., the
ontology is represented explicitly and interpreted by the implementation). How-
ever, the context-specific knowledge of an experience base is based on the
structural knowledge the ontology provides. Hence, the context-specific knowl-
edge has to be reorganized with each tailoring of the underlying ontology.
Advanced implementations will provide support for this kind of reorganizations.
For example, if a new attribute to a concept is added, the attribute values of the
concept’s instances may be computed automatically (e.g., if a value inference is
defined for the attribute). If the value range of a type is changed, the new values
may be computed using the old values.

Dynamic sym-
bol types

In addition there may be some »minor« changes to the ontology which should
be possible to perform »on the fly«. Extending symbol types is such an example.
Often, the complete value range of symbol types is not known at the time an
ontology is developed. If a new instance is inserted, it has to be possible to

71

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

extend such dynamic symbol types.1 Extending symbol types involves the precise
definition of the new symbol in the symbol glossary as well as a redefinition of
the similarity function. However, for all symbol types using the default similarity
function, the similarity function can be adapted automatically to the extended
value range.

5.2.3 Validating an Ontology

The evolution of an ontology is triggered by a continuous validation of the ade-
quacy of an ontology. If the structure of the context-specific knowledge is no
longer perceived as adequate, the ontology must be evolved.

In addition, an initial validation should be performed after a new ontology has
been developed. This can lead to changes in the ontology before context-spe-
cific knowledge is inserted in the experience base. It is important that inadequa-
cies of an ontology are discovered as early as possible because the adaptation of
context-specific knowledge may have to be performed manually. The less con-
text-specific knowledge exists the less adaptation effort will be required.

For instance, during the validation of the ontology defined in Appendix 2 it
turned out that the symbols for the types »organizational process model«
(»no«, »high-level«, »low-level«) and »level of automation« (»high«, »low«)
could not be defined unambiguously. Therefore, the symbol type »organiza-
tional process model« was changed to boolean and attributes of type »level of
automation« were removed.In this case, an automatic adaptation of already
existing instances could have been performed (in the former case, »no« would
have to be replaced with »false«, »high-level« and »low-level« with »true«; in
the latter case, the removal of an attribute would not require any recalculation
at all).

In general, measures for evaluating the adequacy of ontologies need to be
defined. Such measurement programs may result in data collection during the
retrieval of context-specific knowledge.

1 Dynamic symbol types are defined by the keyword »DYNAMIC« in the value range column of the type
table.

2 The validation was done in form of a demonstration for reusing GQM plans. This demonstration included
only parts of the ontology, but showed nevertheless some improvement potential.

72

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

5.3 Epistemological Level

On the epistemological level, knowledge is represented using REFSENO. There-
fore, this section focuses on the benefits and preliminary validation results of
REFSENO.

5.3.1 Benefits of REFSENO

The benefits of REFSENO include:

• the possibility to model software engineering knowledge explicitly in a pre-
cise, consistent, and complete manner using alternate representations.

• the possibility to conceptualize software engineering knowledge explicitly in
various application domains and contexts

• a clear terminology differentiating between conceptual and context-specific
knowledge enabling the management of knowledge from various contexts

• the possibility to validate conceptual models of software engineering knowl-
edge

• the operationalization of an experience base based on the conceptualization
of software engineering knowledge

In the following, the first two benefits will be presented in detail.

Conceptualization of Software Engineering Knowledge

Tools for creating and changing software engineering artifacts use an implicit
conceptualization of the artifacts. If more than one tool needs to access a soft-
ware engineering artifact, they need to share the conceptualization requiring
the conceptualization to be explicit. The sharing of conceptual knowledge is one
of benefits ontologies provide [UG96]. If only concepts and relationships
between them need to be modeled, modeling approaches like UML [Cor97] suf-
fice. However, if an experience base is to be developed, additional knowledge
such as knowledge on similarity computation and automatic value calculations
have to be captured. Existing approaches do not allow this.

REFSENO was developed with these special requirements in mind. Therefore, it
allows to describe explicitly all structural knowledge necessary to specify an
experience base. The explicit conceptualization (ontology) allows to:

• communicate the structure model of an experience base
• operationalize an experience base by defining operations on the knowledge

representation (so done in Chapter 4).

73

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

Precise defini-
tion

Ontologies specified using REFSENO are precise. For instance, while developing
the ontology described in Appendix , the following points of the original domain
model could be improved:

• Semantic relationships were defined using narrative text. In REFSENO, the
epistemistic primitive »kind of nonterminal concept attribute« is used for this
purpose. The epistemistic primitive prescribes what kind of knowledge is
needed to define a semantic relationship unambiguously.

• The statement »to represent the interdependencies the GQM entities, in gen-
eral, have the following attributes …« cannot be expressed in REFSENO.
Instead for all pairs of GQM entities the applicable interdependencies have to
be defined.

Complete defi-
nition

Ontologies specified using REFSENO are complete in the sense that all concep-
tual knowledge necessary to instantiate an experience base is provided. This is
done by using tabular representations for the epistemistic primitives. If an entry
in the table is empty, it is not specified – thus the ontology is defined incom-
pletely. For instance, while developing the ontology described in Appendix , the
following points of the original domain model could be improved:

• No cardinality was specified for the attributes. REFSENO requires to specify
the cardinality as part of the concept attribute specification.

• For some of the semantic relationships no kind was specified. REFSENO
requires to specify the kind as part of the nonterminal concept attribute spec-
ification.

• No similarity functions were defined. REFSENO requires to specify type simi-
larity functions for each type and concept similarity functions for each con-
cept. If similarity functions are not specified, the retrieval of similar software
engineering artifacts is not possible.

Consistent def-
inition

Ontologies specified using REFSENO are consistent in the sense that certain con-
sistency criteria have to be fulfilled. Some of these consistency rules can be
enforced automatically:

• No two concepts may have the same names.
• No two attributes of a concept may have the same names. Polymorphism is

not allowed, that is, if a concept is a specialization of another, it may not
redefine any of the inherited attributes.

• No two types may have the same name.
• No two kinds may have the same name.
• No two instances may have the same name.
• Default values have to be within the value range of the attribute’s type.
• Formulas for value inferences have to be type compatible with the attribute

values they infer.
• Value inferences and inferred attributes must match. Advanced systems will

compute the inferred attributes component automatically.

74

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

• Graphical representation of formulas must match formula. Advanced systems
will construct the graphical representation automatically.

• Graphical representation of type hierarchy must match the type definitions.
Advanced systems will construct the graphical representation automatically.

• For every nonterminal concept attribute there has to exist a corresponding
reverse nonterminal concept attribute (i.e., all semantic relationships are bidi-
rectional).

• The destination concept of a nonterminal attribute must be defined.
• Graphical representation of nonterminal concept attributes must match the

tabular representation. Advanced systems will generate a graphical represen-
tation for each kind automatically.

• The syntax of formulas has to be correct.

For instance, while developing the ontology described in Appendix , the follow-
ing points of the original domain model could be improved:

• »Question«/»GQM Question«, »Model«/»GQM Model«, and »Measure«/
»GQM Measure« were used as synonyms. This was discovered by using the
graphical representation of relationships, but it could have been discovered
automatically, too, because the destination concepts of some nonterminal
attributes did not exist.

Alternate rep-
resentations

Alternate representation allow to view a conceptualization from different view-
points. For instance, the alternate (graphical) representation of nonterminal con-
cept attributes can be used to overview the structural knowledge of an experi-
ence base. Such an overview can be used to talk about a conceptualization. This
in turn helps to find inconsistencies and modeling errors early. For instance,
while developing the ontology described in Appendix , the following points of
the original domain could be improved:

• It was not clear whether questionnaires are a specialization or a part of data
collection instruments (the different kinds of relationships were specified in
different sections), i.e., the concept »data collection instruments« was used
with different meanings. This inconsistency was discovered while using the
graphical representation of semantic relationships because between the two
concepts there was a »is-a« as well as a »has-part« relationship which did
not make sense.

• The relationship from »GQM question« to »GQM measure« was not mod-
eled because it would have duplicated knowledge and, thus, opened the way
for storing inconsistent context-specific knowledge. The »GQM measure« of
a »GQM question« can be accessed via navigation: »GQM question« to
»GQM model« to »GQM measure«. Alternatively it could have been mod-
eled using a value inference.

• For the specification of a data collection instrument, both a taxonomy and a
reference to a detailed characterization was used for the same concept. It
was decided to use the reference.

75

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

Clear Terminology

The clear distinction of conceptual and context-specific knowledge allows to
define whether knowledge has to be defined once on the conceptual level or for
each instance on the linguistic level. Knowledge to be supplied only once is
specified by REFSENO, knowledge to be supplied for every instance is specified
by an ontology. For example, while developing the ontology described in
Appendix , the following points of the original domain model could be
improved:

• The purpose of capturing a GQM entity and guidelines for reuse were origi-
nally modeled as attributes of a GQM entity. However, this is part of the
structural knowledge because purpose and guidelines for reuse are specified
using a usage scenario. REFSENO requires this structural knowledge as part
of the concept glossary.

5.3.2 Validation of REFSENO

By defining the ontology of Appendix using REFSENO based on an indepen-
dently developed domain model, REFSENO was validated for the first time.
Some of the lessons learned have already contributed to the definition of REF-
SENO as it is presented in this report:

• The existence of concepts has to be justified. Description, purpose and
intended user(s) specify for every concept »who and how the concept’s
instances will be used for what purpose«. This avoids a proliferation of con-
cepts. Only concepts which are meaningful in the context of an experience
base are defined.

• The existence of all kinds of relationships has to be justified. This avoids pro-
liferation of relationship kinds. Only those relationships that have a meaning
that can be precisely specified are introduced. Furthermore, the meaning and
properties of all relationships have to be defined. This allows special opera-
tions to be defined based on the meaning (and properties). For example, a
»has-parts« relationship can be used to generate reports automatically.

• A glossary for symbol types is required in order to avoid misunderstandings.
• Symbol sets may not contain the same symbol more than once. This restric-

tion was extended to all sets, that is, to values of attributes with a
cardinality > 1.1

1 It remains to be seen whether this restriction is not too restrictive. However, up to now no multiple sets
needed to be modeled for software engineering knowledge.

76

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

The rework of the first ontology version (for GQM planning) led to further
extensions of REFSENO:

• Addition of assertion component to the primitive »concept«.
• Addition of precondition component to the primitive »concept«.
• Addition of interval types.

It is expected that these changes of REFSENO will not be the last ones. The fol-
lowing changes are likely as more and more ontologies are defined using REF-
SENO:

• definition of more basic types
• definition of more functions for formulas
• for formulas: definition of an iterator and sequential computations using vari-

ables1

• specification of concept similarity functions: in the current version of REF-
SENO, user-defined definitions of concept similarity functions tend to be long
and complex. On the other hand, up to now the standard concept similarity
function was sufficient. It is not clear for which situations a user-defined sim-
ilarity function is needed. Therefore, more experience needs to be gained
before a redefinition of specifying concept similarity functions is possible.

• integration of views: every user has different knowledge needs depending on
the task he is working on. Consequently, the conceptual knowledge used to
guide the user at retrieval time should depend on the task to be performed.
This can be modeled using views. However, experience regarding the differ-
ence between views (in terms of epistemological primitives) still needs to be
collected. Moreover, it is unclear how beneficial a view mechanism would be,
because persons using different views could no longer communicate about
the conceptualization as a whole. Therefore, more experience on the ade-
quacy of the current version of REFSENO and required extensions (for specific
tasks) needs to be gained.

5.4 Implementation Level

As there existed no system implementing REFSENO completely at the time this
report was written, only little experience has been gained at this level. However,
it is clear that a commercial tool implementing an experience base based on
REFSENO must have mechanisms for:

1 This would allow the specification of algorithms. Consequently the term »formula« should be replaced
by »algorithm«. However, the decision on this extension should be made with care because algorithms
can be complex in terms of time. Since value inferences are initiated while a user interacts with the sys-
tem, the performance of a system implementing REFSENO may decrease dramatically.

77

Applying REFSENO: Benefits and

Lessons Learned

Copyright © Fraunhofer IESE 1998

• Access rights. »Knowledge is power«. Therefore, people and organizations
are very fond of protecting their knowledge. This can only be realized
through access rights. Who may access context-specific knowledge is deter-
mined by the:
– project/department/organization people work in (project-specific or orga-

nization-specific knowledge)
– role people play (e.g., project manager, software developer)
– knowledge source (e.g., effort data may only be changed by the person

supplying it)
• Evolution of the underlying ontology. The evolution of ontologies has

already been discussed in Section 5.2.

78

Summary and Outlook

Copyright © Fraunhofer IESE 1998

6 Summary and Outlook

In this report, the representation formalism REFSENO for software engineering
ontologies has been defined. Ontologies conceptualize structural software engi-
neering knowledge explicitly. Such explicit conceptualizations can serve as a
means for communicating about adequate structure models for experience
bases. Through clearly defined epistemistic primitives and operations on the
conceptual knowledge representation, REFSENO provides in addition a means
for operationalizing an experience base based on a conceptualization of struc-
tural software engineering knowledge.

Ontologies specified using REFSENO are defined precisely, completely (in the
sense that all conceptual knowledge necessary to operationalize an experience
base for the modeled »real world« entities is supplied), and consistently. There-
fore, REFSENO also provides the means for checking structural software engi-
neering knowledge for completeness and consistency.

The epistemistic primitives of REFSENO constitute a notation for software engi-
neering ontologies. However, REFSENO does not address on how to build ontol-
ogies (i.e., how to acquire conceptual knowledge). A coarse sequence of tasks
to be performed has been described in Section 5.2.1. But further research on
defining an »engineering process« for building and evolving ontologies is neces-
sary.

Another issue to be addressed is the validation of REFSENO. As more and more
software engineering ontologies are built, additional characteristics may be
identified that need to be modeled in order to get an adequate (i.e., easy-to-
use) operationalization of an experience base. Therefore, it is expected that REF-
SENO will evolve. Already defined epistemistic primitives are validated through
the application of REFSENO for software engineering ontologies.

Finally, ontologies themselves must be validated. This requires to conduct case
studies using ontologies specified using REFSENO. Such case studies will show
whether the ontologies are adequate. If they are, this also validates REFSENO
because then REFSENO obviously allows to specify adequate ontologies. How-
ever, at the present more research needs to be done to determine how ade-
quacy can be measured and – more importantly – how it can be determined in
what way to change the ontology (or REFSENO as its underlying representation
formalism).

79

Acknowledgments

Copyright © Fraunhofer IESE 1998

7 Acknowledgments

The authors would like to thank Klaus-Dieter Althoff and Markus Nick for many
fruitful discussions and reviewing an earlier version of this report.

80

Acknowledgments

Copyright © Fraunhofer IESE 1998

References

[Alt97] Klaus-Dieter Althoff. Evaluating case-based reasoning systems: The
Inreca case study. Postdoctoral thesis (Habilitationsschrift), Univer-
sity of Kaiserslautern, July 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley Publishing Co., Read-
ing: MA, 1986.

[BAB+87] Bruce A. Burton, Rhonda Wienk Aragon, Stephen A. Bailey,
Kenneth D. Koehler, and Lauren A. Mayes. The reusable software
library. IEEE Software, 4(7):25–33, July 1987.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi-
ence Factory. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 469–476. John Wiley & Sons, 1994.

[BR91] Victor R. Basili and H. Dieter Rombach. Support for comprehensive
reuse. IEEE Software Engineering Journal, 6(5):303–316, September
1991.

[Che76] P. P. Chen. The Entity-Relationship Model - toward a unified view of
data. ACM Transactions on Database Systems, 1(1):9–36, 1976.

[Cor97] Rational Software Corporation. Unified Modeling Language, 1997.
Version 1.1.

[DBSB91] Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge, and
Bruce W. Ballard. LaSSIE: a knowledge-based software information
system. Communications of the ACM, 34(5):34–49, May 1991.

[FG90] W. B. Frakes and P. B. Gandel. Representing reusable software.
Information and Software Technology, 32(10):653–664, December
1990.

[Gäß95] Sven Gäßner. A language for the specification of characterization
schemes and similarity measures for the purpose of reuse (in Ger-
man). Master’s thesis, Department of Computer Science, University
of Kaiserslautern, 67653 Kaiserslautern, Germany, February 1995.

[Gau95] Wilhelm Gaus. Documentation and Classification Science (in Ger-
man). Springer-Verlag, Berlin, 1995.

81

Acknowledgments

Copyright © Fraunhofer IESE 1998

[GB97] Christiane Gresse and Lionel Briand. Requirements for the Knowl-
edge-Based Support of Software Engineering Measurement Plans.
In Proceedings of the Ninth International Software Engineering and
Knowledge Engineering Conference (SEKE’97), pages 559–568,
Madrid, Spain, June 1997.

[GP98] Asunción Gómez-Pérez. Knowledge sharing and reuse. In Jay Lie-
bowitz, editor, The Handbook of Applied Expert Systems. CRC
Press, 1998.

[GRA+98] Christiane Gresse von Wangenheim, Alexandre Moraes Ramos,
Klaus-Dieter Althoff, Ricardo M. Barcia, Rosina Weber, and Alejan-
dro Martins. Case-based reasoning approach to reuse of experien-
tial knowledge in software measurement programs. In Lothar Gierl,
editor, Proceedings of the 6th German Workshop on Case-Based
Reasoning, Berlin, Germany, 1998.

[Gru93] T. R. Gruber. A translation approach to portable ontologies. Knowl-
edge Acquisition, 5(2):199–220, 1993.

[Hen97] Scott Henninger. Capturing and formalizing best practices in a soft-
ware development organization. In Proceedings of the 9th Interna-
tional Conference on Software Engineering & Knowledge
Engineering, pages 24–31, Madrid, Spain, June 1997.

[MBY97] John Mylopoulos, Ales Borgida, and Eric Yu. Representing Software
Engineering Knowledge. Automated Software Engineering,
(4):291–317, 1997.

[OB92] Markku Oivo and Victor R. Basili. Representing software engineer-
ing models: The TAME goal oriented approach. IEEE Transactions on
Software Engineering, 18(10):886–898, October 1992.

[Ost92] Eduardo Jenkins Ostertag. A Classification System for Software
Reuse. Dissertation, University of Maryland, 1992.

[PDF87] Rubén Prieto-Díaz and Peter Freeman. Classifying software for reus-
ability. IEEE Software, 4(1):6–16, January 1987.

[Rei91] Ulrich Reimer. Introduction to Knowledge Representation: Net-like
and Schema-Based Representation Formats (in German). Leitfäden
der angewandten Informatik. Teubner, Stuttgart, Germany, 1991.

[Rom96] H. Dieter Rombach. New institute for applied software engineering
research. Software Process Newsletter, pages 12–14, Fall 1996. No.
7.

82

Acknowledgments

Copyright © Fraunhofer IESE 1998

[SM83] Salton and McGill. Introduction to Modern Information Retrieval,
chapter Retrieval Evaluation, pages 157–198. McGraw Hill, 1983.

[SPDM94] Wilhelm Schäfer, Rubén Prieto-Díaz, and Masao Matsumoto. Soft-
ware Reusability. Ellis Horwood, 1994.

[Stu95] Jens Stummhöfer. A direct manipulatable user interface for main-
taining and querying an experience base (in German). Master’s the-
sis, Department of Computer Science, University of Kaiserslautern,
67653 Kaiserslautern, Germany, June 1995.

[SWT89] J. Solderitsch, K. Wallnau, and J. Thalhamer. Constructing domain-
specific ada reuse libraries. In Proceedings of the Seventh Annual
National Conference on Ada Technology, Ft. Monmouth, NJ, March
1989. U.S. Army Communications-Electronics Command.

[TA97] Carsten Tautz and Klaus-Dieter Althoff. Using case-based reasoning
for reusing software knowledge. In D. Leake and E. Plaza, editors,
Proceedings of the Second International Conference on Case-Based
Reasoning Research and Development, (ICCBR97). Springer Verlag,
1997.

[Tau93] Carsten Tautz. Design and implementation of a tool for comprehen-
sive reuse of software processes (in German). Master’s thesis,
Department of Computer Science, University of Kaiserslautern,
67653 Kaiserslautern, Germany, July 1993.

[UG96] Mike Uschold and Michael Gruninger. Ontologies: Principles, meth-
ods, and applications. The Knowledge Engineering Review,
11(2):93–136, 1996.

[vHFAH+95] G. van Heijst, S. Falasconi, A. Abu-Hanna, A. Th. Schreiber, and
M. Stefanelli. A case study in ontology library construction. Artificial
Intelligence in Medicine, 7:227–255, 1995.

[ZS95] Mansour Zand and Mansur Samadzadeh. Software reuse: Current
status and trends. Journal of Systems and Software, 30(3):167–170,
September 1995.

83

Example Ontology

Copyright © Fraunhofer IESE 1998

Appendix A: Example Ontology

A.1 Concept Glossary

Table 45: Concept
Glossary Name Description Purpose Intended

user(s)

Abstraction
Sheet

simplified version of the GQM plan
serving as an interface between
quality assurance personnel and
viewpoints.

Usage scenario:
- query for relevant abstraction sheet
in order to prepare GQM interviews

quality assur-
ance person-
nel

Artifact Event defines a data collection event wrt.
the state transition of an artifact,
e.g. competition of design docu-
ment.

Modelling: explicit representation of
artefact and its state defining the
event

quality assur-
ance person-
nel

Context
Characteriza-
tion

describes the context of a GQM
measurement program concerning
its organizational, project specific
and measurement specific environ-
ment.

Modelling: explicitly states the con-
text from which the knowledge origi-
nates

experience
engineer

Data Collec-
tion Event

defines a data collection event sub-
suming different types of events

Modelling: generalization of data col-
lection events (Artefact Event, Peri-
odic Event and Process Event)

quality assur-
ance person-
nel

Data Collec-
tion Instru-
ment

defines how the data is to be col-
lected subsuming different types of
instruments

Modeling: generalization of data col-
lection instruments (Tool, Question-
naire, Interview)

quality assur-
ance person-
nel

Data Collec-
tion Proce-
dure

determines when, how, and by
whom the data is collected

Usage scenario:
- query for relevant a data collection
procedure for a GQM measure

quality assur-
ance person-
nel

Experience describes a software engineering
experience

Modelling: generalizes all experiences
(e.g. on measurement, inspections)

quality assur-
ance person-
nel,
experience
engineer

GQM Goal specifies a goal to be achieved by
the measurement program

Usage scenario:
- query for relevant GQM goals in a
specific context
Modelling: important for the reuse of
appropriate GQM plans

quality assur-
ance person-
nel

GQM Mea-
sure

A GQM measure is an operational
definition of an attribute. The data
collected according to the mea-
sures are used by a model to
answer the question in the GQM
plan.

Usage scenario:
- support development of GQM plan
by supplying adequate measures for
a model

quality assur-
ance person-
nel

GQM Model Models are used to define how to
combine and compute the data
measured in order to answer the
questions.

Usage scenario:
- support development of GQM plan
by supplying adequate models for
questions

quality assur-
ance person-
nel

84

Example Ontology

Copyright © Fraunhofer IESE 1998

GQM Out-
come

The resulted outcome of a solution
applied to a problem occurred dur-
ing the GQM planning process.

Usage scenario:
- anticipate expected outcome in the
future reusing the solution

quality assur-
ance person-
nel

GQM Plan A GQM plan contains information
necessary to motivate and define
measures and interpret measure-
ment data. Elementary compo-
nents are GQM goal, questions,
models and measures.

Modelling: structures GQM products quality assur-
ance person-
nel

GQM Prob-
lem

describes a problem occurred dur-
ing the GQM planning process

Usage scenario:
- points out potential problems in
future measurement program plan-
ning
Modelling: important for the reuse of
appropriate GQM Problem Solution
Experiences

quality assur-
ance person-
nel

GQM Prob-
lem Cause

describes the cause of a problem
occurred during the GQM planning
process

Usage scenario:
- prevention of potential problems in
future measurement program plan-
ning

quality assur-
ance person-
nel

GQM Prob-
lem Solution
Experience

describes experiential knowledge
on the GQM planning process pri-
marily focusing on a specific prob-
lem and its applied solution.

Usage scenario:
- prevention of potential problems
- solution of existing problems in
future measurement program plan-
ning

quality assur-
ance person-
nel

GQM Prod-
uct

describes products developed by
the GQM process, e.g. GQM plan,
data collection instrument.

Modelling: generalizes all GQM prod-
ucts

quality assur-
ance person-
nel

GQM Prod-
uct Experi-
ence

documents the planning of a mea-
surement program by representing
the related GQM products

Usage scenario:
- support the planning of a GQM
measurement program
Modelling: structures all GQM (plan-
ning) products related to a measure-
ment program

quality assur-
ance person-
nel

GQM Ques-
tion

A set of questions operationally
define the measurement goal,
expressing the respective need for
information in natural language.

Usage scenario:
- support development of GQM plan
by supplying adequate questions
refining the goal

quality assur-
ance person-
nel

GQM Solu-
tion

describes the solution applied to a
problem occurred during the GQM
planning process.

Usage scenario:
- solution of existing problems in
future measurement program plan-
ning

quality assur-
ance person-
nel

Item describes a refinement of the qual-
ity focus on the Abstraction Sheet
in natural language

Modelling: generalizes the items of
the Abstraction Sheet (quality item,
variation item)

quality assur-
ance person-
nel

Measure-
ment Charac-
terization

characterizes the environment
where the measurement program
takes place, focusing especially on
characteristics, constraints, etc.
regarding measurement.

Modelling: explicitly states the meas-
urement context from which the
knowledge originates

experience
engineer

Name Description Purpose Intended
user(s)

85

Example Ontology

Copyright © Fraunhofer IESE 1998

Measure-
ment Experi-
ence

describes experiences on measure-
ment

Modelling: generalizes experiences
on measurement (GQM Product
Experience, GQM Problem Solution
Experience)

quality assur-
ance person-
nel

Measure-
ment Plan

contains data collection procedures
and data collection instruments of
a measurement program

Modelling: structures GQM products quality assur-
ance person-
nel

Organization
Characteriza-
tion

describes the organizational con-
text. (The term organization is here
used for any type of commercial,
industrial or public institution cov-
ering various levels, e.g., company,
division, or department level)

Modelling: explicitly states the organ-
izational context from which the
knowledge originates

experience
engineer

Periodic
Event

defines a periodic data collection
event, e.g. weekly.

Modelling: explicit representation of
period defining the event

quality assur-
ance person-
nel

Process Event defines a data collection event wrt.
a process, e.g. end of requirement
analysis.

Modelling: explicit representation of
process defining the event

quality assur-
ance person-
nel

Project
Characteriza-
tion

characterizes a specific software
project

Modelling: explicitly states the organ-
izational context from which the
knowledge originates

experience
engineer

Quality Item describes a quality factor stated on
the Abstraction sheet refining the
quality focus of the GQM goal

Modelling: structures the quality fac-
tors of the quality focus on the
Abstraction sheet

quality assur-
ance person-
nel

Question-
naire

set of questions to be used for the
collection of data

Modelling: structures Questionnaire
Questions on the Questionnaire

quality assur-
ance person-
nel

Question-
naire Ques-
tion

a question on a particular question-
naire for the collection of data

Usage scenario:
- facilitates the design of question-
naires given a measure and measure-
ment procedure

quality assur-
ance person-
nel

Software
Object

describes any object of software
process, product or resource by its
attributes

Modelling: explicit representation of
software objects, e.g. data sources

quality assur-
ance person-
nel

TCardinal A cardinal is an integer greater or
equal to zero.

Modelling: representation of cardinal
types

experience
engineer

TGlossaryEn-
tryOrdered

Symbol and Description for TOr-
deredSymbol

Modelling: glossary entry for ordered
symbols

experience
engineer

TGlossaryEn-
tryTax

Symbol and Description for TTax-
onomyRoot

Modelling: glossary entry for a taxon-
omy

experience
engineer

TGlossaryEn-
tryUnordered

Symbol and Description for TUnor-
deredSymbol

Modelling: glossary entry for unor-
dered symbols

experience
engineer

TInteger An TInteger is a number out of the
set of natural numbers.

Modelling: representation of integer
types

experience
engineer

TIntegerInter-
val

TIntegerInterval describes an inter-
val. The lower bound is out of a left
interval and the higher bound is
out of a right interval.

Modelling: representation of integer
interval types

experience
engineer

Name Description Purpose Intended
user(s)

86

Example Ontology

Copyright © Fraunhofer IESE 1998

Tool describes tools used during the
software process, e.g., CASE tools,
compilers, debuggers, editors or
measurement process, e.g. data
collection tools.

Modelling: explicit representation of
tools

quality assur-
ance person-
nel

TOr-
deredSymbol

Ordered symbol is the type for a set
of symbols with a total order.

Modelling: explicit representation of
cardinal values

experience
engineer

TReal A real-number is an element out of
the set of the real numbers.

Modelling: representation of real
types

experience
engineer

TRealInterval-
Value

The value of an instance of TRe-
alInterval

Modelling: representation of real
interval types

TTaxonomy The supertype for TTaxonomyN-
ode and TTaxonomyRoot

Modelling: representation of taxon-
omy types

experience
engineer

TTaxonomy-
Node

A node of a Taxonomy. Modelling: explicit representation of
taxonomy nodes

experience
engineer

TTaxonomy-
Root

Taxonomy is a collection of hierar-
chical ordered Symbols. TTaxono-
myRoot is the root of the
hierarchical tree

Modelling: explicit representation of
the root node of a taxonomy

experience
engineer

TText A not limited string Modelling: representation of String
type

experience
engineer

TType The supertype of all the types Modelling: represents an arbitraty
type

experience
engineer

Variation
Item

defines a variation factor with
potential impact on the quality fac-
tors wrt. the GQM goal

Modelling: structures the variation
factors on the Abstraction sheet

quality assur-
ance person-
nel

Name Description Purpose Intended
user(s)

87

Example Ontology

Copyright © Fraunhofer IESE 1998

A.2 Terminal And Nonterminal Concept Attributes

Table 46: Terminal,
Nonterminal Con-
cept Attributes

Concept: Abstraction Sheet
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif quality item refinement of the qual-
ity focus of the GQM
goal

1..* has-parts
[Quality
Item].[abs
traction
sheet]

- yes - - 1

variation
item

set of relevant variation
factors with expected
impact on quality items

0..* has-parts
[Varia-
tion
Item].abs
traction
sheet]

- no - - 1

baseline
hypothesis

states the expected val-
ues of quality item(s)

0..* Text - no - - 0

impact on
baseline
hypothesis

states the expected
impact of variation item
on baseline hypothesis
of quality item

0..* Text - no - - 0

I/F gqm goal GQM goal to which the
knowledge documented
in the Abstraction Sheet
refers

1 Text - yes - 0

ctxt gqm plan references the respec-
tive GQM Plan

1 part-of
[GQM
Plan].[abs
traction
sheet]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Artefact Event
Super concept: Data Collection Event

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif artefact
state

describes if the state 1 State - yes - - 1

Comments any additional informa-
tion or comment

0..1 Text - no - - 0

88

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F artifact describes the artifact
which state transition
triggers data collection

1 SWPro-
ductTax-
onomy

- yes - - 1

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Context Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif organiza-
tion con-
text

characterizes the organ-
ization in which the
measurement program
takes place

1 has-parts
[Organi-
zation
Charac-
teriza-
tion]

- - -

project
context

characterizes the spe-
cific software project in
which the measurement
program takes place

1 has-parts
[Project
Charac-
teriza-
tion]

- - -

measure-
ment con-
text

characterizes the spe-
cific characteristics, con-
straints etc. concerning
the measurement pro-
gram

1 has-parts
[Meas-
urement
Charac-
teriza-
tion]

- - -

Comments any additional informa-
tion or comment

0..1 Text - - -

I/F

Concept: Artefact Event
Super concept: Data Collection Event

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

89

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt measure-
ment expe-
rience

references the respec-
tive Measurement Expe-
rience

0..1 part-of
[Meas-
urement
Experi-
ence].[co
ntext]

- - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
goals],
[Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
ques-
tions],
[Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
meas-
ures]

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Data Collection Event
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif data collec-
tion proce-
dure

references the respec-
tive Data Collection Pro-
cedure

1 part-of
[Data
Collec-
tion Pro-
cedure].[
event]

- yes - - 1

Comments any additional informa-
tion or comment

0..1 Text - no - - 0

I/F

Concept: Context Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

90

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Data Collection Instrument
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif data collec-
tion proce-
dure

references the respec-
tive Data Collection Pro-
cedure

0..1 defined-
by [Data
Collec-
tion Pro-
cedure].[i
nstru-
ment]

- no - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

I/F measure-
ment plan

references the respec-
tive measurement plan

0..1 part-of
[Meas-
urement
Plan].[dat
a collec-
tion
instru-
ments]

- no - - 1

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Data Collection Event
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

91

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Data Collection Procedure
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif resource states whether the data
is derived by question-
ing or interviewing a
person or by invoking a
tool

1 Resource - yes - - 1

collector states role or position of
people in the organiza-
tion by whom the data
is collected

0..1 Role - no - - 1

validator specifies who validates
the collected data

1 Role - yes - - 1

active states whether data is
currently collected or
not

1 Boolean - yes - - 1

data stor-
age

defines where the data
is stored

0..* Data
Store

- no - - 1

I/F event specifies when the data
will be collected

1 has-parts
[Data
Collec-
tion
Event].[D
ata Col-
lection
Proce-
dure]

- yes - - 1

data source specifies the object and
its respective attribute
to be measured

1 refers-to
[Soft-
ware
Object]

- yes - - 1

depend-
ency

states on which other
measure(s) the collec-
tion of this measure
depends

0..* (depends
-on [Data
Collec-
tion Pro-
cedure]

- no - - 1

instrument references the data col-
lection instrument
which is used to collect
the corresponding data

1 (defines
[Data
Collec-
tion
Instru-
ment].[D
ata Col-
lection
Proce-
dure)

- yes - - 1

92

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt measure references the respec-
tive GQM Measure of
the GQM Plan

1..* defined-
by [GQM
Meas-
ure].[data
collec-
tion pro-
cedure]

- yes - - 1

measure-
ment plan

references the respec-
tive Measurement Plan

1 part-of
[Meas-
urement
Plan].[dat
a collec-
tion pro-
cedure]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Experience
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif viewpoint states the role from
whom the experience
captured was acquired

0..* Role – no - - 1

representa-
tion form

states in which form the
experience is captured

0..1 Repre-
senta-
tionForm

– no - - 1

owner specifies who is respon-
sible for maintaining the
experience

0..1 Text – no - - 0

status specifies the current sta-
tus of the experience

1 Status “non-
exist-
ent”

yes - - 1

version specifies the version of
the experience

0..1 Version – no - - 1

last change specifies when the
experience was modi-
fied last

1 Date – yes - - 1

readers specifies who is allowed
to have read access (the
owner has per default
read and write access)

0..* Text – no - - 0

Concept: Data Collection Procedure
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

93

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F precondi-
tions for
reuse

describing necessary
preconditions for the
reuse of the entity

0..* Text - no - - 0

ctxt acquisition
technique

specifies how the entity
was derived

0..* Acquisi-
tionTech-
nique

– no - - 1

expected
adaptations

describing adaptations
done in the past when
reusing the entity and
the relevant factors
which caused the adap-
tations

0..* Text - no - - 0

expected
cost of
reuse

describing the expected
cost of reusing the
entity as a basis to
decide whether the
entity should be reused
or rather be developed
from scratch.

0..* Text - no - - 0

dates of
reuse

in order to provide an
overview on when and
how often this entity
was reused, facilitating
also the removal of enti-
ties of the knowledge
base, which are never
used

0..* Date - no - - 1

guidelines
of reuse

on how to reuse the
entity

0..* Text - no - - 0

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Experience
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

94

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Goal
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif object of
study

defines the object to be
analyzed

1 SwOb-
jectTax-
onomy

- yes - - 1

purpose states why the object
will be analyzed

1 Purpose - yes - - 1

quality
focus

specifies which prop-
erty of the object will be
analyzed

1 SWQuali-
tyTaxon-
omy

- yes - - 1

viewpoint expresses who will use
the data collected and
analysis results

1..* Role - yes - - 1

I/F quality item enumerates questions
defined by this goal

1..* defines
[Quality
Item]

- yes - - 1

ctxt context identifies the context in
which the analysis takes
place

1 Text - yes - - 0

gqm plan references respective
GQM Plan

1 part-of
[GQM
Plan].[gq
m goal]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Measure
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif definition defines what data has
to be collected

1 Text - yes - - 0

scale defines the scale of the
measure

1 Scale - yes - - 1

unit declares the unit of the
measure

0..1 Unit - no - - 1

range declares the range of
the values of the meas-
ures

0..1 has-
parts[TTy
pe].[GQ
MMeas-
ure-
Range]

- no - - 1

95

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F assumption states assumptions
about the environment
for the applicability of
the measure

0..* Text - no - - 0

model references the corre-
sponding model

1..* defined-
by [GQM
Model].[g
qm
measure]

- yes - - 1

data collec-
tions proce-
dure

references the corre-
sponding data collec-
tion procedure

1 defines
[Data
Collec-
tion Pro-
cedure].[
measure]

- yes - - 1

question-
naire ques-
tion

references the corre-
sponding question on
the questionnaire, if col-
lected by a question-
naire

0..1 defines
[Ques-
tionnaire
Ques-
tion].[me
asure]

- no - - 1

ctxt gqm plan references the respec-
tive GQM Plan

1..* part-of
[GQM
Plan].[gq
m meas-
ure]

- yes - - 1

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Model
Super concept: GQM Plan

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif type specifies if the model
focuses on resources or
qualities

1 Model-
Type

- yes - - 1

category specifies the category of
the model

1 Model-
Category

- yes - - 1

definition defines the abstract
concepts the model
expresses

1 Text - yes - - 0

Concept: GQM Measure
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

96

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F assumption states assumptions
about the environment
for the application of
the model

0..* Text - no - - 0

data source defines the attributes to
be measured as “input”
of the model

1..* refers-to
[Soft-
ware
Object]

- yes - - 1

gqm meas-
ure

defines the model oper-
ationally denoting data
that can be directly col-
lected

1..* defines
[GQM
Meas-
ure].[mod
el]

- yes - - 1

question references the corre-
sponding question

1..* defined-
by [GQM
Ques-
tion].[mo
del]

- yes - - 1

ctxt gqm plan references the respec-
tive GQM Plan

1..* part-of
[GQM
Plan].[gq
m model]

- yes - - 1

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Outcome
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif assessment states explicitly if the
problem was successfully
solved by the solution or
failed

1 Assess-
ment

- yes - - 1

failure
explanation

If the applied solution
failed to solve the prob-
lem, an explanation is
given on why the goal of
the respective task was
still not achieved

1..* Text - yes - - 0

Concept: GQM Model
Super concept: GQM Plan

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

97

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F results describes the results of
the solution applied by
the state of the object
stated in the problem
description after the
application of the solu-
tion

1..* refers-to
[Soft-
ware
Object]

- yes - - 1

next gqm-
pse

If the applied solution
failed to solve the prob-
lem, the next attempt to
solve the problem,
stored as a new case in
the experience base, is
referenced, e.g.
case_43.

0..1 next
[GQM
Problem
Solution
Experi-
ence]

- no - - 1

ctxt gqm prob-
lem solu-
tion
experience

references the respec-
tive GQM Problem Solu-
tion Experience

1 part-of
[GQM
Problem
Solution
Experi-
ence].[ou
tcome]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Outcome
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

98

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Plan
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif gqm goal goals to be achieved by
the measurement pro-
gram

1 has-parts
[GQM
Goal].[gq
m plan]

- yes - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
goals]

1

abstraction
sheet

summarizes the GQM
plan in a simplified form

1..* has-parts
[Abstrac-
tion
Sheet].[g
qm plan]

- yes - - 1

gqm ques-
tion

expresses the informa-
tion need wrt. the GQM
goal

1..* has-parts
[GQM
Ques-
tion].[gq
m plan]

- yes - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
ques-
tions]

1

gqm model operationalizes the
GQM Question

1..* has-parts
[GQM
Model].[g
qm plan]

- yes - - 1

gqm meas-
ure

specifies data to be col-
lected

1..* has-parts
[GQM
Meas-
ure].[gqm
plan]

- yes - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
meas-
ures]

1

I/F

ctxt gqm prod-
uct experi-
ence

references the respec-
tive GQM Product Expe-
rience

1 part-of
[GQM
Product
Experi-
ence].[gq
m plan]

- yes - - 1

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

99

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Problem
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif problem
object state

the object affected by
the problem and its state
causing the problem are
explicitly stated

1 refers-to
[Soft-
ware
Object]

- yes - - 1

object type the type of the objects
affected by the problem
is stated explicitly

1 SWOb-
jectType

- yes - - 1

problem
task

the task in which the
problem occurred is
stated

1 GQM-
Proc-
essTaxon
omy

- yes - - 1

problem
role

roles of the software
organization involved in
the problem are listed,
e.g., developer.

0..* Role - no - - 1

goal unat-
tained

the goal of the respec-
tive gqm task which has
not been attained
because of the problem
is stated

0..1 Text - no - - 0

I/F gqm prob-
lem solu-
tion
experience

references the respec-
tive GQM Problem Solu-
tion Experience

1 part-of
[GQM
Problem
Solution
Experi-
ence].[pr
oblem]

- yes - - 1

ctxt comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

100

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Problem Cause
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif explanation for each cause is pro-
vided in order to explain
the relation between the
problem and the stated
cause

0..1 Text - no - - 0

cause task the task causing the
actual problem, which
can be different from
the task of problem
occurrence, is identified

0..1 GQM-
Proc-
essTaxon
omy

- no - - 1

cause role roles of the organization
involved in causing the
problem are stated

0..* Role - no - - 1

constraint constraints wrt. the soft-
ware project which influ-
enced the problem

0..* Text - no - - 0

I/F cause
object state

describes the cause of
the problem by the
respective object and its
state

1 refers-to
[Soft-
ware
Object]

- yes - - 1

ctxt gqm prob-
lem solu-
tion
experience

references the respec-
tive GQM Problem Solu-
tion Experience

1 part-of
[GQM
Problem
Solution
Experi-
ence].[ca
use]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

101

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Problem Solution Experience
Super concept: Measurement Experience

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif problem describes the problem
occurred during the
planning of a GQM-
based measurement
program

1 has-parts
[GQM
Prob-
lem].[gq
m prob-
lem solu-
tion
experi-
ence]

- yes - - 1

solution describes the solution
strategy adopted

1 has-parts
[GQM
Solu-
tion].[gq
m prob-
lem solu-
tion
experi-
ence]

- yes - - 1

outcome describes the outcome
resulting of the solution
applied

1 has-parts
[GQM
Out-
come].[g
qm prob-
lem solu-
tion
experi-
ence]

- yes - - 1

I/F

ctxt cause describes the cause(s) of
the problem, if known

0..* has-parts
[GQM
Problem
Cause].[g
qm prob-
lem solu-
tion
experi-
ence]

- no - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

102

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Product
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif

I/F

ctxt Comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

103

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Product Experience
Super concept: Measurement Experience

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif gqm plan describes the GQM
goal, the corresponding
abstraction sheet and
the refinement of the
GQM goal into ques-
tions, models, and
measures

1..* has-parts
[GQM
Plan].[gq
m prod-
uct expe-
rience]

- yes - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
goals],
[Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
ques-
tions],
[Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
meas-
ures]

1

measure-
ment plan

describes who measures
what, when and how
concerning the GQM
measures defined in the
GQM plan(s) and
includes data collection
instruments

1 has-parts
[Meas-
urement
Plan].[gq
m prod-
uct expe-
rience]

- yes - [GQM
Plan]:[g
qm
meas-
ure]

1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

104

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: GQM Question
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif question represents informational
needs wrt. the measure-
ment goal in natural
language

1 Text - yes - - 0

hypothesis specifies the expected
values wrt. quality
dimensions or variation
factors focused in the
question

0..* Text - no - - 0

question
category

categorization of ques-
tions by their concerns

1 Question-
Category

- yes - - 1

I/F model operationalizes this
question

1 defines
[GQM
model].[q
uestion]

- yes - - 1

item states the respective
item (quality item or
variation item) of the
abstraction sheet

1 defined-
by [Item]

- yes - - 1

ctxt gqm plan references the respec-
tive GQM Plan

1..* part of
[GQM
Plan].[gq
m ques-
tion]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Solution
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif changed
object state

describes the solution by
stating the modified,
added or deleted
object(s) and its state

1..* refers-to
[Soft-
ware
Object]

- yes - - 1

justification for the solution, focus-
ing on the interdepen-
dencies between the
cause, its explanation
and the applied solution

1 Text - yes - - 0

I/F

105

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt gqm prob-
lem solu-
tion
experience

references the respec-
tive GQM Problem Solu-
tion Experience

1 part-of
[GQM
Problem
Solution
Experi-
ence].[sol
ution]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Item
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif

I/F

ctxt comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: GQM Solution
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

106

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif measure-
ment inte-
grated

measurement pro-
grams regularly estab-
lished accompanying
software development
and maintenance

0..1 Boolean - no - - 1

experi-
ences with
measure-
ment

specifies if no experi-
ences are available or
either positive or nega-
tive experiences have
been made with meas-
urement in the past

0..1 Measure-
ment-
Knowled
ge

- no - - 1

core meas-
ures

specifies if a set of core
measures is collected in
each project if measure-
ment programs are per-
formed regularly

0..1 Boolean - no - - 1

attitude of management and
project personnel con-
cerning software qual-
ity improvement in
general

0..1 Attitude - no - - 1

effort on the planning and
execution of the meas-
urement program in
person-months

0..1 EffortPM - no - - 1

duration of the measurement
program in calendar
months

0..1 Dura-
tionM

- no - - 1

duration of
data collec-
tion

period in calendar
months

0..1 Dura-
tionM

- no - - 1

frequency
of feedback
sessions

during the execution
phase per calendar
month

0..1 FreqM - no - - 1

training describes training(s) of
the participants regard-
ing the GQM approach
and its application
which took place during
the planning phase

0..1 Text - no - - 1

number of
goals

size of the measure-
ment program in terms
of number of GQM
goals

0..1 Cardinal - no card(union(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan].[gqm
goal]))

- 1

107

Example Ontology

Copyright © Fraunhofer IESE 1998

number of
questions

size of the measure-
ment program in terms
of number of questions
in the GQM plans

0..1 Cardinal - no card(union(un
ion(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan]).[gqm
question]))

- 1

number of
measures

size of the measure-
ment program in terms
of number of measures
in the GQM plans

0..1 Cardinal - card(union(un
ion(fil-
ter([GQM
Product Expe-
rience], [con-
text].[measur
ement experi-
ence]).[gqm
plan]).[gqm
measure]))

I/F constraints on the measurement
program, e.g., fixed
amount of effort
assigned to the meas-
urement program

0..* Text - no - - 0

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

108

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt context references the respec-
tive context characteri-
zation

0..1 part-of
[Context
Charac-
teriza-
tion].[me
asure-
ment
context]

- no - [Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
goals],
[Meas-
ure-
ment
Char-
acteri-
zation]:
[numbe
r of
ques-
tions],
[Meaus
rement
Char-
acteri-
zation]:
[numbe
r of
meas-
ures]

1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Measurement Experience
Super concept: Experience

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif

I/F

Concept: Measurement Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

109

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt context describes the environ-
ment in which the
measurement program
takes place (including
organizational, project
and measurement spe-
cific characteristics)

1 has-parts
[Context
Charac-
teriza-
tion].[me
asure-
ment
experi-
ence]

- yes - - 1

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Measurement Plan
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif

I/F data collec-
tion proce-
dure

determines when, how,
and by whom data is to
be collected

1..* has-parts
[Data
Collec-
tion Pro-
cedure].[
measure-
ment
plan]

- yes - - 1

data collec-
tion instru-
ments

defines the instrument
used for the data collec-
tion

1..* has-parts
[Data
Collec-
tion
Instru-
ment].[m
easure-
ment
plan]

- yes - - 1

ctxt gqm prod-
uct experi-
ence

references the respec-
tive GQM Product Expe-
rience

1 part-of
[GQM
Product
Experi-
ence].[me
asure-
ment
plan]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

Concept: Measurement Experience
Super concept: Experience

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

110

Example Ontology

Copyright © Fraunhofer IESE 1998

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Measurement Tool
Super concept: Data Collection Instrument

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif name states the name of the
tool

1 Text - yes - - 0

functional-
ity

describes the function-
ality offered by the tool

0..1 Text - no - - 0

call com-
mand

describes how to invoke
the tool

0..1 Text - no - - 0

documen-
tation

describes where to find
documentation and fur-
ther information on the
tool

0..1 Text - no - - 0

I/F precondi-
tions for
use

describes environment
in which tool may be
used, e.g., platform or
operating system

0..1 Text - no - - 0

ctxt comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Measurement Plan
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

111

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Organization Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif organiza-
tion name

states the name of the
organization

0..1 Text - no - - 1

size of soft-
ware devel-
opment

number of employees 0..1 Cardinal - no - - 1

business
sectors

set of business sectors
the organization oper-
ates in

0..* Business-
Sector

- no - - 1

certifica-
tions

regarding the software
process held by the
organization

0..* Certifica-
tion

{} no - - 1

quality
assurance
group

availability of an inde-
pendent quality assur-
ance group at the
organization

0..1 Boolean “false” no - - 1

activities
docu-
mented

describes if a standard
software process exists
in terms of activities to
be performed

0..1 Boolean “false” no - - 1

entry/exit
criteria doc-
umented

describes if a standard
software process exists
in terms of entry and
exist criteria for each
activity

0..1 Boolean “false” no - - 1

input/out-
put docu-
mented

describes if a standard
software process exists
in terms of inputs and
outputs for each activity

0..1 Boolean ”false” no - - 1

life-cycle
models
used

set of life-cycle models
used for the develop-
ment and maintenance
by the organization

0..* Lifecy-
cleModel

- no - - 1

tools used during develop-
ment and maintenance,
e.g., CASE tools, com-
pilers, debuggers, edi-
tors

0..* Text - no - - 0

program-
ming lan-
guages

used for software devel-
opment

0..* ProgLang - no - - 1

types of
software

produced through the
organization

0..* SwType - no - - 1

average
number of
installations

of the software prod-
ucts

0..1 Cardinal
Interval

- no - - 1

memory
constraints

typically formulated wrt.
the system developed,
e.g., regarding the
required size of working
memory

0..1 Con-
straint

-

112

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F

ctxt strategic
goals

of the organization,
reflecting the long-term
organizational goals,
e.g., “obtain a market
share of 60%”

0..* Text - no - - 0

business
goals

of the organization,
focusing on the short-
term organizational
goals, e.g., “reduce pro-
duction cost of product
xyz by 10%”

0..* Text - no - - 0

improve-
ment goals

of the software organi-
zation, e.g., “reduce
cycle time and/or
costs”, “improve the
quality of the software
systems”, “increase
user satisfaction”

0..* Text - no - - 0

context references the respec-
tive context characteri-
zation

0..* part-of
[Context
Charac-
teriza-
tion].[org
anization
context]

- no - - 0

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Periodic Event
Super concept: Data Collection Event

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif period 1 Collec-
tionPe-
riod

- yes - - 1

I/F

ctxt Comments any additional informa-
tion or comment

0..1 Text - no - - 0

Concept: Organization Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

113

Example Ontology

Copyright © Fraunhofer IESE 1998

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Process Event
Super concept: Data Collection Event

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif timing describes if the data is
collected at the begin or
end of the respective
phase/activity

1 Collec-
tionTim-
ing

- yes - - 1

I/F process describes the phase or
activity when data is
collected

1 SWProc-
essTaxon-
omy

- yes - - 1

ctxt Comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Periodic Event
Super concept: Data Collection Event

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

114

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Project Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif project
name

states name of project 0..1 Text - no - - 0

project
start

date of the start of the
project

0..1 Date - no - - 1

project end date of the end of the
project

0..1 Date - no - - 1

duration of the project in calen-
dar months

0..1 Dura-
tionM

- no - - 1

team size number of project team
members allocated to
the project

0..1 Cardinal
Interval

- no - - 1

effort of the project in person
months

0..1 EffortPM - no - - 1

project-spe-
cific goals

e.g., to complete the
development in time

0..* Text - no - - 0

application
of stand-
ard soft-
ware
process

states the degree to
which the standard
process model was
applied in the specific
project

0..1 Reuse-
Type

- no - - 1

life-cycle
model used

life-cycle model used in
the project

0..1 Lifecy-
cleModel

- no - - 1

tools used during develop-
ment and maintenance,
e.g., CASE tools, com-
pilers, debuggers, edi-
tors

0..* Text - no - - 0

program-
ming lan-
guages

used in the project 0..* ProgLang - no - - 1

estimated
product
size

in KLOC 0..1 Cardinal - no - - 1

type of
software

produced in the project 0..1 SwType - no - - 1

number of
installations

of the software prod-
ucts

0..1 Cardinal - no - - 1

memory
constraints

typically formulated wrt.
the system developed,
e.g., regarding the
required size of working
memory

0..1 Con-
straint

- no - - 1

perform-
ance con-
straints

typically formulated wrt.
the system developed,
e.g., regarding the
response time to user
requests

0..1 Con-
straint

- no - - 1

portability of the system to differ-
ent hardware and/or
software environments

0..1 Impor-
tance

-

115

Example Ontology

Copyright © Fraunhofer IESE 1998

artif portability of the system to differ-
ent hardware and/or
software environments

0..1 Impor-
tance

- no - - 1

I/F

ctxt project goal project-specific goal,
e.g., “terminate project
within budget and
time”

0..* Text - no - - 0

context references the respec-
tive Context Characteri-
zation

0..* part-of
[Context
Charac-
teriza-
tion].[proj
ect con-
text]

- no - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Quality Item
Super concept: Item

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif quality fac-
tor

informal information on
the quality focus of the
GQM goal

1 Text - yes - - 0

hypothesis specifies the expected
value(s) of the quality
factor

0..* Text - no - - 0

I/F gqm ques-
tion

1..* defines
[GQM
Question]

- yes - - 1

Concept: Project Characterization
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

116

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt variation
factors

captures the factors of
the context which are
expected to influence
the baseline hypothesis

0..* defines
[Varia-
tion
Item].[qu
ality fac-
tors]

- no - - 1

abstraction
sheet

references the corre-
sponding abstraction
sheet

1 part-of
[Abstrac-
tion
sheet].[q
uality
item]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Questionnaire
Super concept: Data Collection Instrument

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif collector states role or position of
people in the organiza-
tion by whom the corre-
sponding data is
collected

1..* Role - yes - - 1

administra-
tive para-
graph

includes information for
the administration of
the collected data, e.g.,
project identifier

1 Text - yes - - 0

question references the questions
on the questionnaire

1..* has-parts
[Ques-
tionnaire
Ques-
tion].[que
stion-
naire]

- yes - - 1

I/F event specifies when the data
will be collected

1..* Data Col-
lection
Event

- yes - - 1

ctxt comments any additional informa-
tion or comment

0..1 Text - no - - 0

Concept: Quality Item
Super concept: Item

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

117

Example Ontology

Copyright © Fraunhofer IESE 1998

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Questionnaire Question
Super concept: GQM Product

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif question textual form of question 1 Text - yes - - 0

question
explanation

explains the question,
e.g. terms used.

0..1 Text - no - - 0

answer unit defines the unit of the
answer

0..1 Text - no - - 0

answer
range

declares the range of
the answer

0..1 Text - no - - 0

answer
explanation

explanation on the
range of the answer

0..1 Text - no - - 0

measure references the corre-
sponding measure

1 defined-
by [GQM
Meas-
ure].[que
stion-
naire
question]

- yes - - 1

I/F

ctxt question-
naire

references the corre-
sponding questionnaire

1..* part-of
[Ques-
tion-
naire].[qu
estion]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: Questionnaire
Super concept: Data Collection Instrument

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

118

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Software Object
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif object states the software
object

1 SwOb-
jectTax-
onomy

- yes - - 1

 attribute measurable data item
from the software entity

0..1 SwAttrib-
ute

- no - - 1

state value of attribute 0..1 has-
parts[TTy
pe].[Soft-
wareOb-
jectState]

- no - - 1

I/F

ctxt Comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TCardinal
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Lower
Bound

Lower Bound of the
interval

1 Cardinal 0 yes - - 1

Upper
Bound

The upper bound. 1 Cardinal 536870
912

yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: [LowerBound]≤[UpperBound]

119

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: TGlossaryEntryOrdered
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Symbol The name of the symbol 1 String - yes - - 1

Description Description of the sym-
bol

1 String - yes - - 1

VRange Reverse link to the
attribute in unordered
Symbol

1 decompo-
sition-
of[TOr-
deredSym-
bol].[VRan
ge]

- yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TGlossaryEntryTax
Super concept: CONCEPT

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Symbol The name of the symbol 1 String - yes - - 1

Description Description of the sym-
bol

1 String - yes - - 1

VRange A symbol of the range
of the taxonomy

0..1 range-
of[TTaxon-
omy-
Root].[VRa
nge]

- no - - 1

TaxNode Reverse link 1 decompos-
tion-
of[TTaxon-
omyN-
ode].[Symb
ol]

- no - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

120

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: TGlossaryEntryUnordered
Super concept: CONCEPT

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Symbol The name of the symbol 1 String - yes - - 1

Description Description of the sym-
bol

1 String - yes - - 1

VRange Reverse link to the
attribute in unordered
Symbol

1 decompo-
sition-
of[TUnor-
deredSym-
bol].[VRan
ge]

- yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TInteger
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Lower
Bound

Lower Bound of the
interval

1 integer -
536870
912

yes - - 1

Upper
Bound

Upper Bound of the
interval

1 integer 536870
912

yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: [LowerBound]≤[UpperBound]

121

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: TIntegerInterval
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif LeftLower
Bound

Lower Bound of the left
interval

1 integer -
536870
912

yes - - 1

LeftUpper
Bound

Upper Bound of the left
interval

1 integer 536870
912

yes - - 1

Right-
Lower
Bound

Lower Bound of the
right interval

1 integer -
536870
912

yes - - 1

RightUp-
per Bound

Upper Bound of the left
interval

1 integer 536870
912

yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: [LeftLowerBound]≤[LeftUpperBound] AND [RightLowerBound]≤[RightUpperBound] AND [LeftLower-
Bound]≤[RightLowerBound] AND [LeftUpperBound]≤[RightUpperBound]

Concept: TOrderedSymbol
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif VRange Defines the range of a
Symbol

1..* has-
decompo-
sition[Glos-
saryEntryO
rdered].[VR
ange]

- yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

122

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: TReal
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Lower
Bound

Lower Bound of the
interval

1 real -1.0e30 yes - - 1

Upper
Bound

Upper Bound of the
interval

1 real 1.0e30 yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: [LowerBound]≤[UpperBound]

Concept: TRealnterval
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif LeftLower
Bound

Lower Bound of the left
interval

1 real yes - - 1

LeftUpper
Bound

Upper Bound of the left
interval

1 real yes - - 1

Right-
Lower
Bound

Lower Bound of the
right interval

1 real yes - - 1

RightUp-
per Bound

Upper Bound of the left
interval

1 real yes - - 1

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: [LeftLowerBound]≤[LeftUpperBound] AND [RightLowerBound]≤[RightUpperBound] AND [LeftLower-
Bound]≤[RightLowerBound] AND [LeftUpperBound]≤[RightUpperBound]

Concept: TTaxonomy
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif

123

Example Ontology

Copyright © Fraunhofer IESE 1998

I/F LowerLevel The next deeper level in
the hierarchy

0..* has-
decompo-
sition[TTax-
onomyNod
e].[Upper-
Level]

- no - - 1

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TTaxonomyNode
Super concept: TTaxonomy

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Symbol Symbol stored in this
node

1 has-
decompo-
sition[TGlo
ssaryEn-
tryTax].[Tax
Node]

- yes - [TTax-
onomy-
Root]:[
VRange
]

1

I/F UpperLevel The next higher level 1 decompo-
sition-
of[TTaxon-
omy].[Low-
erLevel]

- yes - - 0

RootLevel Link to the root of the
taxonomy

1 to-
root[TTax-
onomy-
Root].[All]

- yes - - 0

ctxt

simartif, simI/F, simctxt: standard

precond:pos(1, [RootLevel].[VRange].[Symbol], [Symbol].[Symbol]])=0
assertion: TRUE

Concept: TTaxonomy
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

124

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: TTaxonomyRoot
Super concept: TTaxonomy

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif VRange The Range of the whole
taxonomy

1..* has-
range[Glos
saryEn-
tryTax].[VR
ange]

yes [All].[Symbol] - 1

I/F All The link from root to all
the nodes of the taxon-
omy. Needed because
the precondition.

0..* from-
root[TTax-
onomyN-
ode].[Root
Level]

- no - - 1

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TText
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif

I/F

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TUnorderedSymbol
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

artif Number The number of the pos-
sible choosen Symbols
(Symbol Set).

1 Cardinal 1 yes - - 1

VRange Shows the range of the
value of a Symbol

1..* decompo-
sition[Glos-
saryEntryU
nor-
dered].[VR
ange]

- yes - - 1

I/F

125

Example Ontology

Copyright © Fraunhofer IESE 1998

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: card([ValueLink])≤[Number]

Concept: TType
Super concept: CONCEPT

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif

I/F GQMMeas-
ureRange

Reverse range link 0..1 part-
of[GQM-
Meas-
ure].[rang
e]

- no - - 1

Varia-
tionItem-
Range

Reverse range link 0..1 part-
of[Varia-
tion
Item].[ran
ge]

- no - - 1

Software-
ObjectState

Reverse value link 0..1 part-
of[Soft-
wareOb-
ject].[stat
e]

- no - - 1

Varia-
tionItemEx-
pectedValu
e

Reverse value link 0..1 part-
of[Varia-
tionItem].
[Expect-
edValue]

- no - - 1

ctxt

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

Concept: TUnorderedSymbol
Super concept: TType

Layer Name Description Car-
dinal-
ity

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stan-
dard
weight

126

Example Ontology

Copyright © Fraunhofer IESE 1998

Concept: Variation Item
Super concept: Item

Layer Name Description Cardi-
nality

Type Default
value

Manda-
tory

Value infer-
ence

To infer Stand-
ard
weight

artif variation
factor

factor pertaining to the
object of interest and
the domain with poten-
tial impact on a quality
item

1 Text - yes - - 0

range range of the variation
factor as defined in gen-
eral in the specific envi-
ronment

0..1 has-
parts[Typ
e].[Varia-
tionItem-
Range]

- no - - 1

impact describes the expected
impact of the variation
factor on the baseline
hypothesis of the
affected quality factor

1..* Text - yes - - 0

I/F quality fac-
tors

specifies the quality
item affected by this

variation itema

1..* defined-
by[Qual-
ity
Item].[var
iation
factors]

- yes - - 1

ctxt expected
value

of the variation factor in
the specific environ-
ment where the actual
measurement program
takes place

0..1 has-
parts[TTy
pe].[Vari-
ationIte-
mExpecte
dValue]

- no - - 1

abstraction
sheet

references correspond-
ing abstraction sheet

1..1 part-of
[Abstrac-
tion
Sheet].[va
riation
item]

- yes - - 1

comments any additional informa-
tion or comment

0..1 Text - no - - 0

simartif, simI/F, simctxt: standard

precond: TRUE
assertion: TRUE

a.

127

Example Ontology

Copyright © Fraunhofer IESE 1998

A.3 Type Table

Table 47: Type Table
Name Supertype Value range Unit of measureSimilarity

Acquisi-
tionTech-
nique

UnorderedSym-
bol

“observation”,
“statistical anal-
ysis”, “inter-
view”,
“discussion”

n/a Standard

Attitude OrderedSymbol “rejecting”,
“disinter-
ested”, “moti-
vated”

n/a see Supertype

Business-
Sector

UnorderedSym-
bol

“aerospace”,
“electrical engi-
neering”,
“energy”,
“information
technology”,
“mechanical
engineering”,
“motor vehi-
cles”, “tele-
communication
s”

n/a Standard

Certifica-
tion

UnorderedSym-
bol

“ISO9000”,
“CMM2”,
“CMM3”,
“CMM4”,
“CMM5”

n/a Standard

Collection-
Period

OrderedSymbol “daily”,
“weekly”,
“monthly”,
yearly”

n/a see Supertype

Collection-
Timing

UnorderedSym-
bol

“begin”, ”end” n/a Standard

Constraint OrderedSymbol “minimal”,
“normal”,
“severe”

n/a see Supertype

DataStor-
age

Identifier - n/a -

DurationM Real [0.00..*] calendar
months

Standard

EffortPM Real [0.00..*] person months Standard

FreqM Real [0.00..*] per month Standard

GQMProc-
essTaxon-
omy

TaxonomySym-
bol

Taxonomy 7: n/a Standard

Impor-
tance

OrderedSymbol “unimpor-
tant”, “desira-
ble”,
“important”,
“crucial”

n/a Standard

KLOC Cardinal [0..*] KLOC see Supertype

128

Example Ontology

Copyright © Fraunhofer IESE 1998

Lifecy-
cleModel

UnorderedSym-
bol

“iterative
enhance-
ment”, “proto-
typing”,
“spiral”,
“waterfall”

n/a Standard

Measure-
ment-
Knowledg
e

OrderedSymbol “not availa-
ble”, “nega-
tive”,
“positive”

n/a Standard

Model-
Category

UnorderedSym-
bol

“descriptive”,
“evaluation”,
“predictive”

n/a Standard

Model-
Type

UnorderedSym-
bol

“quality
model”,
“resource
mode”

n/a Standard

Newness OrderedSymbol “version with-
out new fea-
tures”,
“enhanced ver-
sion”, “initial
delivery”, “pro-
totype”,
“research pro-
totype”

n/a see Supertype

Platform UnorderedSym-
bol

“embedded
processors”,
“main frame
computers”,
“mini comput-
ers”, “PC”,
“workstations”

n/a Standard

ProgLang UnorderedSym-
bol

“Ada”,
“Assembler”,
“C”, “C++”,
“COBOL”,
“Fortran”,
“Smalltalk”

n./a Standard

Purpose UnorderedSym-
bol

“characteriza-
tion”, “moni-
toring”,
“evaluation”,
“prediction”,
“control”,
“change”

n/a Standard

Question-
Category

TaxonomySym-
bol

Taxonomy 4: n/a Standard

Name Supertype Value range Unit of measureSimilarity

129

Example Ontology

Copyright © Fraunhofer IESE 1998

Represen-
tationForm

UnorderedSym-
bol

“diagram”,
“graph”,
“rule”, “struc-
tured text”,
“table”,
“unstructured
text”

n/a Standard

Resource UnorderedSym-
bol

“human”,
“tool”

n/a Standard

ReuseType OrderedSymbol “not used”,
“used with
many modifica-
tions”, “used
with few modi-
fications”,
“used as is”

n/a see Supertype

Role UnorderedSym-
bol

n/a Role-Graph

Scale OrderedSymbol “nominal”,
“ordinal”,
“interval”,
“ratio”, “abso-
lute”

- Standard

Status OrderedSymbol “non-exist-
ent”, “incom-
plete”,
“complete”

n/a -

SwAttrib-
ute

TaxonomySym-
bol

Taxonomy 5: n/a Standard

SwObject-
Taxonomy

TaxonomySym-
bol

Taxonomy 1: n/a Standard

SwObject-
Type

UnorderedSym-
bol

“product”,
“process”,
“resource”

n/a Standard

SwProc-
essTaxon-
omy

TaxonomySym-
bol

Taxonomy 2: n/a Standard

SwPro-
ductTax-
onomy

TaxonomySym-
bol

Taxonomy 3: n/a Standard

SwType UnorderedSym-
bol

“batch process-
ing”, “decision
support”,
“embedded/
real-time sys-
tems”, “inter-
active/reactive
systems”,
“product/man-
ufacturing sys-
tems”,
“transaction
processing”

n/a Standard

Name Supertype Value range Unit of measureSimilarity

130

Example Ontology

Copyright © Fraunhofer IESE 1998

Graph 1: Role-Graph [BMS95]

Taxonomy 1: SwO
bjectTaxonomy

root
• SW process

• QA activities
• maintenance process
• development process

• requirements analysis
• design
• implementation
• test

• component testing
• unit testing

• SW product
• development document

• requirements document
• design document
• code
• test document

• test cases
• test procedures

• resource
• hardware
• software

• communication

Taxonomy 2: SwPr
ocessTaxonomy

root
• QA activities
• maintenance process
• development process

• requirements analysis
• design
• implementation
• test

• component testing
• unit testing

Taxonomy 3: SwPr
oductTaxonomy

root
• development document

• requirements document
• design document
• code
• test document

• test cases
• test procedures

Unit TaxonomySym-
bol

Taxonomy 6: n/a Standard

Version Real [0.01..99.99] n/a -

Name Supertype Value range Unit of measureSimilarity

UserMaintainer

Tester

Configuration
Manager

131

Example Ontology

Copyright © Fraunhofer IESE 1998

Taxonomy 4: Ques-
tionCategoryTax-
onomy

Taxonomy 5: wAt-
tributeTaxonomy

Taxonomy 6: Unit-
Taxonomy

Taxonomy 7: GQM-
ProcessTaxonomy

• GQM process
• Prestudy
• Identification of GQM goals
• Development of GQM plan

• GQM interviews
• Development of questions
• Development of models
• Development of measures
• Review of GQM plan

• Development of measurement plan
• Development of data collection procedures
• Development of data collection instruments
• Review of measurement plan

• Data collection
• Data analysis and interpretation

• Analysis
• Interpretation

• Packaging

root

quality focus process/product definition

process definition product definition

process conformance domain understanding internal development
attributes

development
cost changes

operational
context

root

process attribute product attribute

effort duration size structure

cohesion coupling

cost

root

Time

person- person-

Code Size

LOC SLOC

...

hour month
person-
year

132

Example Ontology

Copyright © Fraunhofer IESE 1998

A.4 Symbol Glossary

Table 48: Symbol
Glossary Type Symbol Description

Acquisi-
tionTech-
nique

observation gathering information by noting facts or occurrences

statistical
analysis

mathematics dealing with the analysis of masses of numerical data

interview a meeting at which information is obtained from a person

discussion consideration of a question in open usually informal debate

Attitude rejecting refusing to accept and support measurement

disinterested without any interest wrt. measurement

motivated interested in and agreeing on the application of measurement

Business-
Sector

aerospace manufacture or use of vehicles used in aerospace

electrical
engineering

engineering that deals with the practical applications of electricity

energy manufacture or use of power plants

information
technology

technologies of computers and telecommunications

mechanical
engineering

related to machinery

motor vehicles related to motor vehicles

telecommunicat
ions

related to means of distance communication

Certifica-
tion

ISO9000 organization certified with ISO9000

CMM2 organization certified on level 2 of CMM

CMM3 organization certified on level 3 of CMM

CMM4 organization certified on level 4 of CMM

CMM5 organization certified on level 5 of CMM

Collection-
Period

daily data is collected once a day

weekly data is collected once a week

monthly data is collected once a month

yearly data is collceted once a year

Collection-
Timing

begin data is collected at the begin of an activity

end data is collected at the end of an activity

Constraint minimal not considered as critical

normal not considered as strongly critical but also not neglected completely

severe strongly critical

133

Example Ontology

Copyright © Fraunhofer IESE 1998

GQMProc-
essTaxan-
omy

GQM process defines the planning, execution and packaging of GQM-based measurement
programs

Prestudy describes the activities to establish all preconditions necessary for a GQM-based
measurement program

Identification of
GQM goals

describes the activity of identifying GQM goals

Development of
GQM plan

describes the activities wrt. the derivation of measures via questions and models.

GQM inter-
views

describes the planning, performance and documentation of GQM interviews

Development of
questions

describes the development of questions based on the interview results

Development of
models

describes the development of models wrt. the questions

Development of
measures

describes the development of measures based on the models

Review of GQM
plan

describes the review process of GQM plan to check completeness and correct-
ness

Development of
measurement
plan

describes the development of data collection procedures and data collection
instruments wrt. the measures defined in the GQM plan

Development of
data collection
procedures

describes the definition of collection procedures determining when, how and by
whom data has been collected wrt. the measures defined in the GQM plan

Development of
data collection
instruments

describes the development of data collection instruments wrt. the data collection
procedures

Review of
measurement
plan

describes the review of measurement plan

Data collection describes the collection, validation and storage of measurement data

Data analysis
and interpreta-
tion

describes the analysis and interpretation of measurement data

Analysis describes the analysis of measurement data

Interpretation describes the planning, execution and documentation of feedback sessions

Packaging describes the packaging of measurement data and experiences in models, stand-
ards, etc.

Impor-
tance

unimportant having no influence

desirable worth seeking

important having great influence

crucial of the utmost importance

Type Symbol Description

134

Example Ontology

Copyright © Fraunhofer IESE 1998

Lifecy-
cleModel

iterative
enhancement

software development technique in which requirement analysis, design, imple-
mentation and testing occur in an overlapping, iterative (rather than sequential)
manner, resulting in incremental completion of the overall software product.

prototyping
A development technique in which a preliminary version of part or all of the soft-
ware is developed to permit user feedback, determine feasibility, or investigate
timing or other issues in support of the development process.

spiral
A model of the software development process in which the constituent activities,
requirement analysis, preliminary and detailed design, coding, integration and
testing, are performed iteratively until the software is completed.

waterfall
A model of the development process in which the constituent activities, require-
ment phase, design phase, implementation phase, test phase, are performed in
that order, possibly with overlap, but with little or no iteration.

Measure-
ment-
Knowledg
e

not available measurement has never been applied in organization

negative measurement has been introduced before with negative results

positive mesurement has been established before with positive results

Model-
Category

descriptive describe a measure based on integrating other measures, e.g. m=F(x1,..,xn)

evaluation
capture situation in which a particular attribute needs to be evaluated based on
one or more of its measures, e.g. d=f(x1,..,xn) with d=(d1,...d2) decisions

predictive
predict a particular attribute based on one or more of its measures, e.g.,
ê=f(x1,..xn) or the occurrence of a certain event p(e)=f(x1,..xn)

Model-
Type

quality model model concerning a quality of a sw object, e.g. reliability, reusability

resource mode model concerning resources related to a sw object, e.g. effort

Newness version without
new features

improved version (correction of faults) but without adding any new features

enhanced
version

improved version with new features

initial delivery no delivered versions existed before

prototype
A preliminary type, form or instance of a system that serves as a model for later
stages or for the final, complete version of the system.

research
prototype

A preliminary type, form or instance of a system that serves for research objec-
tives.

Platform embedded
processors

used as part of a system or machine.

main frame
computers

mini computers

PC

workstations

Type Symbol Description

135

Example Ontology

Copyright © Fraunhofer IESE 1998

ProgLang
Ada

Imperative programming language unifying different concepts from several pro-
gramming languages.

Assembler Machine-oriented programming language.

C
Programming language with properties and elements of assembler similar and
higher programming languages.

C++ Object-oriented programming language based on C.

COBOL Imperative programming language for commercial data processing.

Fortran
Imperative programming language for applications in natural sciences and engi-
neering.

Smalltalk Object-oriented programming language.

Purpose
characterization

aims at forming a snapshot of the current state/performance of the software
development products and processes

monitoring
aims at following the trends/evolution of the state/performance of processes and
products

evaluation aims at comparing and evaluating products and processes

prediction
aims at identifying relationships between various process and product factors
using these relationships to predict relevant external attributes of products and
processes

control
aims at identifying causal relationships that influence the state/performance of
products and processes

change
aims at identifying causal relationships in order to change the development proc-
ess to obtain higher product quality and process productivity

Question-
Category

domain
understanding

quantitative characterization of the object to which the process is applied and an
analysis of the process performer´s knowledge concerning this object

process
conformance

quantitative characterization of the process and an assessment of how well it is
performed

process
definition

category that contains questions concerning factors that may have an impact on
the values of the quality attributes wrt. the studied process

process/product
definition

category that contains questions concerning factors that may have an impact on
the values of the quality attributes

product
definition

category that contains questions concerning factors that may have an impact on
the values of the quality attributes wrt. the studied product

internal
attributes

quantitative characterization of the product in terms of physical attributes such
as size, complexity, etc.

development
cost

quantitative characterization of the resources expended related to this product in
terms of effort, computer time, etc.

development
changes

quantitative characterization of the errors, faults, failures, adaptations, correc-
tions, and enhancements related to this product

operational
context

quantitative characterization of the customer community using this product and
their operational profiles

quality focus descriptive models of the quality perspective of interest

Type Symbol Description

136

Example Ontology

Copyright © Fraunhofer IESE 1998

Represen-
tationForm

diagram
drawing, sketch, plan or chart that makes something clearer or easier to under-
stand

graph
diagram that represents change in one variable factor in comparison with that of
one or more other factors or pictorial representation of a set of points (as a line
or curve) that satisfy a mathematical equation or belong to a given set.

rule prescribed guide for conduct or an action

structured text a textual description organized by a defined structure

table systematic arrangement of data in rows and columns

unstructured
text

a textual description

Resource
human

A human resource allocated to the development, testing, analysis, maintenance
or measurement of a program or its documentation.

tool
A computer program that is used in the development, testing, analysis, mainte-
nance or measurement of a program or its documentation.

ReuseType not used no object has been reused

used with many
modifications

object has been reused, but with many modifications

used with few
modifications

object has been reused with few modifications

used as is object has been reused without any modifications

Role Configuration
Manager

integrates updates into the system, coordinates the production and release of
versions of the system, and provides tracking of change requests.

Maintainer analyze changes, make recommendations, perform changes, perform unit and
change validation testing after linking the modified units to the existing system,
perform validation and regression testing after the system is recompiled by the
Configuration Manager.

Testers present acceptance test plans, perform acceptance test and provide change
request to the maintainers when necessary.

Users suggest, control and approve performed changes.

Scale
nominal

classification of objects, where the fact that objects are different is preserved
(one-to-one mappings)

ordinal
objects are ranked according to some criteria, but no information about the dis-
tance between the values is given (monotonic increasing transformations)

interval differences between the values are meaningful (M´=aM+b (a>0))

ratio
there is a meaningful “zero” value, and ratios between values are meaningful
(M´= aM (a>0))

absolute no transformation is meaningful (M´= M)

Status non-existent Product does not exist.

incomplete Product does exist, but is still incomplete.

complete Product exists and is complete.

Type Symbol Description

137

Example Ontology

Copyright © Fraunhofer IESE 1998

SwAttrib-
ute

cohesion
cohesion of a module is the extent to which its individual components are
needed to perform the same task.

coupling coupling is the degree of interdependence between modules.

duration duration of a software process/phase/activity

effort human effort allocated to a software process/phase/activity

process
attribute

attribute of software process

product
attribute

attribute of software product

size
size of software product, e.g. in terms of length, functionality, complexity or
reuse.

structure
structure of software products, concerning control flow, data flow and data
structure.

SwObject-
Taxonomy test

An activity in which a system or component is executed under specified condi-
tions, the results are observed or recorded, and an evaluation is made of some
aspect of the system or component.

test cases
A set of inputs, execution conditions, and expected results developed for a par-
ticular objective, such as to exercise a particular program path or to verify compli-
ance with a specific requirement.

test document
Documentation describing plans for, or results of, the testing of a system or com-
ponent.

unit test Testing of individual software units or groups of related units.

SwObject-
Type

process
processes are activities which are performed during a project. They create, read
and modify products.

product
the final software product is called product as well as all by-products, artifacts,
and parts of a product´s documentation.

resource resources are entities that are necessary to perform the process.

SwType batch
processing

inputs to the system are collected an processed all at one time, rather than being
processed as they arrive

decision
support

system aiming at the support of decisions.

embedded/real-
time systems

software as part of a larger system which performs some of the requirements of
that system/computation is performed during the actual time that an external
process occurs.system in which each user

interactive/
reactive systems

product/
manufacturing
systems

transaction
processing

Type Symbol Description

138

Example Ontology

Copyright © Fraunhofer IESE 1998

SwObject-
Taxonomy

code
Computer instructions and data definitions expressed in a programming lan-
guage or in a form output by an assembler, compiler or other translator.

communication Activities related to the exchange of information, e.g., meetings, business trips.

component
testing

Testing of individual components or groups of related components.

design
The process of defining the architecture, components, interfaces, and other
characteristics of a system or component.

design
document

A document that describes the design of a system or component.

development
document

A collection of material pertinent to the development of a given software unit or
set of related units.

development
process

The process of developing a software system, typically includes requirement
phase, design phase, implementation phase and test phase.

hardware
Physical equipment used to process, store, or transmit computer programs or
data.

implementation The process of translating a design into software components.

maintenance
process

The process of modifying a software system or component after delivery to cor-
rect faults, improve performance, or other attributes, or adapt to a changed
environment.

QA activities
A set of activities designed to evaluate the process by which products are devel-
oped or maintained.

requirements
analysis

The process of studying user needs to arrive at a definition of system, hardware,
or software requirements.

requirements
document

A document that specifies the requirements for a system or a component.

resource Means used to develop a product or perform a service.

software
Computer programs, procedures, and possibly documentation and data pertain-
ing to the operation of a computer system.

SW process
A sequence of steps performed for the development or maintenance of soft-
ware.

SW product
The complete set of computer programs, procedures, and possibly associated
documentation and data designated for delivery to a user or any of these individ-
ual items.

test
An activity in which a system or component is executed under specified condi-
tions, the results are observed or recorded, and an evaluation is made of some
aspect of the system or component.

test cases
A set of inputs, execution conditions, and expected results developed for a par-
ticular objective, such as to exercise a particular program path or to verify compli-
ance with a specific requirement.

test document
Documentation describing plans for, or results of, the testing of a system or com-
ponent.

unit test Testing of individual software units or groups of related units.

Type Symbol Description

139

Example Ontology

Copyright © Fraunhofer IESE 1998

SwPro-
ductTax-
onomy

code
Computer instructions and data definitions expressed in a programming lan-
guage or in a form output by an assembler, compiler or other translator.

design
document

A document that describes the design of a system or component.

development
document

A collection of material pertinent to the development of a given software unit or
set of related units.

hardware
Physical equipment used to process, store, or transmit computer programs or
data.

requirements
document

A document that specifies the requirements for a system or a component.

resource Means used to develop a product or perform a service.

software
Computer programs, procedures, and possibly documentation and data pertain-
ing to the operation of a computer system.

SW product
The complete set of computer programs, procedures, and possibly associated
documentation and data designated for delivery to a user or any of these individ-
ual items.

test cases
A set of inputs, execution conditions, and expected results developed for a par-
ticular objective, such as to exercise a particular program path or to verify compli-
ance with a specific requirement.

test document
Documentation describing plans for, or results of, the testing of a system or com-
ponent.

SwProc-
essTaxon-
omy

communication Activities related to the exchange of information, e.g., meetings, business trips.

component
testing

Testing of individual components or groups of related components.

design
The process of defining the architecture, components, interfaces, and other
characteristics of a system or component.

development
process

The process of developing a software system, typically includes requirement
phase, design phase, implementation phase and test phase.

implementation The process of translating a design into software components.

maintenance
process

The process of modifying a software system or component after delivery to cor-
rect faults, improve performance, or other attributes, or adapt to a changed
environment.

QA activities
A set of activities designed to evaluate the process by which products are devel-
oped or maintained.

requirements
analysis

The process of studying user needs to arrive at a definition of system, hardware,
or software requirements.

SW process
A sequence of steps performed for the development or maintenance of soft-
ware.

test
An activity in which a system or component is executed under specified condi-
tions, the results are observed or recorded, and an evaluation is made of some
aspect of the system or component.

unit test Testing of individual software units or groups of related units.

Type Symbol Description

140

Example Ontology

Copyright © Fraunhofer IESE 1998

A.5 Predefined Kinds

Table 49: Pre-
defined Kinds

Unit codesize units refering to the size of code

LOC total number of lines of code

person-hour one working hour

person-month one working month (=24 days)

SLOC number of source lines of code excluding comments

time units refering to time

Type Symbol Description

Kind Reverse name Description Structure Properties

defines defined-by In the context of GQM
measurement planning a
specific organizational inter-
dependency between GQM
products has been identi-
fied, the defines relation
(see Figure 12). This relation
describes the fact that a
GQM product (e.g., a ques-
tion in the GQM plan) is
defined based on another
GQM product (e.g., a qual-
ity dimension in the abstrac-
tion sheet). The explicit
modelling of this interde-
pendency guarantees the
traceability between the
individual GQM products in
a measurement program.

DAG transitivity

depends R(depends) A special kind used for data
collection procedures. The
collection of data may
depend on the collection of
other data. For example, the
finish date needs only be
collected if the start date
has also been collected in
order to compute the dura-
tion of a process step. In this
case, the collection of the
finish date depends on the
collection of the start date.
If a measure is deactivated
(i.e., temporarily no data for
this measure is collected), all
of its dependents should
also be deactivated. (see
Figure 14)

DAG transitivity

141

Example Ontology

Copyright © Fraunhofer IESE 1998

Figure 10: Kind »is-
a« (generalization)

next previous A special kind of relation-
ship used to point at the
next solution applied, in
case a solution applied to a
problem which occurred
failed. This helps to keep
track of the solutions
applied until the problem
has been successfully solved.
(see Figure 15)

DAG transitivity

refers-to referred-by Relationship that indicates
entities of the software
process, e.g., design docu-
ment or requirement analy-
sis which are related to
measurement entities (see
Figure 13)

DAG transitivity

to-root from-root Link from all nodes to the
root of the taxonomy.

tree

has-range range-of Declares th e range of val-
ues.

tree

Kind Reverse name Description Structure Properties

GQM Product

GQM Plan

GQM Measure

GQM Goal

GQM Model

Measurement Plan

Data Collection Instrument

Data Collection Procedure

GQM Question

Abstraction Sheet

Measurement Tool
Questionnaire

Interview
Questionnaire Question

 Item Quality Item

Experience

....

Measurement

Inspection

GQM Product Experience

GQM Problem Solution Experience Experience

Experience

Variation Item

OBJECT

Context Characterization
Organization Characterization
Project Characterization
Measurement Characterization

Data Collection Event

Software Object

Process Event
Periodic Event

Artifact Event
GQM Problem
GQM Problem Cause
GQM Solution
GQM Outcome

142

Example Ontology

Copyright © Fraunhofer IESE 1998

Figure 11: Kind
»has-parts« (aggre-
gation)

Figure 12: Kind
»defines«

Figure 13: Kind
»refers-to«

Figure 14: Kind
»depends«

Figure 15: Kind
»next«

GQM Product

GQM Plan
GQM Measure

GQM Goal

GQM Model

Measurement Plan
Data Collection Instrument

Data Collection Procedure

GQM Question

Abstraction Sheet

Context Characterization

Questionnaire QuestionQuestionnaire

Context Item

Quality Item

Experience

Measurement Characterization

Project Characterization
Organization Characterization

GQM Problem Solution
GQM Problem Cause

GQM Problem

Experience
GQM Solution
GQM Outcome

Data Collection
Event

Measurement
Experience

GQM Goal Quality Item Variation Item

GQM Question

GQM Model

GQM Measure

Data Collection Procedure

Questionnaire Question

Data Collection Instrument

GQM Problem Cause

GQM Problem

Data Collection Procedure

GQM Solution

GQM Outcome

GQM Model

Software Object

Data Collection Procedure Data Collection Procedure

GQM Outcome GQM Problem Solution Experience

Copyright 1998, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: REFSENO – A Representa-
tion Formalism for Soft-
ware Enginering
Ontologies

Date: October 20, 1998
Report: IESE-015.98/E
Status: Final
Distribution: Public

