

Fraunhofer Einrichtung Experimentelles Software Engineering

REFSENO: A Representation Formalism for Software Engineering Ontologies

Report

Authors: Carsten Tautz Christiane Gresse von Wangenheim

IESE-Report No. 015.98/E Version 1.1 October 20, 1998

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraunhofer Gesellschaft. The institute transfers innovative software development techniques, methods and tools into industrial practice, assists companies in building software competencies customized to their needs, and helps them to establish a competetive market position.

Fraunhofer IESE is directed by Prof. Dr. Dieter Rombach Sauerwiesen 6 D-67661 Kaiserslautern

Table of Contents

1	Purpose of Report	1
2	Introduction	2
2.1	Basic Terms	3
2.2	Modeling Levels	5
2.3	The Representation Formalism REFSENO	7
2.4	Structure of this Report	9
3	Notation	10
3.1	Concept	10
3.1.1	Synonyms	10
3.1.2	Definition	10
3.1.3	Description	11
3.1.4	Representation	13
3.1.5	Example	14
3.1.6	Alternate Representation	14
3.2	Terminal Concept Attributes	14
3.2.1	Synonyms	15
3.2.2	Definition	15
3.2.3	Description	15
3.2.4	Representation	16
3.2.5	Example	17
3.2.b		20
J.J ⊃⊃1	Types of Terminal Concept Attributes	20
3.3.1 ว.ว.ว	Synonyms	21
3.3.Z	Definition	21
3.3.3 2.2.4	Description	22
5.5.4 2 2 5	Example	20
2.2.5	Alternate Penrecentation	20
2.2.0 2.4	Nonterminal Concent Attributes	29
3.4 3.7.1	Syponyms	29
3/1/2	Definition	29
3/4.Z	Description	20
3.4.J 3.4.J	Representation	31
3/15	Example	31
346	Alternate Representation	37
3. 4 .0 3.5	Kinds of Nonterminal Concept Attributes	32
3.5.1	Synonyms	33
3.5.2	Definition	33

6	Summary and Outlook	78
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3 5.3.1 5.3.2 5.4	Applying REFSENO: Benefits and Lessons Learned Linguistic Level Conceptual Level Building an Ontology Evolving an Ontology Validating an Ontology Epistemological Level Benefits of REFSENO Validation of REFSENO Implementation Level	67 67 68 70 71 72 72 75 76
4 4.1 4.1.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2	Semantics Retrieval of Context-Specific Knowledge Relation to Software Engineering Description Insertion of New Context-Specific Knowledge Relation to Software Engineering Description Removal of Context-Specific Knowledge Relation to Software Engineering Description Change of Existing Context-Specific Knowledge Relation to Software Engineering Description	46 53 54 55 61 62 65 65 65 66 66
3.5.3 3.5.4 3.5.5 3.6 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.4 3.6.5 3.6.6 3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6	Description Representation Example Alternate Representation Instances Synonyms Definition Description Representation Example Alternate Representation Formulas Synonyms Definition Description Representation Example Alternate Representation	33 35 36 36 36 37 37 37 38 38 38 38 38 38 38 38 39 44 44 44

7	Acknowledgments	79
Append	dix A:Example Ontology	83
A.1	Concept Glossary	83
A.2	Terminal And Nonterminal Concept Attributes	87
A.3	Type Table	127
A.4	Symbol Glossary	132
A.5	Predefined Kinds	140

1 Purpose of Report

The purpose of this report is to define the current state of the *re*presentation formalism for software *en*gineering ontologies (REFSENO). The document begins with an introduction and overview of the state of the art (Chapter 2). Based on the state of the art, the notation (Chapter 3) and semantics (Chapter 4) of the basic constructs of REFSENO are defined. Experience gained so far with the application of REFSENO is documented (Chapter 5). The report ends with a summary and outlook (Chapter 6). The appendix illustrates REF-SENO with an exemplary ontology in the domain of software measurement planning based on the GQM approach.

The definition of REFSENO and the example in the appendix are subject to change as more experience in the application of REFSENO (in particular for GQM planning) is gained. These changes will result in new versions of this report.

2 Introduction

»Reuse practice appears to exhibit considerable [improvement] potential, far more than other ongoing activities.« [ZS95, p. 167] The benefits of software reuse are manifold. Among them are improved productivity, improved reliability, better estimates, and faster time-to-market [SPDM94]. Traditionally, the emphasis has been on reusing code. However, reuse does not have to stop there. In order to continuously improve the software quality and productivity and transfer innovative software technologies into practice, several kinds of software-related knowledge can be reused [GB97, GRA⁺98, Hen97]. This includes

- products created by a software project (e.g., design document, code),
- processes (e.g., requirement analysis, inspection),
- quality and resource models (e.g., effort and reliability prediction models), or
- any lessons learned regarding the software process or products (e.g., using scenario-based inspections more faults are found than using checklist-based inspections in the organization Y).

As software engineering is a fairly young discipline, its technologies are not as mature as those of other engineering disciplines. On the other hand, requirements to software systems are steadily growing concerning their complexity, performance, etc. Therefore, the capturing and reuse of explicit software development know-how is essential for continuous improvement. What represents relevant software know-how differs among companies regarding their environmental context and their specific goals. Therefore, organization-specific software know-how which comprises the core of a mature software organization, has continuously to evolve based on experiences gathered in software projects. In that endeavor, software organizations require support in collecting experiences from their projects, packaging those experiences (e.g., build models from empirical data, formalize informal knowledge), and in validating and reusing experiences in future projects. The support of these tasks requires comprehensive learning information systems which are based on explicit knowledge representations [MBY97].

For the continuous build-up of software knowledge in an organization, the *experience factory* approach [BCR94] has been proven to be a successful solution [Rom96]. The experience factory organization complements the project organization by enabling the continuous learning on software development from examples of individual software projects and communication of software knowledge across the organization.

In order to enable the reuse of software engineering knowledge and the operationalization of the experience factory in practice, the domain of the software engineering knowledge has to be modeled explicitly defining a structure of an experience base where the experiences are stored. Such a model must:

- define all artifact types to be stored in the experience base as well as the kinds of relationships between the artifacts,
- guide software engineers to specify the knowledge to be retrieved,
- facilitate the maintenance of an experience base,
- allow similarity-based retrieval.

This report presents a representation formalism to adequately model the structure of an experience base. It can be used to:

- model software engineering knowledge explicitly in a precise, consistent, and complete manner using alternate representations,
- conceptualize software engineering knowledge explicitly for various application domains and contexts resulting in conceptual models,
- validate conceptual models of software engineering knowledge,
- communicate conceptual models of software engineering knowledge,
- operationalize an experience base based on the conceptualization of software engineering knowledge.

In the following some basic terminology underlying the definition of the notation is introduced.

2.1 Basic Terms

Knowledge

In the context of this report

knowledge is the set of all statements about the represented world that are believed to be true by the knowledge source and are really true. [Rei91]

This means that knowledge is always defined with respect to a knowledge source. According to the definition above, knowledge does *not* include statements about the represented world which:

- are not believed to be true by a knowledge source
- are believed to be true by a knowledge source, but are not really true

The latter case requires hypotheses and opinions to be marked as such. For example, the general statement »perspective-based reading is better than adhoc reading« alone is (usually) not considered as knowledge whereas the statements »perspective-based reading can be better than ad-hoc reading« and »perspective-based reading has been more effective than ad-hoc reading in projects X, Y, and Z« are considered as knowledge, because there is empirical data proving the statements to be correct. This means that the latter two state-

	ments are really true and not just believed to be true by a single knowledge source.					
Representation	A <i>representation</i> is a set of representation constructs together with the <i>inter-</i> <i>pretation</i> how the constructs map onto the characteristics of the represented world. [Rei91]					
	A representation stands as a substitute for a set of facts – called represented world. Therefore, it is a model of the world. A representation fulfils the following properties [Rei91]:					
	1 A representation captures some characteristics (= regularities of a general nature as well as properties and relationships between objects) of the represented world.					
	2 A representation does not necessarily capture (usually never) all characteris- tics of the represented world.					
	3 Not all characteristics of a representation stand necessarily for some charac- teristics of the represented world.					
Representa- tion formalism	A <i>representation formalism</i> is a notation for specifying representations plus a definition of the meaning of the notation (cf. »knowledge representation model« [Rei91]).					
	Usually, a representation formalism is defined by primitives with a defined meaning from which representations can be assembled. In this sense, all pro- gramming languages can be interpreted as a representation formalism. The actual program code is then the representation of the program (i.e., a represen- tation of a process to be performed by the operating system of a computer).					
Conceptualiza-	A conceptualization is a special type of representation:					
tion	A <i>conceptualization</i> is a set of concepts, instances, and other entities that are assumed to exist in some area of interest and the relationships that hold among them. [Gru93]					
	In contrast to the definition of the term »representation«, this definition assumes the existence of primitives such as concepts ¹ , instances, and relation-ships.					

1 Concepts can be seen in analogy to classes in object-oriented modeling.

Introduction

Ontology	An ontology is the explicit specification of a conceptualization [Gru93].
	All programs are based on a conceptualization of a portion of a world they are developed for. For example, a tool for requirements elicitation may provide means to capture different types of requirements such as functional and non- functional requirements as well as predefined design decisions. This can be done without explicitly specifying how these terms are related and what properties they have. Only if such an implicit conceptualization is made explicit, it is called an ontology.
	The term ontology can be seen in analogy to the term data model used in the area of database management systems. The (up to now) differing focuses in the areas of databases and knowledge representation imply, however, different representation constructs and types of operations defined upon the structures. [Rei91, p. 13]. In the area of databases, simple but efficiently implemented constructs prevail, while more complex constructs are typical for the area of knowledge representation. Another difference is that in the database world change operations are strongly emphasized, while inference processes on static structures are emphasized by the knowledge representation community. This is a knowingly polarized characterization since the two areas have been approaching each other in recent years.
Epistemistic primitives	An <i>epistemistic primitive</i> stands for a class of alike characteristics. Its level of generality does not limit its occurrence to a single area of discourse (or class of discourse areas). [Rei91]
	As can be deduced from the definition, an epistemistic primitive is domain-independent. Typical examples for epistemistic primitives are the elements of a conceptualization (concepts, instances,).
Standard vocabulary	An element of a <i>standard vocabulary</i> can be used to represent characteristics which are
	 specific enough not to occur in every discourse area and general enough to describe several more complex characteristics
	Thus, a standard vocabulary is domain-specific.
2.2 Modeling	Levels

Knowledge Knowledge can be represented on different levels of abstraction. In this report we differentiate between *knowledge levels* and the *symbol level*. On a knowledge level, knowledge contents are visible, but not the internal structures in which the contents manifest themselves. These internal structures are visible on the symbol level. Thus, the symbol level is defined by the chosen implementa-

	tion while the knowledge levels are implementation-independent. In other words, a knowledge level describes »what« to represent while the symbol l describes »how« to represent it.						
	For the purpose of this report, we distinguish three knowledge levels: mological level, the conceptual level, and the linguistic level. [Rei91]						
	The basic characteristic of all knowledge levels is that descriptions knowledge level can be specified using the constructs of the next the following, the three knowledge levels will be described in de						
Epistemologi- cal level	1 The <i>epistemological le</i> attributes, relationship pendent.	<i>vel</i> defines the epistemistic primitives s is, etc. Thus, the epistemological level	uch as concepts, is domain-inde-				
Conceptual level	2 The <i>conceptual level</i> defines the standard vocabulary. It is domain-specific. Exemplary constructs of this level (for the software engineering domain) are process models, measurement plans, code modules, lessons learned, etc.						
	As an explicit specification of a conceptualization, an ontology is alwa defined on this level. Thus, an ontology can be defined using epistemi primitives.						
Linguistic level	3 Finally, the <i>linguistic le</i> defined on the concep plary construct on this tion) is a concrete mea company Y.	evel defines concrete instances of the optical level. It is domain- and context-sp level (for a particular software develo asurement plan for measuring the effo	constructs pecific. An exem- pment organiza- rt of project X at				
Figure 1: Differ- ent representa- tion levels		Linguistic level (defines context-specific knowledge)	domain-				
	Knowledge levels (»what«)	Conceptual level (defines standard vocabulary)	specific				
		Epistemological level (defines epistemistic primitives)	domain- independent				
	Symbol level (»how«)	Implementation level					

2.3 The Representation Formalism REFSENO

In this paper, epistemistic primitives are defined in the form of a *r*epresentation formalism for software *en*gineering *o*ntologies (REFSENO). Ontologies defined using REFSENO can be easily tailored to company-specific needs as they are not hard-wired into an implementation (only the epistemistic primitives are) and fulfil all requirements of a structure model listed on page 3.

Thus, software engineering knowledge is modeled by defining a software engineering ontology using our representation formalism REFSENO (domain knowledge) and by instances of the concepts defined in the ontology (context-specific knowledge). The next chapter will present the definition of the epistemistic primitives of REFSENO. The primitives draw from ideas from several areas such as database mechanisms (e.g., relationships between concepts and implied consistency rules) [Che76], case-based reasoning mechanisms (e.g., similarity-based retrieval with incomplete information) [Alt97], and knowledge-based mechanisms (e.g., inference rules) [Rei91]. In addition, the representation formalism is object-centered similar to the meta modeling in UML [Cor97].

It should be emphasized that none of the approaches alone would be sufficient for implementing a software engineering experience base. Except for casebased reasoning, none of the approaches consider similarity-based retrieval in a detail necessary. On the other hand, case-based reasoning lacks the ability to cope with relationships between concepts to the degree needed. However, in our approach we integrated representation constructs from all approaches to form a new consistent representation formalism for software engineering ontologies. The result is based on several years of experience in structuring experience bases [Gäß95, Stu95, Tau93, TA97].

It is important to realize that the ontologies defined using REFSENO serve the purpose of software knowledge management and not as the basis for the implementation of intelligent assistants in the sense of Mylopoulos et al. [MBY97]. Depending on the purpose, the employed knowledge representations and bases will differ (see Table 1). This means that intelligent assistants, which are used to edit software engineering artifacts, should use different knowledge representations and knowledge bases than the experience base.

Table 1: Software knowledge management vs. intelligent assistants (according to [MBY97])

Criterion Software knowledge management		Intelligent assistant			
Type of representa- tion used	mix of formal, declarative and informal	formal, often procedural			
Type of knowledge captured	descriptive information about artifact an information about environment of arti- fact	d environment is less important; domain- independent heuristics			
Coverage of softwark knowledge base	e Quite broad	Narrow, specific to the task the assistant is intended to perform			

Criterion	Software knowledge management	Intelligent assistant			
Completeness of soft ware knowledge base	- Useful even if it is incomplete e	Sufficiently complete to support infer- ences required for performance of task			
Criteria for success of knowledge capture	 time saved in chasing for information accuracy and completeness of knowl- 	how well the knowledge-based system performs intended task			
activity	edge				

In the literature there exist various representation formalisms for the purpose of software knowledge management. However, they either provide no means for similarity-based retrieval¹ (e.g., RLF [SWT89], LaSSIE [DBSB91], and ES-TAME [OB92]) or they are restricted to one type of artifact (e.g., faceted classification [PDF87] and the Reusable Software Library [BAB⁺87]). Generic approaches like information retrieval can in principle be applied to all kinds of artifacts but are not adequate, because it is difficult to determine the relationships between the various types of artifacts [SM83]. Even worse, not all information necessary for retrieving software engineering artifacts can be found in the artifacts themselves [BR91]. Thus, indexing of software engineering knowledge cannot be totally automated, which takes away one of the biggest advantages information retrieval has to offer.

One of the few formalisms that allow both, the storage of various types of artifacts and similarity-based retrieval, is the Extensible Description Formalism (EDF) [Ost92]. Yet, REFSENO uses a more rigid type system, allowing more user guidance for retrieval and maintenance of software engineering knowledge. Moreover, EDF does not provide a clear distinction between the conceptual and linguistic level as REFSENO does. The clear distinction between the two levels has the significant advantage that experts can provide their (linguistic) knowledge in form of example cases guided by conceptual knowledge pre-defined by knowledge engineers. On the other hand, knowledge engineers only have to focus on the elicitation of the ontology, but not of context-specific knowledge as necessary for conventional knowledge-based systems [FG90].

As linguistic knowledge tends to be volatile, this is important because it reduces considerably the effort for acquiring and storing such knowledge. In contrast, knowledge on the conceptual level is typically much more stable, but requires more effort to be captured. However, we aim at providing *basic ontologies* that can be tailored to organization-specific needs with a comparably low amount of effort. When all basic ontologies are integrated, they model the complete struc-

¹ As no two software development projects are alike, it is unlikely that a candidate matching exactly the requirements is available in the experience base. Thus, similarity-based retrieval is vital for the success of an experience factory [BR91].

Introduction

ture of an experience base. One such basic ontology is the GQM planning ontology, which we will use to illustrate the representation formalism.

2.4 Structure of this Report

The next chapter defines the epistemistic primitives needed for describing software engineering ontologies. The primitives are exemplified using excerpts from an ontology for GQM planning artifacts. Chapter 4 completes this representation formalism on the epistemological level by defining the operations that are allowed on ontologies defined using the epistemistic primitives. Chapter 5 gives first lessons learned from applying the representation formalism for software engineering ontologies (short REFSENO). A summary and outlook can be found in Chapter 6. Finally, Appendix lists the complete ontology for GQM planning artifacts using the representation formalism defined in this report.

This chapter defines the notation used for the epistemistic primitives needed to define a software engineering ontology. Each epistemistic primitive of REFSENO is defined by:

- **Synonyms.** Under synonyms terms are listed which are used with other modeling approaches or representation formalisms. The listed synonyms have a similar meaning to the described epistemistic primitive of REFSENO.
- **Definition.** This section gives a terse definition of the epistemistic primitive by listing its components. Components may be epistemistic primitives themselves. The definition specifies the *abstract syntax*, a term known from programming languages [ASU86]. In addition, some identifiers, functions, and predicates are defined which are used in subsequent descriptions.
- **Description.** This section explains the components using narrative text, that is, it specifies the semantics of the abstract syntax.
- **Representation.** This section defines how the epistemistic primitive is represented in REFSENO (REFSENO uses a tabular representation mixed with formulas). Thus, the representation specifies the *concrete syntax* [ASU86].
- **Example.** In order to illustrate the representation of the epistemistic primitive, this section gives an example using excerpts from the ontology for GQM Planning Artifacts (see Appendix).
- Alternate representation. For reasons of comprehensibility, it is sometimes useful to represent the same issues in different ways (e.g., using a tabular or graphical representation). This section presents alternate ways of representing epistemistic primitives.

3.1 Concept

Concepts model software engineering entities (e.g., a GQM plan, a process model, or a development product), or are needed for modeling purposes.

3.1.1 Synonyms

Artifact type, class (UML), case model (CBR), entity, frame

3.1.2 Definition

A concept is a 10-tuple (name, extension, intension, sim_{artif}, sim_{I/F}, sim_{ctxt}, assertion, precondition, description, purpose, intended users).

An intension is a 3-tuple (*artif*, *I/F*, *ctxt*). Each component consists of terminal and nonterminal concept attributes.

The functions extension(concept), assert(concept), and precond(concept) return the *extension*, *assertion*, and *precondition* of *concept* respectively. The functions intension_{artif}(concept), intension_{I/F}(concept), and intension_{ctxt}(concept) return the respective components of the intension. The function intension(concept) is defined as:

intension(c) = intension_{artif}(c) \cup intension_{I/F}(c) \cup intension_{ctxt}(c)

 $sim_{artif}(c)$, $sim_{I/F}(c)$, and $sim_{ctxt}(c)$ denote the similarity functions sim_{artif} , $sim_{I/F}$, sim_{ctxt} associated with the concept c:

 $sim_{artif}(c), sim_{I/F}(c), sim_{ctxt}(c):extension(c) \times extension(c) \rightarrow [0;1]$

3.1.3 Description

*Name*The name is used for reference purposes. All concepts used in an ontology have unique names.

- *Extension* The set of all instances belonging to the concept. The extension of the ontology is restricted to those instances specified as part of the ontology (Section 3.6). Since context-specific knowledge is also represented as instances (Chapter 4), the notion of *extension* is extended to include the context-specific knowledge as well. It should be clear, that the ontology's *extension* (extension in the restricted sense) does not change with the insertion or deletion of instances. In the rest of the report, the term »extension« will be used with its extended notion. By the same token, the function extension(concept) will return the union of the ontology's instances and the context-specific knowledge.
- Intension The set of all attributes an instance which belongs to the concept must exhibit (i.e., all instances of the *extension* are characterized using the same attributes). There are two kinds of attributes: terminal (Section 3.2) and nonterminal attributes (Section 3.4). Furthermore, each attribute belongs to one of three layers: artifact, interface, or context [BR91]. Attributes of artifact layer characterize the instance itself (e.g., author and programming language for code modules). Attributes of the interface layer characterize how a particular instance can be integrated into the surrounding system (e.g., parameters and global variables for code modules). Finally, attributes of the context layer characterize the environment, in which the instance has been applied (e.g., application domain for code modules). The context layer also contains attributes describing the quality of the instance in the specified environment (e.g., reliability in context of the specified application domain for code modules). The three components of the *intension* mirror these layers.

sim _{artif} sim _{I/F} sim _{ctxt}	similarity functions [Alt97] associated with the concept. They compute the similarity between two instances of the <i>extension</i> based on the <i>intension</i> of the concept. More precisely $sim_{artif}(c)$, $sim_{I/F}(c)$, and $sim_{ctxt}(c)$ are based on intension _{artif} (c), intension _{I/F} (c), and intension _{ctxt} (c) respectively. The values of the similarity functions ¹ are combined to a single similarity value as follows: $sim(c)(i, i') = w_{artif} \cdot sim_{artif}(c)(i, i') + w_{I/F} \cdot sim_{I/F}(c)(i, i') + w_{ctxt} \cdot sim_{ctxt}(c)(i, i')$						
	where w_{artif} , $w_{l/F}$, and w_{ctxt} are weights with which the similarity function can be adjusted to the needs and/or skills of the user (Chapter 4). The sum of the weights is always 1.						
	All similarity values are in the range between 0 (denoting total dissimilarity) and 1 (denoting total similarity, i.e., equivalence).						
Assertion	A condition, expressed as a formula (Section 3.7), which all instances of the <i>extension</i> must fulfil.						
Precondition	A condition, expressed as a formula (Section 3.7), which must be fulfilled before instances are inserted or changed.						
Description	A narrative text defining the software engineering entity.						
Purpose	In general, only a portion of the real world is represented by an ontology. Since every representation serves some purpose, this purpose shall be stated explicitly. For a concept, its purpose may be viewed as a justification for the existence of the concept in the ontology. There are two types of concepts:						
	1 Concepts resembling a software engineering entity. For this type of concepts, usage scenario(s) shall be stated showing for what type of »real-world queries« the concept is used.						
	2 Concepts introduced for modeling reasons. For instance, sometimes the intension of two concepts overlap. In such a case, a third concept can be introduced capturing the intersection of both intensions even though there might not be a software engineering entity corresponding to this new concept.						

¹ The concept's similarity functions are of a global nature because they are based on the local similarity functions of the concept's attributes.

Intended users As mentioned for *purpose*, a query is started for a particular purpose. Different users have different tasks. For each task, different information needs exist. While *purpose* describes the tasks for which a concept is necessary, the *intended users* describe who is expected to perform the task. Intended users are described by their roles.

3.1.4 Representation

Concepts, their intensions, and their extensions are represented using separate tables.

3.1.4.1 Concept Glossary

The concept glossary lists alphabetically all concepts of an ontology. One row of the concept glossary corresponds to one concept. The columns are labeled »Name«, »Description«, »Purpose«, and »Intended users« denoting the respective components of the concept definition.

3.1.4.2 Concept Attribute Table

The *intension* of a concept is represented using a concept attribute table. The representation is explained in the sections about terminal concept attributes (Section 3.2.4) and nonterminal concept attributes (Section 3.4.4). The similarity function is presented by a mathematical formula (Section 3.7.4) or by the term »standard«. The standard similarity functions¹ for a concept *c* are defined as:

$$\forall j \in \{artif, I/F, ctxt\}: sim_{j}(c)(i, q) = \left(\sum_{at \in intension_{j}(c)} \begin{cases} 0 \Leftrightarrow i.at \sim q.at = undefined \\ p(at) & otherwise \end{cases}\right) = 0? 1: \\ \left(\sum_{at \in intension_{j}(c)} \begin{cases} 0 \Leftrightarrow i.at \sim q.at = undefined \\ p(at) & otherwise \end{cases}\right)^{-1} \\ \times \sum_{at \in intension_{j}(c)} \begin{cases} 0 \Leftrightarrow i.at \sim q.at = undefined \\ p(at) & otherwise \end{cases}\right)^{-1}$$

¹ Informally, the standard similarity functions compute the weighted sum of the local similarities (footnote on page 12) of all attributes (Section 3.2 and Section 3.4) whose values are defined in both instances (Section 3.6). An attribute value is defined if it is not a special value (»n/a«, »undefined«, or »unknown«). If none of the attributes have defined values in both instances, the functions return 1 (first line). Otherwise the similarity is computed (line 3) and normalized (line 2).

Since the similarity functions are typically based on the similarity of the concept's attributes, they are represented with the table of concept attributes. By the same token assertions and preconditions are represented with the table of concept attributes because their definition is based on the concept's *intension*, too (Table 3).

3.1.4.3 Instance Table

Instances of the concept's *extension* are represented using instance tables. The representation is explained in the section about instances (Section 3.6.4).

3.1.5 Example

Table 2: Excerpt of a	Name	Description	Purpose	Intended user(s)
concept glossary	Context Char- acterization	describes the context of a GQM measurement program concerning its organizational, project-specific and measurement-specific environ- ment	Modeling: explicitly states the context from which the knowledge originates	Experience engineer
	GQM Measure	A GQM measure is an operational definition of an attribute. The data collected according to the measures are used by a model to answer the question in the GQM plan.	Usage scenario: support development of GQM plan by supplying adequate measures for a model	Quality assur- ance personnel
	GQM Plan	A GQM plan contains information necessary to motivate and define measures and interpret measure- ment data. Elementary components are GQM goal, questions, models, and measures.	Modeling: structures GQM products	Quality assur- ance personnel

3.1.6 Alternate Representation

none

3.2 Terminal Concept Attributes

The *intension* of a concept is a set of terminal and nonterminal concept attributes. Here, a terminal concept attribute is viewed as an epistemistic primitive.

Terminal concept attributes model how software engineering entities are specified for storage and retrieval.

3.2.1 Synonyms

Dimension, data element, feature, property, terminal slot

3.2.2 Definition

A terminal concept attribute is a 9-tuple (name, description, cardinality, type, default value, mandatory, value inference, inferred attributes, standard weight).

The predicate mand(attr) is true iff *attr* is mandatory where *attr* is the *name* of the attribute. t_{attr} denotes the *type* of a terminal concept attribute *attr*.

3.2.3 Description

Name	The name is used for reference purposes. All concept attributes (both terminal and nonterminal) of one concept's <i>intension</i> have unique names.
Description	A narrative text defining the meaning of the attribute.
Cardinality	A range specifying the minimal and maximal number of values the attribute may have. If the cardinality is unequal 1, the attribute values are specified as a list where a cardinality of 0 denotes an empty list. ¹
Туре	Each terminal concept attribute is typed. The type is an epistemistic primitive described in Section 3.3.
Default value	The <i>default value</i> concerns the insertion of new instances (Section 3.6 and Section 4.2). If the user entering the new instance does not specify a value for this attribute, the default value is used instead.
Mandatory	This component also concerns the insertion of new instances. It specifies whether an attribute value of an instance has to be specified (i.e., the attribute value may only be undefined if the attribute is not mandatory).
<i>Value inference</i>	This component defines how to calculate the attribute value automatically (if possible) based on other attributes' values (of an instance of this concept and of semantically related instances of this instance).

1 Some functions (see formulas in Section 3.7) interpret lists as sets. However, if no *value inference* is defined for a particular attribute, the sequence of the elements of its value will be the sequence in which they are specified (i.e., the sequence remains unchanged).

Inferred This component lists all attributes whose value is inferred using a value of this attributes attribute.¹

Standard The *standard weight* may be used by the similarity functions of the concept this attribute belongs to. It is a non-negative real number.² A standard weight of 0 denotes an attribute whose value will not be used for querying (i.e., this attribute cannot be specified for a query).

3.2.4 Representation

Concept attribute table A terminal concept attribute is represented using the concept attribute table. The concept attribute table is concept-specific and contains one row for every attribute. The columns are labeled as follows: »Layer«, »Name«, »Description«, »Cardinality«, »Type«, »Default value«, »Mandatory«, »Value inference«, »To infer«, and »Standard weight«. Attributes are sorted according to the layers they belong to. Possible values for the first column are »artif«, »I/F«, and »ctxt«. The rest of the columns represent the respective components of a terminal attribute where »To infer« contains the *inferred attributes*.

The cardinality is specified using the UML notation, that is, a range is denoted as *low..high* where *low* stands for the lower bound (≥ 0) and *high* ($\geq low$) for the upper bound. Instead of a number, an asterisk (»*«) can be used which stands for infinity. If *low* = *high*, the range may be abbreviated to a single number (e.g., »1« stands for »1..1«).

A *default value* is a value from the value range of the type (Section 3.3.4). An undefined entry for a *default value* is denoted with »–«.

If the attribute value is mandatory, the entry in the mandatory column is »yes«, otherwise »no« meaning that the attribute value may be undefined.

Value inferences are represented using a formula (Section 3.7.4). A »–« denotes that the value cannot be computed.

Inferred attributes are represented by pairs, separated by commas, of the form [*concept*]:[*attribute*] where *concept* and *attribute* stand for the names of the respective constructs.

¹ There is a mutual dependence between *value inferences* and *inferred attributes*. For every attribute used in a *value inference*, the *inferred attributes* of the used attribute must include the attribute whose value is inferred. Thus, *inferred attributes* can be derived from the *value inferences* automatically.

² For the standard similarity functions of concepts, this weight defines the importance of this attribute regarding the global similarity.

In addition, the similarity functions, the assertion, the precondition, and the super concept (Section 3.5) are defined near the concept attribute table. Attributes of the super concept are inherited by the concept which is specified through the concept attribute table. Thus, the *intension* of the concept does not only include the attributes specified in this concept attribute table, but also those specified in the attribute tables of its super concept(s). The root concept is denoted by »CONCEPT«.

3.2.5 Example

Table 3: Terminal concept attributes of the concept	Concept: Measurement Characterization Super concept: CONCEPT									
»Measurement Characterization«	Layer	Name	Description	Cardi nality	- Туре	Default value	Mand tory	a-Value infer- ence	To infe	r Stan- dard weight
	I/F	constraints	on the measurement program (e.g., fixed amount of effort assigned to the mea- surement program)	0*	Text	-	no	-	-	0

Conce Super	ept: Measurer concept: CO	ment Characterization NCEPT							
ayer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	⁻ Stan- dard weight
:txt	measure- ment inte- grated	measurement pro- grams regularly estab- lished accompanying software development and maintenance	1	Boolean	false	no	-	-	1
	experi- ences with measure- ment	specifies if no experi- ences are available or either positive or nega- tive experiences have been made with mea- surement in the past	1	Measure- ment- Knowledge	"not avail- able"	no	-	-	1
	core mea- sures	specifies if a set of core measures is collected in each project in case measurement pro- grams are performed regularly	1	Boolean	-	no	-	-	1
	attitude	of management and project personnel con- cerning software qual- ity improvement in general	1	Attitude	-	no	-	-	1
	effort	on the planning and execution of the mea- surement program in person-months	1	EffortPM	-	no	-	-	1
	duration	of the measurement program in calendar months	1	DurationM	-	no	-	-	1
	duration of data collec- tion	period in calendar months	1	DurationM	-	no	-	-	1

ayer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stan- dard weight
txt	frequency of feedback sessions	during the execution phase per calendar month	1	FreqM	-	no	-	-	1
	training	describes training(s) of the participants regard- ing the GQM approach and its application which took place during the planning phase	1	Text	-	no	-	-	0
	number of goals	size of the measure- ment program in terms of number of GQM goals	1	Cardinal	-	no	card(union(fil- ter([GQM Product Expe- rience], [con- text].[measur ement experi- ence]).[gqm plan].[gqm goal]))		1
	number of questions	size of the measure- ment program in terms of number of questions in the GQM plans	1	Cardinal	-	no	card(union(un ion(fil- ter([GQM Product Expe- rience], [con- text].[measur ement experi- ence]).[gqm plan]).[gqm question]))		1
	number of measures	size of the measure- ment program in terms of number of measures in the GQM plans	1	Cardinal	-	no	card(union(un ion(fil- ter([GQM Product Expe- rience], [con- text].[measur ement experi- ence]).[gqm plan]).[gqm measure]))		1

 sim_{artif} , $sim_{I/F}$, sim_{ctxt} : standard

precond: TRUE assertion: TRUE

An example for a more complex precondition can be found in the concept attribute table for »tTaxonomyNode« (Appendix):

recond: pos(1, [RootLevel].[VRange].[Symbol], [Symbol].[Symbol]) = (

An example for a more complex assertion can be found in the concept attribute table for »TCardinal« (Appendix):

assertion: [LowerBound] ≤ [UpperBound]

3.2.6 Alternate Representation

The *value inference* can also be represented graphically as a tree structure. The root is the attribute of the value inferred. The leafs are the attributes whose value is used for the inference. In contrast to the formula in the table, the attribute names are complemented by the names of the concepts they belong to. All other nodes denote the operators used. Figure 2 shows an example.

Interpretation In order to understand the interpretation of the figure, the reader should have read the sections on nonterminal attributes (Section 3.4) and formulas (Section 3.7). It may be advantageous to come back here after having read the rest of this chapter.

The figure has to be read from bottom to top. In Table 3, »[context]« in the »value inference« column refers to the nonterminal attribute »context« of the concept the value inference is part of (i.e., »Measurement Characterization«). This is shown in lower left corner of the figure. The nonterminal attribute »context« has the destination concept »Context Characterization« and the cardinality 1 (Table 7 on page 31). Thus, »[context]« returns exactly one instance of »Context Characterization« and ».[measurement experience]« refers to the attribute »measurement experience« of the concept »Context Characterization«. This is denoted in the figure by »[Context Characterization]: [measurement experience]«. The destination concept of the nonterminal attribute »measurement experience« is »Measurement Experience«. Since the cardinality of »measurement experience« is »0..*« a list of instances of »Measurement Experience« is returned (Figure 5 on page 32). However, to compute the number of questions in the GQM plan, we need to access the attribute »ggm plan« of the concept »GQM Product Experience« which is a specialization of »Measurement Experience«. Therefore, the list of instances is filtered (function »filter«). All instances which are not instances of »GQM Product Experience« are removed from the list. The result of the function is a list of instances of »GQM Product Experience«. The nonterminal »gqm plan« of »GQM Product Experience« returns the set of GQM plans which belong to an instance of the »GQM Product Experience«. Thus, the result of »filter(...).[ggm plan]« is a list of a lists of instances of a GOM plan. The function »union« takes this list of lists and merges the GQM plans into a single list of GQM plans by removing all duplicates. For each element of the list, the set of GQM questions is accessed through the attribute »ggm question« (denoted by ».[gqm question]« in the formula and »[GQM Plan]: [gqm question]« in the figure). The result is a list of lists of GQM questions. This is again merged into a single list by the function »union«. Finally, the function »card« counts the number of elements of the resulting list.

3.3 Types of Terminal Concept Attributes

All terminal concept attributes are typed. Here, a type is viewed as an epistemistic primitive.

Types model qualities of software engineering entities such as lines of code and efficiency, or they are used to specify entities further, e.g., a type may specify possible programming languages. Programming languages may be a terminal concept attribute for concepts such as a code module (specifying in which language the module is written) or a project (specifying what languages were used in the project).

3.3.1 Synonyms

none

3.3.2 Definition

A type is a 5-tuple (name, supertype, value range, unit of measure, sim).

The function range(type) returns the value range of *type*.

sim_{type} denotes the similarity function *sim* associated with *type*:

 sim_{type} : range(type) × range(type) \rightarrow [0;1]

super_{type} denotes the supertype of *type*.

3.3.3 Description

Name	The name is used for reference purposes. All types of an ontology have unique names.						
Supertype	This component specifies the type's <i>supertype</i> . Types differ from their supertype in one or more of the following ways:						
	• Value range. For symbol types (see predefined types below) the value range of the type includes the value range of its supertype:						
	range(type)⊇range(super _{type})						
	The range of the predefined types »text« and »identifier« cannot be changed. For all other types the range of the supertype includes value range of the type:						
	range(type) <u></u> range(super _{type})						
	Unit of measure.Sim.						
Value range	The value range specifies the possible values for all attributes of this type. In addition to the values specified the following special values are allowed: »undefined«, »unknown«, »n/a« (not applicable). »undefined« means that the value is currently not specified, but will be specified later; »unknown« means that the value is not known and will not be specified later; »n/a« means that the attribute is not applicable for the instance.						
Unit of mea- sure	This component specifies the measurement unit for numerical types (»integer« or »real«). Otherwise this component is not applicable.						
Sim	The similarity function associated with the type. It computes the similarity between two possible values of this type. The similarity function returns a real number between 0 (denoting total dissimilarity) and 1 (denoting total similarity, i.e., equivalence).						
	The similarity function is extended to terminal concept attributes as follows. Let i and q be two attribute values ¹ . Attribute values can be interpreted as sets (the						

minimal and maximal number of elements is defined by the cardinality). Then the similarity value is computed in the following way: $sim_{attr}(i, q)$

$$= \begin{cases} \sum_{e_2 \in q} \frac{\max\{ sim_{t_{attr}}(e_1, e_2) | e_1 \in i \}}{card(q)} & \Leftrightarrow card(q) > 0 \land card(i) > 0 \\ 0 & \Leftrightarrow card(i) = 0 \\ 1 & otherwise \end{cases}$$

This allows the computation of the similarity between two attribute values. Informally, the similarity function considers for each element in the second argument the best match in the first argument and sums up the similarity values of the pairs. Finally the similarity value for the attribute values is normalized resulting in a similarity value in the range [0; 1].

3.3.3.1 Predefined Types

Ordered types The following types are predefined. From each of these types, subtypes may be derived (for an explanation of the representation see the next section). The following types are called *ordered types*: Integer, Real, Text (alphabetically ordered according to ASCII), Identifier (alphabetically ordered according to ASCII), Date (ordered according to year, month, and day), Time (ordered according to hour, minute, and second), Timestamp (ordered according to year, month, day, hour, minute, second), and OrderedSymbol. For these types, a total ordering is defined.

Table 4: Predefined types	Name	Super- Value rangeUi type M	nit of Similarity Jeasure	
	Boolean	TYPE true, false n/	/a	
				sim(i, q) = $\begin{cases} 1 \Leftrightarrow i = q \\ 0 & \text{otherwise} \end{cases}$

1 Generally, the similarity is defined between two attribute values. However, similarity functions need not to be symmetrical (i.e., sim(i, q) \neq sim(q, i)). In practice, similarity functions are used for the similarity-based retrieval (cf. Section 4.1). Here, a similarity value is computed between an instance stored in the experience base and a query which is also specified in form of an instance. In the similarity functions, the arguments *i* and *q* refer to the instance and the query respectively (or their attributes in case of type similarity functions).

Name	Super- type	Value range	Unit of Measure	Similarity
Integer	TYPE	**	n/a	Let <i>minvalue()</i> and <i>maxvalue()</i> the lower and upper bound of the value range respectively. Then, the similarity is computed as follows:
				$sim(i, q) = 1 - \frac{ i - q }{maxvalue() - minvalue()}$
Real	TYPE	**	n/a	Let <i>minvalue()</i> and <i>maxvalue()</i> the lower and upper bound of the value range respectively. Then, the similarity is computed as follows:
				$sim(i, q) = 1 - \frac{ i - q }{maxvalue() - minvalue()}$
Text	TYPE	Any text	n/a	
				sim(i, q) = $\begin{cases} 1 \Leftrightarrow i = q \\ 0 & \text{otherwise} \end{cases}$
Identifier	Text	Any text consisting of letters (»a«»z«, »A«»Z«), digits (»0«»9«), »-«, and »_«.	n/a	$sim(i, q) = \begin{cases} 1 \Leftrightarrow i = q \\ 0 & otherwise \end{cases}$
Date	TYPE	(131; 112; 0*) [only valid	n/a	Let $daydiff(d, d')$ be the number of days the dates d and d' are apart and $date(1, 1, 1900)$ stand for Jan 1, 1900. Then, the similarity is computed as follows:
		dates] s	sim(i, q)	
				= 1 - <u> daydiff(i,q) </u> daydiff(i > q? i: q, date(1, 1, 1900))
				where i > date(1,1,1900) and q > date(1, 1, 1900)
Time	TYPE	(0*; 059; 059)	n/a	Let <i>timediff</i> (t , t') be the number of seconds the times t and t' are apart and <i>time</i> (0 , 0 , 0) stand for 00:00:00. Then, the similarity is computed as follows:
				sim(i, q) = (i = q? 1:
				$1 - \frac{ \text{timediff}(i, q) }{\text{timediff}(i > q? i: q, \text{time}(0, 0, 0))}$

Name	Super- type	Value range	eUnit of Measure	Similarity
Timestamp	ТҮРЕ	(131; 112; 0*; 0*; 059; 059) [the first three compo- nents con- stitute a valid date]	n/a	Let $tsdiff(t,t')$ be the number of seconds the timestamps t and t' are apart and $ts(1, 1, 1900, 0, 0, 0)$ stand for Jan 1, 1900, 0:00:00. Then, the similarity is computed as follows: sim(i, q) = (i = q? 1 : $1 - \frac{ tsdiff(i, q) }{tsdiff(i > q? i: q, ts(1, 1, 1900, 0, 0, 0))}$ where $i > ts(1, 1, 1900, 0, 0, 0)$ and $q > ts(1, 1, 1900, 0, 0, 0)$
Symbol	TYPE	{}	n/a	$sim(i, q) = \begin{cases} 1 \Leftrightarrow i = q \\ 0 & otherwise \end{cases}$
OrderedSymbol	Sym- bol	Ð	n/a	Each symbol in the ordered set is assigned a position. Let <i>pos(symbol)</i> be an integer value representing the position of <i>symbol</i> and <i>rangesize()</i> the number of symbols in the range. Then, the similarity is computed as follows: $sim(i, q) = 1 - \frac{ pos(i) - pos(q) }{rangesize()}$
TaxonomySym- bol	Sym- bol	"ROOT"	n/a	A taxonomy is represented as a tree. Let the function $d(n)$ be the depth. of node n where $d("ROOT") = 1$. Moreover, let $cnode(n_1, n_2)$ be the deepest common father of the nodes n_1 and n_2 . Then the similarity is computed as follows: $sim(i, q) = \frac{d(cnode(i, q))}{d(i) < d(q)? d(i): d(q)}$
Interval ^a	Inte- ger, Real, Date, Time, Times- tamp, Order edSym bol	(low;high) where <i>low</i> and <i>high</i> are the value ranges of the underly ing type (Integer, Real, Date, Time, Time, stamp, Ordered- Symbol, and their subtypes)	n/a -	The similarity is defined in a footnote ^b for space reasons.

a. In contrast to all other types, the interval type is actually a »type constructor«. Interval types can be constructed from all ordered types. Values of an interval type are pairs (I; h) where $I \le h$. b. The similarity for the interval types is computed based on the similarity of their underlying types. Let *low(i)* and *high(i)* be the lower and upper bound of the interval *i* respectively. Then the similarity is computed as follows (the formulas can be simplified if expressed for a particular underlying type):

The motivation/derivation of this formula is beyond the scope of this report.

3.3.4 Representation

Types are represented using a type table. The type table contains one row for each type. The rows are sorted alphabetically according to the names of the types. The columns of the table are labeled »Name«, »Supertype«, »Value range«, »Unit of measure«, and »Similarity« corresponding to the components of the type.

A *supertype* is represented by the name of the supertype. The root type is denoted by »TYPE«.

The *value range* is represented by one of the following alternatives:

- set of ranges (separated by commas). Each range is represented in the form *low..high*. If an asterisk is used for *low*, it stands for -∞. If an asterisk is used for *high*, it stands for +∞. For each range *low* ≤ *high* must hold. If a set of ranges is specified, the ranges may not overlap.
- **enumeration of the possible values.** For numeric types, the values are written in ascending order. For symbol types, the values are quoted and arranged as follows:
 - **Type »Symbol«.** The symbols are ordered alphabetically.
 - Type »Ordered Symbol«. The symbols are ordered from lowest to highest.
 - Type »Taxonomy Symbol«. The symbols are arranged either graphically as a tree or textually where the hierarchy is indicated through indentation.
- **graphical representation.** The possible values are enumerated implicitly and completely by the nodes of a graph which is used for specifying the similarity function (see below).

- **tabular representation.** The possible values are enumerated implicitly and completely by the columns/rows of a table which is used for specifying the similarity function (see below).
- Symbol glossary For symbol types (see predefined types above) the representation also includes a narrative text for each symbol defining the symbol. A symbol glossary is used to capture the symbol definitions. The symbol glossary is represented as a table consisting of the columns »Type«, »Symbol«, and »Description«.

In practice, the range of symbol types (including taxonomy symbol types) may not be known completely at the time the ontology is being developed (i.e., more possible values may be identified while the experience base is already in operation). Since it is expected that this situation will occur quite frequently, it must be possible to extend symbol types at any time. Those symbol types which can be extended during operation are marked with »DYNAMIC« in the range field.

The *unit of measure* is represented by text. If the type is not used for measurement attributes, the entry in the respective column is »n/a«.

The *similarity function* can be represented using one of the following alternatives:

- mathematical formula. See Section 3.7.
- **graphically.** This is only possible if the *value range* is finite. All possible values are represented by a node. Edges between the nodes are labeled with the similarity value. If there is no edge between two possible values, the similarity of the respective values is 0.
- **tabular.** This is only possible if the *value range* is finite. For each possible value, the table contains a row and a column. The first argument of the similarity function corresponds to the row, the second argument to the column.
- **term »Standard«.** For the predefined types (see above), a standard similarity is defined. The application of the standard similarity function is specified using the keyword »Standard«.
- **term »Inherited«.** The similarity function is inherited from the supertype.

Notes may be used for definitions which do not fit in the type table. In these cases the corresponding note is specified by the name of the note.

3.3.5 Example

Table 5: Example of a type table

Name	Supertype	Value range	Unit of measure	e Similarity
Attitude	OrderedSymbol	"rejecting", "disinter- ested", "moti- vated"	n/a	Inherited
DurationM	Real	0*	calendar months	Standard
Cardinal	Integer	0*	n/a	sim(i, q) = $\begin{cases} 1 & \Leftrightarrow i = q = 0 \\ 1 - \frac{ i - q }{i > q? \ i : q} & \text{otherwise} \end{cases}$
Role	Symbol	Graph-1, DYNAMIC	n/a	Graph-1

Figure 3: Note »Graph-1«: graphical representation of a value range and a similarity function

Table 6: Example of a Symbol Glossary

Configuration manager 0.1 User 0.5 0.5 0.25Maintainer 0.5 Tester

In Figure 3 a symmetric similarity function is specified. However, a nonsymmetric similarity function can be defined as well using directed edges.

Туре	Symbol	Description
Attitude	rejecting	refusing to accept and support measurement
	disinterested	without any interest wrt. measurement
	motivated	interested in and agreeing on the application of measurement
Role	Configura- tion Manager	integrates updates into the system, coordinates the production and release of versions of the system, and provides tracking of change requests.
	Maintainer	analyze changes, make recommendations, perform changes, perform unit and change validation testing after linking the modified units to the existing system, perform validation and regression testing after the sys- tem is recompiled by the Configuration Manager.
	Testers	present acceptance test plans, perform acceptance test and provide change request to the maintainers when necessary.
	Users	suggest, control and approve performed changes.
3.3.6 Alternate Representation

The predefined types can be arranged in a taxonomy and be represented by a tree.

3.4 Nonterminal Concept Attributes

Besides terminal concept attributes, nonterminal attributes may be part of a concept's intension. Here, a nonterminal concept attribute is viewed as an epistemistic primitive.

Nonterminal concept attributes model how a particular software engineering entity is related to other software engineering entities. For example, a GQM goal is related to a GQM plan.

3.4.1 Synonyms

Association, pointer, nonterminal slot, reference

3.4.2 Definition

A nonterminal concept attribute is a 11-tuple (*name*, *kind*, *destination* concept, reverse attribute, description, cardinality, default value, mandatory, value inference, inferred attributes, standard weight)

The function dest(attr) and reverse(attr) return the *destination concept* and the *reverse attribute* of *attr* respectively. The function kind(attr) returns the *kind* of *attr*. The predicate mand(attr) is true iff *attr* is mandatory.

For each nonterminal concept attribute a reverse nonterminal attribute exists. Let c be the concept of which n is a nonterminal attribute. Further, let R(k) be

the reverse kind of kind *k* (see Section 3.5.2). Then there exists the nonterminal attribute n'=reverse(n) where reverse(n) \in intension(dest(n)), kind(n')=R(kind(n)) and dest(n')=c and reverse(n')=n.

3.4.3 Description

Name	The name is used for reference purposes. All concept attributes (both terminal and nonterminal) of one concept's <i>intension</i> have unique names.
Kind	Each nonterminal concept attribute is of a particular kind (e.g., »is-a« or »has- parts«). The kind is an epistemistic primitive described in Section 3.5.
Destination concept	This component specifies the concept associated with the concept, the nonter- minal concept attribute belongs to. The values of a nonterminal concept attribute is a set of instances of the <i>destination concept</i> .
Reverse attribute	This component specifies the <i>reverse attribute</i> (see above).
Description, cardinality, default value, mandatory, value infer- ence, inferred attributes, standard weight	see Section 3.2.3 (Default) values of nonterminal attributes are specified using the instance names of the referenced instances (see Section 3.6.3).

3.4.3.1 Predefined Similarity Functions

There are two predefined similarity functions for instance names. Let *i*, *q*, and *k* be instance names of the same concept *c* and *instance(k)* the instance *k* refers to. Then the similarity functions are defined as follows:

 $sim_{1}(i, q) = sim_{Identifier}(i, q) = (i = q)? 1:0$ $sim_{2}(i, q) = sim_{c}(instance(i), instance(q))$

Informally, the first similarity function is based on the comparison of the names whereas the second similarity function is based on the comparison of the instances *i* and *q* refer to. Note that sim_2 cannot be used exclusively, because it has to be taken care that no circular computations are performed. Circular computations are possible since nonterminal concept attributes allow instances to

reference each other. One way to avoid circular computations is to mark all visited instances. If *i* or *q* refer to a marked instance then sim_1 is used instead of sim_2 . Implementations may restrict the usage of sim_2 even further for performance reasons (see Section 4.1).

3.4.4 Representation

Nonterminal concept attributes are represented using the same concept attribute table as used for the terminal concept attributes (Section 3.2.4).

The entry for the »Type« column is a string of the form »<name of kind> [<name of destination concept>].[<name of reverse attribute>]« or »<reverse name of kind> [<name of destination concept].[name of reverse attribute>]«. The default value is represented using instance names.

Nonterminal concept attributes of the predefined kinds (Section 3.5.3) »is-a« and »has-instances« are not represented in the table.¹ The »is-a« relationship is expressed through the specification of the super concept (for an example, see Table 3), whereas the »has-instances« relationships are represented by their reverse kind »instance-of« as part of the instance tables (Section 3.6.4). Alternatively these relationships can be represented graphically (Section 3.4.6 and Section 3.5.6).

3.4.5 Example

Table 7: Nonterminal attribute of the concept »Measurement Characterization«

ctxt con- references text context cha							weight
	the respective 1 aracterization	part-of [Context Character- iza- tion].[meas urement context]	-	yes	-	-	10

1 The reason that nonterminal concept attributes of these kinds are not part of the concept attribute table is that they are not instantiated for the instances of a concept.

3.4.6 Alternate Representation

Concept diagram

Nonterminal concept attributes can be represented graphically in a concept diagram. Concept diagrams use a notation similar to the class diagrams of UML [Cor97]. Concepts are represented by boxes with their names written inside. A nonterminal attribute is represented by an edge between two concepts. At the side of the *destination concept* the *cardinality* is written. In addition, the name of the attribute is written at that side, too (optionally). Since there always exists a reverse nonterminal attribute, there will be a cardinality at both ends of the edge. The edge is labeled with the *kind* of the nonterminal attribute (only one direction is labeled) and a filled triangle pointing in the read direction.

Predefined kinds use a special notation (Section 3.5.6).

It is possible to:

- color each *kind* of nonterminal attribute differently
- use a separate figure for each *kind* of nonterminal attribute (for an example see Appendix).

3.5 Kinds of Nonterminal Concept Attributes

Each nonterminal concept attribute is of a particular kind. Here a kind is viewed as an epistemistic primitive.

Kinds of nonterminal concept attributes are analog to types of terminal concept attributes. They model the semantic relationships between software engineering entities. For example, the relationship that exists between a GQM Plan and a GQM Measure is of the kind »has-parts«.

3.5.1 Synonyms

Type

3.5.2 Definition

A kind of a nonterminal concept attribute is a 5-tuple (*name*, *reverse name*, *purpose*, *structure*, *properties*).

R(kind) denotes the reverse name of kind.

3.5.3 Description

Name The name is used for reference purposes. All kinds of nonterminal attributes have unique names.

*Reverse name*As stated in Section 3.4.2, nonterminal attributes come pairwise. This is illustrated by Figure 5. The relationship can be read in one direction (the direction shown by the filled triangle). However, it can also be read in the other direction using the reverse name.

Purpose Just as there is a reason for concepts to be part of an ontology, there is a reason for defining a kind of nonterminal attributes. The purpose is a set of typical usage scenarios which show how this kind of nonterminal attributes can be used effectively.

Structure	Instances (Section 3.6) are related through kinds of nonterminal attributes. If instances are interpreted as nodes and the values of the nonterminal attributes as edges from a source to a destination instance ¹ , a structure is defined which has certain properties. The structure can be a set of trees, DAGs (directed acyclic graphs), or graphs (without any restrictions).
Properties	Besides the structure property, additional properties may hold true. Examples of additional properties are: symmetry, transitivity, etc.

3.5.3.1 Predefined Kinds

There are four predefined kinds.

kinds	Kind	Reverse nam	e Description	Structure	Properties
	is-a	has-special- ization	Denotes a specializ concept.	ation of a tree (sin- gle inher- itance)	Transitivity Every concept listed in the concept glossary is a specialization of exactly one concept (single-inheritance). There is one predefined concept »CONCEPT« which is the most general concept. It has only one terminal attribute with the name »Id« of the type »Identifier«. <i>Id</i> corresponds to the name of the instance. Let c_1 and c_2 be concepts. If c_2 is-a c_1 then the following properties (inherit- ance) hold:
					intension(c_1) \subseteq intension(c_2) extension(c_2) \subseteq extension(c_1) assert(c_2) \Rightarrow assert(c_1) precond(c_2) \Rightarrow precond(c_1)

¹ The source instance is an instance of the concept to which the nonterminal concept attribute belongs to. The destination instance is an instance of the destination concept as defined by the nonterminal attribute.

Kind	Reverse name	Description	Structure	Properties
instance-of	has-instances	Denotes a special is-a rela- tion. An instance is an ele- ment of the extension of a concept.	tree with no inter- mediary nodes	Let <i>i</i> be an instance of the concept <i>c</i> . Then the following properties hold: intension(i) = intension(c) $i \in extension(c)$
has-parts	part-of	Denotes a decomposition. Subparts may be shared among concepts.	DAG	Transitivity
has-decomposi tion	- decomposi- tion-of	Denotes a decomposition where the subparts exist only if the surrounding part (aggregate) exists.	tree	Transitivity A concept may have at most one non- terminal attribute of the kind »decom- position-of«. The cardinality of a nonterminal attribute of the kind »decomposition-of« is always 1. If a concept has a nonterminal attribute of the kind »decomposition-of«, it may not have any nonterminal attributes of kind »part-of«.

3.5.4 Representation

Kind table Kinds are represented using a kind table. The kinds are listed alphabetically by name, one in each row of the table. The columns are labeled »Kind«, »Reverse name«, »Purpose«, »Structure«, and »Properties« corresponding to the components of a kind. Each row defines implicitly the reverse kind as an additional kind which can be used for nonterminal attributes.

The »is-a« and »instances-of« relationships are represented outside the concept attribute table (Section 3.6.4). If a concept c_1 is-a concept c_2 then the concept attribute table of c_2 is also relevant for c_1 (i.e., the concept attributes of c_2 are not duplicated).

3.5.5 Example

Table 9: Example	Kind	Reverse nam	e Purpose	Structure	Properties
of nonterminal attributes	defines	defined-by	Documents the dependency of instances. If a instance is changed, it needs to be checked for all instances defined by the changed instance whether they need to be changed, too.	n DAG or e	transitivity

Kind	Reverse nam	e Purpose	Structure	Properties
depends-on	has-depen- dents	A special kind used for data collection proce- dures. The collection of data may depend on the collection of other data. For example, the finish date needs only be collected if the start date has also been collected in order to com- pute the duration of a process step. In this case, the collection of the finish date depends on the collection of the start date. If a measure is deactivated (i.e., temporarily no data for this measure is collected), all of its dependents should also be deactivated.	tree	transitivity

3.5.6 Alternate Representation

In the graphical representation the predefined kinds are represented different from »user-defined« kinds.

Note: In contrast to the concept attribute table, »instance-of« relationships can be part of the graphical representation.

3.6 Instances

The extension of a concept is a set of instances. Here, an instance is viewed as an epistemistic primitive. Usually, only a few instances (if any) are part of a software engineering ontology because most instances belong to the linguistic level. However, there is knowledge which is of importance to the modeled domain as a whole and which can be easily represented as instances. For example, instances of »GQM Measure« can be specified which are regularly used in a given domain (called core measures).

3.6.1 Synonyms

Case, characterization, object

3.6.2 Definition

An instance is a 3-tuple (name, concept, values).

There is an »instance-of« relationship between the instance and *concept* as well as all super concepts of *concept*, that is, if c_1 is a direct or indirect super concept of c_2 then:

 $\forall i \in extension(c_2): i \in extension(c_1)$

The function val(attr) returns the value of the instance's attribute attr.

The component *values* is a set of pairs (*attr*, *value*) where *value* is the attribute value of the attribute denoted by *attr* (i.e., *value* = val(*attr*)). The following properties hold for all concept attributes *attr* of an instance:

 $val(attr) \subseteq range(t_{attr})$ for terminal concept attributes

 $val(attr) \subseteq extension(dest(attr))$ for nonterminal concept attributes mand(attr) \Rightarrow $val(attr) \neq$ undefined

3.6.3 Description

Name The name is used for reference purposes. All instances have unique names.

- *Concept* This component specifies from which concept the instance is instantiated from, i.e., the intension of the instance is defined by the intension of the specified concept.
- *Values* The attribute values of the instance. If a value list is specified for an attribute (cardinality > 1) all values of the list have to be unique (e.g., »{2, 3, 4, 2,6, 3}« is an invalid value because »2« and »3« are not unique)..

3.6.4 Representation

Instance table An instance *i* is represented by an instance table. The instance table has three columns labeled »Layer«, »Attribute«, and »Value«. The first column corresponds to the layers of the attributes of *concept*, while the latter two columns correspond to the components of *value*. In addition, the most special concept (i.e., *concept*) is documented near the table.

3.6.5 Example

Table 10: Example instance

Conc	ept: GQM Measure	
Layer	Attribute	Value
artif	id	failure_count_1
	definition	count of failure reports turned in before delivery
	scale	"ratio"
	unit	"n/a"
	range	decomposition [Type]
	comments	-
I/F	assumption	for each failure detected a failure report is filled out
	model	"unknown"
	data collections pro- cedure	"unknown"
	questionnaire ques- tion	"unknown"
ctxt	gqm plan	"unknown"

3.6.6 Alternate Representation

none

3.7 Formulas

Formulas are used for similarity functions, assertions, preconditions, and value inferences. As such they model:

- the similarity between software engineering artifacts
- the similarity between software engineering quality values
- dependencies between software engineering quality values

3.7.1 Synonyms

Rules

3.7.2 Definition

A formula for a value inference is a mathematical term of type *t* where the variables are concept attributes and *t* is the type of the inferred attribute.

A formula for an assertion or a precondition is a mathematical term of type Boolean where the variables are concept attributes.

A formula for a concept similarity function is of the form

 $sim_{I}(i, q) = < mathematical term >$

A formula for a type similarity function is of the form

sim(i, q) = < mathematical term >

where *i* and *q* are values within the range of the type, and <mathematical term> returns a real number in the range [0; 1] or the special value »undefined«. The function computes the similarity from *i* to *q*.

A mathematical function may use the following operators and functions:

- Operators: (), ||, ., (unary), NOT, ~, ×, /, +, (binary), AND, OR, ?:, WHERE,
 =, ≠, <, >, ≤, ≥.
- **Functions:** avg, card, cnode, d, date, day, daydiff, del, father, filter, high, hour, ins, intersect, low, max, maxvalue, min, minute, minvalue, month, p, pos, rangesize, secdiff, second, sum, sysdate, systime, systimestamp, time, timestamp, undef, union, year.

3.7.3 Description

Operators The operators have the following signature and meaning (»int« is short for »integer«):

Operator	Signature(s)	Description
()	(any) -> any	Changes sequence of computation
	int -> int, real -> real	Computes the absolute value
	name.attr -> any	Computes an attribute value (see below)
- (unary)	-int -> int, -real -> real	Negates a numeric value
NOT	NOT boolean -> boolean	Negates a boolean expression
~	any ~ any -> real	Computes the similarity between two attribute values. Both values must be of the same type
×	int × int -> int, int × real -> real, real × int -> real, real × real -> real	Multiplies two numeric values
/	int / int -> real, int / real -> real, real / int -> real, real / real -> real	Divides two numeric values

Table 11: Signature and meaning of operators

Operator	Signature(s)	Description
+	int + int -> int, int + real -> real, real + int -> real, real + real -> real	Adds two numeric values
- (binary)	int - int -> int, int - real -> real, real - int -> real, real - real -> real	Subtracts two numeric values
AND	boolean AND boolean -> boolean	Logically ands two boolean expressions. A short-circuit computation (i.e., the computation of the second argu- ment is only performed if the first argument computes to false) is not used because the second argument could compute to a special value in which case the whole expression would compute to the special value (see page 44).
OR	boolean OR boolean -> boolean	Logically ors two boolean expressions. Short-circuit computation is not used.
?:	boolean? any : any -> any	Returns the second argument if the boolean expression is true. Otherwise it returns the third argument. A short- circuit computation is used, i.e., either the sec- ond or the third argument is computed but not both.
WHERE	any WHERE boolean	Returns »undefined« if the boolean expression is false. Otherwise it returns the value of the first argument. A short-circuit computation is used (i.e., the first argu- ment is not computed if the boolean expression com- putes to false).
 ≤, ≥	num OP num OP num OP> boolean, orderedSymb OP orderedSymb OP orderedSymb OP> boolean, date OP date OP date OP> boolean, where OP $\in \{=, \neq, <, >, \leq, \geq\}$ symbol OP symbol OP symbol OP> boolean, boolean OP boolean OP boolean OP> boolean, text OP text OP text OP> boolean where OP $\in \{=, \neq\}$, interval OP interval OP> boolean where OP $\in \{=, \neq\}$	Compares values. Value comparison expressions may be specified as usual in mathematics, e.g., 10 < x < 100 or x < y < z are legal expressions.

The priority and associativity of the operators are defined as follows:

Priority level	Operators	Associativity
1	()	left to right
2	- (unary), NOT	right to left
3	~, ×, /	left to right
4	+, -	left to right
5	AND	left to right
6	OR	left to right
7	?:	right to left
8	WHERE	right to left
9	=, ≠, <, >, ≤, ≥	left to right

Table 12: Priority and associativity of operators

Constants Formulas may use the following constants:

ConstantTypetrue, falseboolean..., -1, 0, 1, 2, ... int*..*realundefinednone (special value)n/anone (special value)unknownnone (special value)

Table 14: User defined constants

Table 13: Pre-

defined constants

Notation	Туре	Example
" <any text="">" (quotes are represented by »""«)</any>	text	"Hugo walks to his ""VW Golf"""
<type> ("<symbol name>")</symbol </type>	symbol type <i>type</i>	Attitude("disinter- ested")

Constants of type date, time, and timestamp may be generated using the *date*, *time*, and *timestamp* functions respectively.

Attribute values

The specification of values depends upon for what type the mathematical formula is used:

Table 15: Notation for attribute values

Type of formula	Notation	Meaning	Example
Type similarity function	i or q	<i>i</i> refers to the first argument, q to the second of the similarity function. The similarity is computed from <i>i</i> to q . ^a	i
Concept similarity func- tion	i.[<attr-name>] or q.[<attr- name>]</attr- </attr-name>	<i>i</i> refers to the first argument, <i>q</i> to the second argument of the similarity function. The similarity is computed from <i>i</i> to <i>q</i> .	i.[abstraction sheet]
Value inference, asser-	[<attr-name>]</attr-name>		[abstraction sheet]

a. The notion of »from ... to« is used here in analogy to distances (= dissimilarities) that are always computed from one instance to another.

Attributes with a cardinality of exactly 1 return a single value while attributes with a cardinality range or a cardinality other than 1 return a list of values.

In case of the concept similarity function, the assertion, the precondition, and the value inference, the ».« operator may also be used for navigational expressions. For instance, the expression [gqm plan].[gqm questions] as part of a value inference formula for the concept »Measurement Characterization« returns a list of GQM questions lists.

Functions

Table 16: Signatures and meaning of functions

Function	Signature(s)	Description
avg	avg(list of <elem>) -> <elem></elem></elem>	Computes the average. <elem> must be a numerical type (int or real)</elem>
card	card(list) -> int	Computes the number of elements in the list.
cnode	cnode(taxonomySymbol, taxonomySym- bol) -> taxonomySymbol	Computes the deepest common father of two symbols of a taxonomy.
d	d(taxonomySymbol) -> int	Returns the depth of a symbol where $d("ROOT") = 1$.
date	date(int ₁ , int ₂ , int ₃) -> date	Assembles a date value (int ₁ : day, int ₂ : month, int ₃ : year)
day	day(date) -> int, day(timestamp) -> int	Returns the day of a date or timestamp
daydiff	daydiff(date ₁ , date ₂) -> int	Returns the difference in days between two dates. If $date_1 < date_2$, daydiff returns a negative number.
del	del(list, int) -> list	Removes an element from a list given by the first argument. The element to be deleted is specified by the second argument (position in list). The resulting list is returned.
father	father(taxonomySymbol, taxonomySymbol) -> boolean	Returns true iff the first argument is a direct or indirect father of the second argument.
filter	filter(concept name, list of instances) -> list of instances	Returns all instances of a list which belong to the con- cept identified by <i>concept name</i> . At the same time it coerces the instances. This function is typically used in conjunction with »is-a« relationships. The value infer- ences in Section 3.2.5 show an exemplary application.
high	high(interval of elem) -> elem	Returns the upper bound of an interval value
hour	hour(time) -> int, hour(timestamp) -> int	Returns the hour of a time or timestamp
ins	ins(list, pos, elem) -> list	Inserts an element at a given position in a list. The resulting list is returned.
intersect	intersect(list of list) -> list	Computes the intersection of the sublists
low	low(interval of elem) -> elem	Returns the lower bound of an interval value
max	max(list of elem) -> elem	Computes the maximum of a list of numeric values, dates, or ordered symbols
maxvalue	maxvalue(), maxvalue(attr-name) -> elem	Returns the highest value of the range of an attribute type. In case of »*« (positive infinity), an implementa- tion-dependent maximal value is returned. The function is applicable only for ordered types. The first signature is used for type similarity functions, the second signa- ture for concept similarity functions, assertions, precon- ditions, and value inferences.
min	min(list of elem) -> elem	Computes the minimum of a list of numeric values, dates, or ordered symbols
minute	minute(time) -> int, minute(timestamp) -> int	Returns the minute of a time or timestamp

The functions have the following signature and meaning (»int« is short for »integer«):

Function	Signature(s)	Description
minvalue	minvalue(), minvalue(attr-name) -> elem	Returns the lowest value of the range of an attribute type. In case of »*« (negative infinity), an implementa- tion-dependent minimal value is returned. The function is applicable only for ordered types. The first signature is used for type similarity functions, the second signa- ture for concept similarity functions, assertions, precon- ditions, and value inferences.
month	month(date) -> int, month(timestamp) -> int	Returns the month of a date or timestamp
р	p(attr-name) -> real	Returns the parameter of an attribute (see Chapter 4 for details)
pos	pos(orderedSymbol) -> int	Returns the position of a value of an ordered symbol type. The return value > 0.
pos	pos(list, int, elem) -> int	Returns the first occurrence of an element in a list start- ing at the position of the second argument. If the ele- ment is not found, 0 is returned, otherwise the position of the first occurrence (> 0).
rangesize	rangesize(), rangesize(attr-name) -> int	Returns the number of elements in the range of an attribute type. It is applicable only for types with finite ranges. The first signature is used for type similarity functions, the second signature for concept similarity functions, assertions, preconditions, and value infer- ences.
secdiff	secdiff(time ₁ , time ₂) -> int, secdiff(timestamp ₁ , timestamp ₂) -> int	Returns the difference in seconds between two times or timestamps. If time ₁ < time ₂ or timestamp ₁ < timestamp ₂ , secdiff returns a negative number.
second	second(time) -> int, second(timestamp) -> int	Returns the second of a time or timestamp
sum	sum(list of elem) -> elem	Sums up all elements of a list. Elements must be of type int or real.
sysdate	sysdate() -> date	Returns the current date
systime	systime() -> time	Returns the current time
systime- stamp	systimestamp() -> timestamp	Returns the current timestamp
time	time(int ₁ , int ₂ , int ₃) -> time	Assembles a time (int ₁ : hour, int ₂ : minute, int ₃ : second)
timestamp	timestamp(int ₁₂₃₄₅₆) -> timestamp	Assembles a timestamp (int ₁ : day, int ₂ : month, int ₃ : year, int ₄ : hour, int ₅ : minute, int ₆ : second)
union	union(list of list) -> list	Computes the union of the sublists
year	year(date) -> int, year(timestamp) -> int	Returns the year of a date or timestamp

Special values The special values are propagated depending on the type of the mathematical formula.

A type similarity function returns the special value »undefined« if any subcomputation returns a special value. A concept similarity function may not return a special value, that is, it has to take care that all special values are »converted« into a numeric value (for an example, see the definition of the standard concept similarity function).

For a value inference, assertion, or precondition, a subcomputation may return any of the special values depending on the values of its arguments. The special values are prioritized as follows: »n/a«, »unknown«, »undefined«, regular value. Examples:

- n/a + 5 = n/a
- 6 unknown = unknown
- 5 + 6 = 11
- p(undefined) = undefined
- n/a AND unknown = n/a
- unknown / undefined = unknown

but (see description of type similarity function):

- n/a ~ 5 undefined
- 7 ~ unknown = undefined
- n/a ~ n/a = undefined

If an inferred value is not in the value range of the inferred attribute's type, the attribute's value is set to »undefined«.

If an assertion or precondition computes to a special value, it is interpreted as false.

3.7.4 Representation

Concept similarity functions, assertions, and preconditions are represented in the form as shown in the definition section together with its concept attribute table. Type similarity functions are represented in the form as shown in the definition section in the »Sim« column of the type table. Finally, value inferences are represented in the form as defined in the definition section in the »Value inference« column of the concept attribute table.

3.7.5 Example

See Section 3.2.5, Section 3.3.3, and Section 3.3.5.

3.7.6 Alternate Representation

Instead of »/« a fraction line may be used, i.e.,

$$x/y \rightarrow \frac{x}{y}$$

Instead of »?:« curly brackets may be used, i.e.,

		∫val ₁ ⇐	> cond	
conu? vai ₁ . vai ₂	\rightarrow	رval ₂	otherwise ∫	

The right curly bracket may be left out if nothing follows.

The retrieval and maintenance of context-specific knowledge can be guided if the model of the underlying structure is described explicitly. For this purpose, the structure model description must be formal so it can be interpreted by a computer system. The notation defined in the previous chapter was conceived with this objective in mind.

In the approach presented, the context-specific knowledge is represented on the linguistic knowledge level (see Section 2.2) and can be described using constructs of the conceptual level, i.e., using the standard vocabulary an ontology defines. Technically, context-specific knowledge is represented as instances of concepts.

This chapter describes how context-specific knowledge can be retrieved (Section 4.1) and maintained (Section 4.2 through Section 4.4) based on REF-SENO. For each of the two areas (retrieval and maintenance) it is shown what operations are necessary. Operations are defined by their inputs, outputs, and side-effects on the representation of the context-specific knowledge. Furthermore, the operations are related to the tasks for the maturing of an experience base (cf. Figure 7).

The performance of the tasks is more complex than described in the following sections, because the sections only address the changes in the representation of context-specific knowledge on the linguistic level for single instances. Thus, only elementary operations are described. These must be combined to provide »logical operations« (e.g., »remove GQM plan with all knowledge related to it«).

Figure 7: Maturing of an Experience Base (based on [BR91]) Such logical operations require, however, semantic knowledge which is not specified by REFSENO.

In order to show the effects of the various operations, the same contents of the experience base will be used. Figure 8 gives an overview of the contents. Table 17 through Table 29 show the instances while the intension is taken from the example in Appendix .

Figure 8: Overview of the contents of the experience base used in the examples for the descriptions of the operations

Table 17: Instance »proj_1«

Conc	oncept: Project Characterization				
Layer	Attribute	Value			
artif	id	"proj_1"			
	project name	C: Z			
	project start	6-1-1997			
	project end	undefined			
	duration	18			
	team size	2-20			
	effort	unknown			
	application of stan- dard software process	false			
	life-cycle model used	"waterfall"			
	tools	unknown			
	programming lan- guages	unknown			
	estimated product size	unknown			
	type of software	{"embedded/real-time systems"}			
	number of installa- tions	1			
	memory constraints	"normal"			
	performance con- straints	"normal"			
	target platforms	{"embedded processors", "workstations"}			
	newness to state of art	"initial delivery"			
	functionality	"important"			
	reliability	"desirable"			
	usability	"desirable"			
	efficiency	"important"			
	maintainability	"important"			
	portability	"unimportant"			
-		(II Comparison of the second second second second second second			
ctxt	project goals	get"}			
ctxt	project goals 	{ "ctxt_1"}			

Table 18: Instance »proj_2«

Conc	Concept: Project Characterization		
Layer	Attribute	Value	
artif	id	"proj_2"	
	project name	C: X	
	project start	2-1-1997	
	project end	9-30-1998	
	duration	19	
	team size	3-10	

Concept: Project Ch			zation
	Layer	Attribute	Value
	artif	effort	unknown
		application of stan- dard software process	false
		life-cycle model used	"waterfall"
		tools	unknown
		programming lan- guages	{"Ada"}
		estimated product size	unknown
		type of software	{"embedded/real-time systems"}
		number of installa- tions	1
		memory constraints	"normal"
		performance con- straints	"normal"
		target platforms	{"embedded processors", "workstations"}
		newness to state of art	{"initial delivery"}
		functionality	"important"
		reliability	"desirable"
		usability	"desirable"
		efficiency	"important"
		maintainability	"important"
		portability	"unimportant"
	ctxt	project goals	{"Complete development in time and bud- get"}
		context	{"ctxt_2"}
		comments	undefined
Table 10: Instance			
»ctxt_1«	Conce	ept: Context Character	ization
	Layer	Attribute	Value
	artif	id	"ctxt_1"
		organization context	
		project context	"proj_1"
		measurement context	
	ctxt	measurement experi- ence	"meas_prog_01"
		Comments	undefined
Table 20: Instance	Conce	ept: Context Character	ization
<i>"</i> ι ι λ ι _ 2 ×	Layer	Attribute	Value
	artif	id	"ctxt_2"

Conc	ept: Context Characte	rization
Layer	Attribute	Value
artif	organization context	
	project context	"proj_2"
	measurement context	
ctxt	measurement experi- ence	"meas_prog_02"
	Comments	undefined

Table 21: Instance »meas_prog_01«

Conce	ept: GQM Product Exp	erience
Layer	Attribute	Value
artif	id	"meas_prog_01"
	viewpoint	"Maintainer"
	representation form	"structured text"
	owner	"Goofy"
	status	"incomplete"
	version	0.02
	last change	3-2-1997
	readers	"C: Z"
	gqm plan	"reliability_01"
	measurement plan	
I/F	preconditions for reuse	undefined
ctxt	acquisition technique	"interview"
	expected adaptations	undefined
	expected cost of reuse	undefined
	dates of reuse	undefined
	guidelines of reuse	undefined
	comments	undefined
	context	"ctxt_1"

Table 22: Instance »meas_prog_02«

Conc	ept: GQM Product Exp	perience
Layer	· Attribute	Value
artif	id	"meas_prog_02"
	viewpoint	"Maintainer"
	representation form	"structured text"
	owner	"Goofy"
	status	"incomplete"
	version	0.11
	last change	1-2-1997
	readers	"C: Z"
	gqm plan	"reliability_01"

Conc	ept: GQM Product Exp	erience
Layer	Attribute	Value
artif	measurement plan	
I/F	preconditions for reuse	undefined
ctxt	acquisition technique	"interview"
	expected adaptations	undefined
	expected cost of reuse	undefined
	dates of reuse	undefined
	guidelines of reuse	undefined
	comments	undefined
	context	"ctxt_1"

Table 23: Instance »reliability_01«

Conc	Concept: GQM Plan				
Layer	· Attribute	Value			
artif	id	"reliability_01"			
	comments	undefined			
	gqm goal				
	abstraction sheet				
	gqm question	{}			
	gqm model	{"dter_01",}			
	gqm measure	{"failure_count_1", "fault_count_03",}			
ctxt	gqm product experi- ence	"meas_prog_01"			

Table 24: Instance »reliability_02«

Conc	Concept: GQM Plan			
Layer	Attribute	Value		
artif	id	"reliability_02"		
	comments	undefined		
	gqm goal			
	abstraction sheet			
	gqm question	{}		
	gqm model	{"dter_01",}		
	gqm measure	{"failure_count_1",}		
ctxt	gqm product experi- ence	"meas_prog_02"		

Table 25: Instance »effort_023«

Cond	Concept: GQM Plan			
Layer	· Attribute	Value		
artif	id	"effort_023"		
	comments	undefined		

Cond	ept: GQM Plan		
Laye	r Attribute	Value	
artif	gqm goal		
	abstraction sheet		
	gqm question	{}	
	gqm model	{}	
	gqm measure	{"effort_01",}	
ctxt	gqm product experi-	"meas_prog_02"	

Table 26: Instance þ»failure_count_1«

Cond	cept: GQM Measure	
Laye	r Attribute	Value
artif	id	"failure_count_1"
	comments	undefined
	definition	"count of failure reports turned in before delivery"
	scale	"ratio"
	unit	n/a
	range	
I/F	assumption	{"for each failure detected a failure report is filled out"}
	model	{"dter_01",}
	data collections pro- cedure	
	questionnaire ques- tion	
ctxt	gqm plan	{"reliability_01", "reliability_02"}

Table 27: Instance »fault_count_03«

uil count 03«	
	Laye
	artif

Cond	Concept: GQM Measure			
Laye	r Attribute	Value		
artif	id	"fault_count_03"		
	comments	undefined		
	definition	"count of fault per life cycle phase where the fault was introduced"		
	scale	"nominal"		
	unit	n/a		
	range			
I/F	assumption	{"the sw process includes the phases REQ, HLD, LLD/IMP"}		
	model	{}		
	data collections pro- cedure			
	questionnaire ques- tion			

	Concept: GQM Measure		
	Layer	Attribute	Value
	ctxt	gqm plan	{"reliability_01"}
Table 28: Instance	Conc	ept: GOM Measure	
»effort_01«	Laver	Attribute	Value
	artif	id	"effort 01"
		comments	undefined
		definition	"measures the effort spent on a project"
		scale	"ratio"
		unit	"person-month"
		range	
	I/F	assumption	{"the sw process includes the phases REQ, HLD, LLD/IMP"}
		model	{}
		data collections pro- cedure	
		questionnaire ques- tion	
	ctxt	gqm plan	{"effort_023"}
Table 29: Instance		anti COM Madal	

»dter_01«

Cond	Concept: GQM Model			
Laye	r Attribute	Value		
artif	id	"dter_01"		
	comments	undefined		
	type	"quality model"		
	category	"descriptive"		
	definition	"distribution testing effectiveness per role"		
I/F	assumption	{"testing is done by maintainers, testers, and users"}		
	data source			
	gqm measure	{"failure_count_1"}		
	question	{}		
ctxt	gqm plan	{"reliability_01", "reliability_02"}		

Retrieval of Context-Specific Knowledge 4.1

Context-specific knowledge is retrieved using a query specification:

Input A query specification in the form of one »main« and optionally several related instances. The »main« instance is an instance of any concept that is justified with a usage scenario.

Output Either an error message telling which attribute value specified is out of range or a list of instances similar to the »main« instance specified together with the similarity value (from the returned instance to the specified instance¹). The concept similarity function is used for computing the similarity value. The first argument to the similarity function is the instance in the experience base while the second argument is always the specified instance.

The list of instances returned is limited to the extension of the concept of the »main instance«².

Side effects none

4.1.1 Relation to Software Engineering

The retrieval supports the identification, selection, and partially the evaluation tasks:

- 1 **Characterize needed artifact**³**.** Characterization is performed by defining the query specification.
- 2 **Match.** The query specification contains one distinguished instance, the »main« instance. Only instances which have the same intension as the »main« instance will be returned. This restricts the search space.
- 3 **Select.** For all instances returned a similarity value is computed using the concept similarity function. By sorting the potential instances (from the match mechanism) according to their similarity, a selection can be made by cutting off the list at a reasonable point (e.g., only the first 10 instances are displayed).
- 4 **Evaluate.** The similarity value and the position in the list give decision support for choosing the most appropriate instance. Of course, whether the most appropriate instance will actually be reused depends on the effort needed to tailor the instance to the needs at hand.⁴ In order to make the

¹ Similarity functions are not symmetric. For instance, if the similarity between two modules is computed, the similarity value depends on the services provided by a particular module in the experience base (e.g., the deletion of a service requires less effort than providing a new service).

² The extension includes the instances of the subconcepts of the »main« instance's concept (cf. Table 8).

³ In this report, the term »artifact« does not only refer to documents and/or files existing in reality, but also to parts thereof (e.g., GQM questions as part of a GQM plan) as well as to »nondiscriminant attributes' values«. »Nondiscriminant attributes« are attributes with a standard weight of 0. They cannot be specified by a query. For example, lessons learned can be stored completely as instances [GRA+98]. Therefore, the term »artifact« is used for all concepts that are justified with a usage scenario in the concept glossary.

right decision, it also has to be estimated how much effort would be needed to create the needed artifact from scratch.

4.1.2 Description

Simple query Specification is one that involves only the »main« instance. Instances used for retrieval differ from instances stored in the experience base in that the:

- values for attributes declared as »mandatory« in the ontology, may be of the special value »undefined«.
- assertion does not need to be true.
- precondition does not need to be true.
- values can be specified for attributes whose values can be inferred. For attributes whose value is not specified, the value inference is used to try to infer a value before the actual guery is performed.
- values for »nondiscriminant attributes« cannot be specified. An attribute is *nondiscriminant* if its standard weight is 0.

However, if specified, attribute values have to be either within the value range of the corresponding type or be of one of the special values »undefined«, »unknown«, or »n/a«.

Table 30 shows such an example. In the example, nondiscriminant values are shaded. The objective of the query is to find some kind of measure associated with effort measured in person-months. Result of the retrieval is the list of instances of the concept GQM measure (cf. Figure 8) together with the respective similarity values (see Table 31). The default values for the weights w_{artif} , $w_{l/F}$, w_{ctxt} are 0.3. The result shows a total similarity for the instance "sfailure_count_1«. The reason for this is that the value of "unit" for this instance is "n/a". Thus, the local similarity (cf. footnote on page 12) computes to "undefined" (see Section 3.7.3) which is not considered in the concept's similarity function (see Section 3.1.4).

Table 30: Query specification 1 for a GOM measure	a Conc Id of Layer artif	cept: GQM Measure temporary instance: "tmp23042"			
equi measare		r Attribute	Value		
		id	undefined		
		comments			
		definition			

4 At this point it is unclear in how far the defined ontology can be of help for estimating the tailoring effort.

Conc Id of	Concept: GQM Measure Id of temporary instance: "tmp23042"				
Layer	Attribute	Value			
artif	scale	"ratio"			
	unit	"person-month"			
	range	undefined			
I/F	assumption				
	model	undefined			
	data collections pro- cedure	undefined			
	questionnaire ques- tion	undefined			
ctxt	gqm plan	undefined			

Table 31: Result of query specification 1

Instance	Similarity value
failure_count_1	1.0000
effort_01	1.0000
fault_count_03	0.833 3

A system implementing REFSENO should also offer the possibility to inspect both the instance (i.e., the characterization of the artifact) as well as the artifact itself (possibly by invoking a specialized tool for the artifact). This inspection would support the evaluation by a human.

Complex query specification In the first example only terminal attributes were specified. However, nonterminal attributes may also be specified as part of a query specification. In the latter case, the query specification is called *complex query specification*. There are two possibilities for specifying a nonterminal attribute: relationships to instances that already exist in the experience base, and relationships to temporary instances that are part of the query specification. After the retrieval is complete, these temporary instances will cease to exist. Also, temporary instances are user-specific. This means, if user A and user B query the experience base simultaneously, A cannot use the temporary instances of B and vice versa. Relationships between temporary instances are not bidirectional. The id of temporary instances is provided by the retrieval system.

The similarity function associated with a given element¹ of a nonterminal attribute's value depends on whether the element refers to an instance of the experience base or to a temporary instance. sim_1 is used for first case whereas

¹ The term »element« refers to either the value itself if the cardinality is 1 or to any element of the list if the cardinality is greater than 1.

 sim_2 is used for the latter (Section 3.4.3). The similarity function defined for the elements is extended to the attribute's value in exactly the same way as for terminal attributes (Section 3.3.3).

The specification of nonterminal attributes allows a more precise specification of the needed artifacts. Typically, context characteristics are specified using nonterminal attributes. Therefore, if no nonterminal attributes are specified, the context is barely considered or not considered at all at retrieval time. The applicability of suggested artifacts must be evaluated »manually«.

Table 32 through Table 39 show two complex query specifications. One specification references existing instances in the experience base (here, the instance »effort_023« is known by the user) while the other specification references temporary instances. Of course, combinations of references to existing and temporary instances are also allowed.

To avoid circular computations (Section 3.4.3), the similarity function sim_3 is used:

 $sim_3(i, q) = visited(q) \lor in - eb(q)? sim_1(i, q): sim_2(i, q)$

where the predicate visited(q) is true iff q refers to either the »main« temporary instance or to a temporary instance which has been involved in a sim_2 -computation, and the predicate in-eb(q) is true iff q refers to an instance in the experience base.

~					
Conc	Concept: GQM Measure				
ld of	temporary instance: "	tmp23841"			
Layer	Attribute	Value			
artif	id	undefined			
	comments				
	definition				
	scale	"ratio"			
	unit	"person-month"			
	range	undefined			
I/F	assumption				
	model	undefined			
	data collections pro- cedure	undefined			
	questionnaire ques- tion	undefined			
ctxt	gqm plan	{"effort_023"}			

Table 32: Query specification 2 for a GQM measure which is part of the GQM plan »effort_023«.

Table 33: Result of query specification 2

Instance	Similarity value
effort_01	1.0000
failure_count_1	0.6333
fault_count_03	0.5333

Table 34: Query specification 3 for a GQM measure

Conc	ept: GQM Measure	tmp20224″
10 01	temporary instance.	1111139234
Layer	Attribute	Value
artif	id	undefined
	comments	
	definition	
	scale	"ratio"
	unit	undefined
	range	undefined
I/F	assumption	
	model	undefined
	data collections pro- cedure	undefined
	questionnaire ques- tion	undefined
ctxt	gqm plan	{"tmp92387"}

Table 35: Temporary instance used for query specification 3

Conce Id of	ept: GQM Plan temporary instance: "1	tmp92387"
Layer	Attribute	Value
artif	id	undefined
	comments	
	gqm goal	undefined
	abstraction sheet	undefined
	gqm question	undefined
	gqm model	undefined
	gqm measure	undefined
ctxt	gqm product experi- ence	"tmp24642"

Concept: GQM Product Experience Id of temporary instance: "tmp24642"			
Layer	Attribute	Value	
artif id		undefined	
	viewpoint	undefined	
	representation form	undefined	
	owner		
	status	undefined	

Conc Id of	ept: GQM Product Exp temporary instance: "t	erience mp24642″
Layer	Attribute	Value
artif	version	undefined
	last change	undefined
	readers	
	gqm plan	undefined
	measurement plan	undefined
I/F	preconditions for reuse	
ctxt	acquisition technique	undefined
	expected adaptations	
	expected cost of reuse	
	dates of reuse	undefined
	guidelines of reuse	
	comments	
	context	"tmp92653"

Table 37: Temporary instance used for query specification 3

Conce Id of 1	ept: Context Character temporary instance: "t	rization mp92653″
Layer	Attribute	Value
artif	id	undefined
	organization context	undefined
	project context	"tmp12576"
	measurement context	undefined
ctxt	measurement experi-	undefined
	ence	
	Comments	

Table 38: Temporary instance used for query specification 3

Conce Id of	ept: Project Characteri: temporary instance: "t	ation mp12576″		
Layer	Attribute	Value		
artif	id	undefined		
	project name	undefined		
	project start	undefined		
	project end	undefined		
	duration	12		
	team size	undefined		
	effort	120		
	application of stan- dard software process	undefined		
	life-cycle model used	undefined		
	tools	undefined		

Laver	Attribute	Value
artif	programming lan- guages	undefined
	estimated product size	undefined
	type of software	undefined
	number of installa- tions	undefined
	memory constraints	undefined
	performance con- straints	undefined
	target platforms	undefined
	newness to state of art	undefined
	functionality	undefined
	reliability	undefined
	usability	undefined
	efficiency	undefined
	maintainability	undefined
	portability	undefined
ctxt	project goals	undefined
	context	undefined
	comments	

Table 39: Result of query specification 3

Instance	Similarity value
failure_count_1	0.8888
effort_01	0.8333
fault_count_03	0.7555

As can be seen in specification 3, queries can get quite complex. Therefore, it is useful that specialized browsers provide »short cuts« for frequently used queries. For example, for specification 3 a specialized tool could realize this query by presenting only 2 temporary instances to be filled out by the user.

Filter

Advanced implementations will also allow to filter the result, that is, only those instances will be displayed that have attribute values within the range specified by the *filter*. Filters are a means to discard irrelevant instances. A filter range can be specified by:

- an interval for ordered types
- a set of values for types with a finite value range

User-defined Another means of influencing the result of a guery is the specification of userdefined weights. If user-defined weights are specified, they will replace the stanweight dard weights specified in the concept attribute table. How the weights influence the similarity value is defined by the similarity functions. Similarity functions can Actual weight recall the actual weight (user-defined weight if specified; otherwise the standard weight) via the function p (see Section 3.7.3). The weights above have to be distinguished from the weights w_{artif} , $w_{I/F}$, and w_{ctxt} which can also be changed if the system provides a means to do so. Query specifications using filters or user-defined weights cannot be defined using the standard instance table. Instead, additional columns have to be provided. Table 40 and Table 41 show an example using a modified version of guery specification 2. In the result, »fault count 03« is filtered out and »failure_count_1« is rated slightly more similar due to the greater weight of the artifact layer. Table 40: Query Concept: GQM Measure specification 4 for Id of temporary instance: "tmp23042" GQM measures $w_{artif} = 0.7, w_{I/F} = 0, w_{ctxt} = 0.3$ using filters and Layer Attribute Value Weight Filter user-defined weights artif id undefined comments definition "interval"-"ratio" scale "ratio" unit "person-month" undefined range I/F assumption undefined model data collections proundefined cedure undefined questionnaire question {"effort_023"} ctxt gqm plan

Table 41: Result of query specification 4	Instance Similarity value		
	effort_01	1.0000	
	failure_count_1	0.7000	

4.2 Insertion of New Context-Specific Knowledge

New context-specific knowledge is inserted in the form of instances:

Input Set of instances.

- *Output* Either a message telling that the insertion was successful or an error message telling which consistency rule was violated.
- *Side effects* If a consistency rule would be violated, none. Otherwise the context-specific knowledge of the experience base will be extended by the new instances. In addition, all related instances will be updated by a reference to the new instances. If attributes of the inserted instances are part of value inferences, the corresponding value inferences will be performed.

4.2.1 Relation to Software Engineering

Once, context-specific knowledge has been collected, qualified (i.e., it was decided that it should be part of the experience base), and stored (i.e., the artifact itself – not its characterization – is physically stored), a characterization of the artifact has to be provided. In addition, the new artifact has to be integrated (i.e., it has to be specified which relationships exist to other already existing artifacts).

While the characterization is guided by the terminal attributes, the integration is guided by the nonterminal attributes. Both terminal and nonterminal attributes are part of an instance's intension. Thus, the insertion operation supports both the characterization and integration of new artifacts.

4.2.2 Description

New instances are specified using instance tables. Table 42 shows an example. Figure 9 shows the result of the inserted instance.

Table 42: Instance to	Concept: GQM Measure			
experience base	Layer	· Attribute	Value	
	artif	id	"test_role"	
		comments	undefined	
		definition	"records the test role"	
		scale	"nominal"	
		unit	n/a	
		range		
	I/F	assumption	{" "}	
		model	{"dter_01"}	
		data collections pro- cedure		
		questionnaire ques- tion		
	ctxt	gqm plan	{"reliability_01", "reliability_02"}	

Figure 9: Overview of the contents of the after inserting the new instance

The insertion operation also updates the reverse relationships, i.e., the corresponding nonterminal attribute values of the destination instances. Table 43 gives an example.

Table 43: Automati- cally updated instance »dter_01«	Cond	Concept: GQM Model			
	Laye	r Attribute	Value		
	artif	id	"dter_01"		
		comments	undefined		

Cond	cept: GQM Model	
Laye	r Attribute	Value
artif	type	"quality model"
	category	"descriptive"
	definition	"distribution testing effectiveness per role"
I/F	assumption	{"testing is done by maintainers, testers, and users"}
	data source	
	gqm measure	{"failure_count_1", "test_role"}
	question	{}
ctxt	gqm plan	{"reliability_01", "reliability_02"}

Several consistency rules have to be fulfilled when inserting new instances. If any of the consistency rules is violated, the experience base remains unchanged. The consistency rules are:

- 1 **Mandatory attributes.** For every mandatory attribute of an instance's intension a value must be specified.
- 2 **Cardinality.** The number of values supplied for an attribute must be in the cardinality range as defined in the concept attribute table. If nonterminal attributes are specified, the cardinality range of the affected nonterminal attributes of the referenced instances must also be observed.
- 3 **Terminal attributes.** Values of terminal attributes must be within the value range of the corresponding type of the attribute. In addition the special values »unknown« and »n/a« (and »undefined« if the attribute is not mandatory) may be used.
- 4 **Nonterminal attributes.** After the operation, all elements of a nonterminal attribute's value (in case of cardinality > 1) or the value itself (in case of cardinality = 1) must refer to existing instances (i.e., dangling references are not allowed). In addition the special values »unknown« and »n/a« (and »undefined« if the attribute is not mandatory) may be used.
- 5 **Assertion.** After the operation, all applicable assertions must be true. Applicable assertions are the assertions of the concepts of all affected instances as well as all of the concepts' super concepts.
- 6 **Precondition.** The precondition must be true for all instances to be inserted *before* the insertion operation is executed. This means that the preconditions are checked before the bidirectional relationships are established.

Consistency rules 1, 2, 4, 5 and 6 place constraints on the order in which instances can be inserted.
Semantics

Advanced implementation will also provide the capability to copy already existing instances and allow changing the copies. The changed copies will then be inserted into the experience base.

4.3 Removal of Context-Specific Knowledge

Context-specific knowledge is removed by deleting instances:

- *Input* Specification of a set of instances to be deleted
- *Output* Either a message telling that the removal was successful or an error message telling which consistency rule was violated.
- *Side effects* If a consistency rule would be violated, none. Otherwise the specified instances will be removed from the experience base. In addition, all related instances will be updated by removing references to the deleted instance. If attributes of the concept of the deleted instances lead to value inferences, the corresponding value inferences are performed.

4.3.1 Relation to Software Engineering

Removal of context-specific knowledge is not addressed explicitly in the tasks of maturing a software development organization. However, some reorganizations of the experience base will require the removal of outdated knowledge. For instance, if software systems are no longer programmed in Fortran, all code modules written in Fortran may be removed from the experience base. Another example is the availability of a generic artifact. For instance, if a new stack module becomes available that can be easily instantiated for any type, the type-specific stack modules may be removed.

4.3.2 Description

The removal of instances will affect nonterminal attribute values of referenced instances by the instances to be deleted (references to the instances to be removed will be deleted). If the deletion of references in these nonterminal attributes violates any of the consistency rules 1–5, a removal of the instance is not possible. In such a case the removal is not performed.

If the instance to be removed is an aggregate, i.e., it references other instances via an »has-decomposition« nonterminal attribute, the referenced instances are also removed because they are not to exist independently.

An example for the removal of an instance is given by the instance defined in Table 42. If the operation is performed with the experience base contents shown in Figure 9, the resulting contents of the experience base will be those depicted in Figure 8.

4.4 Change of Existing Context-Specific Knowledge

Context-specific knowledge is changed by changing the attribute values of existing instances:

- *Input* Specification of a set of instances to be changed
- *Output* Either a message telling that the change was successful or an error message telling which consistency rule was violated.
- *Side effects* If a consistency rule would be violated, none. Otherwise the specified instances will be changed. In addition, all related instances will be updated by adding and removing references to the changed instance. If attributes were changed which are part of a value inference, the inferences will be performed.

4.4.1 Relation to Software Engineering

As a software artifact is reused, application experience regarding the reused artifact is collected. Such application experience may result in a change of certain attributes of the characterization of the software artifact applied. For instance, if the characterization of a software engineering artifact has a terminal attribute for the timestamps of reuse, each reuse attempt will result in a change of this attribute's value. Also, with each successful application of an artifact, the validity of the artifact increases. If the validity is part of the artifact's characterization, it too would have to be changed.

Just as the removal of context-specific knowledge, the change of context-specific knowledge is not addressed by the tasks for a maturing software development organization. However, changing context-specific knowledge is a must as the examples above show.

4.4.2 Description

The changed instances must comply with all consistency rules stated in Section 4.2.2 (here, consistency rule 6 is applied *before* the change operation). Otherwise the contents of the experience base will not be changed. In addition, the value of a nonterminal attribute of the kind »decomposition-of« may not be changed.

5 Applying REFSENO: Benefits and Lessons Learned

This chapter lists the benefits and lessons learned gained so far by applying REF-SENO. It is subdivided into 4 sections mirroring the representation levels introduced in Section 2.2.

5.1 Linguistic Level

Since there existed no system implementing REFSENO completely at the time this report was written, not much experience on the linguistic level has been gained. However, using an implementation of a very restricted version of REF-SENO for demonstration purposes revealed:

- Knowledge as defined in Section 2.1 will only be acquired if there is a symbol glossary defining the meaning of each symbol unambiguously. If such a symbol glossary is not available or does not define symbols unambiguously, information supplied by the knowledge sources will consist of statements which are believed to be true by the knowledge source, but are not really true (because the meaning of a symbol varies from user to user).
- The first time, knowledge sources should supply their knowledge in the presence of a knowledge engineer. First results of guided interviews (with the knowledge engineer as the interviewer) were promising. This is probably due to the fact that the knowledge engineer can explain the difference between symbols. This increases the *terminological control* [Gau95] further.

But before knowledge can be acquired at all, the knowledge acquisition has to be initiated, that is, it has to be assured that context-specific knowledge that is to be stored (this is specified by the ontology) is actually collected. For instance, for the ontology defined in Appendix the dates of reuse, expected adaptations, and expected costs of reuse shall be recorded. Rules have to be established that prescribe when to supply the knowledge. One possibility is to update the knowledge when a new version of a GQM entity is checked-in.

5.2 Conceptual Level

At the conceptual level, ontologies are defined. This section takes a closer look at the building, evolution, and validation of ontologies.

Applying REFSENO: Benefits and Lessons Learned

5.2.1 Building an Ontology

Just like software systems, ontologies should be built in an engineer-like fashion [GP98, UG96]. At the time this report was written, a set of techniques existed for developing ontologies [GP98, UG96, vHFAH⁺95]. However, these ontologies do not use constructs known from case-based reasoning and database systems as REFSENO does. Furthermore, the techniques have not been applied for software engineering ontologies. Therefore, specialized techniques for developing software engineering ontologies have to be devised.

A first step is the definition of major documents. Gomez-Perez [GP98] suggests to have a specification of an ontology, the ontology itself (which corresponds to the design of a software system), and an implementation operationalizing the ontology. The latter requires that operations on the knowledge representation are defined [Rei91] as it is done in Chapter 4 for REFSENO.

The specification of an ontology should contain the domain modeled, the purpose of the ontology, the scope, and administrative information like the authors and knowledge sources [GP98]. For software engineering ontologies it has been shown that a refinement of the scope is helpful. The scope should list at least (major) concepts, instances (as far as they are part of the ontology – for a discussion on this topic see introduction to Section 3.6), and attributes common to all concepts. Table 44 shows an example for the ontology defined in Appendix .

Domain	Measurement program planning
Date	June 25, 1998
Conceptualized by	Christiane Gresse von Wangenheim, Carsten Tautz
Purpose	Ontology about GQM entities to be used when information is required for planning a GQM-based measurement program
Level of formality	Semi-formal (REFSENO)
Scope	 List of concepts: GQM entities (Abstraction Sheet, Artifact Event, Context Character- ization, Data Collection Event, Data Collection Instrument, Data Collection Procedure, Experience, GQM Goal, GQM Measure, GQM Model, GQM Outcome, GQM Plan, GQM Problem, GQM Problem Cause, GQM Problem Solution Experience, GQM Product, GQM Product Experience, GQM Question, GQM Solution, Item, Measure- ment Characterization, Measurement Experience, Measurement Plan, Organization Characterization, Periodic Event, Project Charac- terization, Quality Item, Questionnaire, Questionnaire Question, Variation Item) Software process entities (Software Object, Tool, Software Attribute, Software Process, Software Product, Role) Instances: <i>none</i> Common concept attributes: <i>none</i>
Source of knowledge	C. Gresse von Wangenheim, »GQM Domain Model« V1.0, May 15, 1998.

Table 44: Ontology requirements specification

Care should be taken when defining the purpose of the ontology. REFSENO is general enough to be used for structuring any kind of software engineering knowledge. The purpose will determine to which level of detail the domain will be modeled (defined by the scope of the ontology). For instance, in case of GQM, retrieval on the level of GQM plans only would be an alternative to the retrieval of all kinds of GQM entities (as shown in Appendix). The latter suggests to provide logical operations such as »insert GQM Plan« that would insert all instances related to a single GQM plan. Such a specialized operation cannot be provided by a general purpose tool, but must be provided by a special GQM tool.

Chapter 4 defines the basic operations allowing incremental storage. However, for specialized operations it may be necessary to allow not only the insertion of single instances, but also the insertion of a set of instances. The consistency checks would then be performed after the insertion of all instances. Such a complex operation would alleviate the deadlock problem described in Section 4.2.

The scope is the hardest part of the requirements specification to define. The development of usage scenarios helps to determine the scope. The usage scenarios should cover those activities to be supported by the experience base. In order to carry out the activities, knowledge is needed. This needed knowledge must be structured and modeled by the ontology. At the specification stage, concepts are identified that can be justified using usage scenarios (see discussion on purpose of concepts in Section 3.1.3). These concepts are considered to be the *major* concepts of the ontology. More concepts may be added later for modeling purposes.

After the requirements specification has been written, the ontology itself using REFSENO has to be developed. Here is a suggested process model for developing an ontology based on the experience gained thus far:

- 1 Take the concepts of the scope of the ontology requirements specification and define the concept glossary for them.
- 2 Identify the semantic relationships between the concepts using the alternate representation for nonterminal concept attributes described in Section 3.4.6. Each time a new kind of relationship is used, define the kind in the table for the kinds of nonterminal attributes (see Section 3.5.4).
- 3 Through relating concepts, common parts shared by two or more concepts may be identified. These parts should become concepts themselves. These are concepts introduced for modeling reasons. They also have to be defined in the concept glossary.
- 4 Identify the terminal attributes for all concepts. For each concept define a concept attribute table (see Section 3.2.4). Each time a new type of attribute

is used, define the type in the type table (see Section 3.3.4). If a symbol type is defined, define each of the symbols in the range in the symbol glossary (see Section 3.3.4). If the value can be computed automatically, define a value inference. Define the »to infer« entry for the attributes needed in the computation.

- 5 Complete the concept attribute tables by the nonterminal attributes. The nonterminal attributes have to be consistent with the graphical representation defined in step 2.
- 6 Check the completeness of all concept attribute tables: are there attributes describing the artifact itself, its interface, and its context? [BR91] Attributes describing the artifact itself are typically terminal attributes while attributes describing the interface are typically nonterminal attributes whose values reference the interfacing artifacts. The context is described using both terminal (for artifact-specific qualities) and nonterminal attributes (for references to a quality model valid for a class of artifacts, and for references to descriptions of the application domain and development process models).
- 7 Define instances specified in the requirements specification using instance tables (see Section 3.6.4).

Once an ontology is defined, it has to be implemented. In case of REFSENO, the operations for an implementation are already defined (Chapter 4).

5.2.2 Evolving an Ontology

Over time, the knowledge needs of an organization will change. This requires the evolution of ontologies. Evolving a software engineering ontology means changing the structure of an experience base. Since REFSENO provides epistemological primitives, the implementation does not need to be changed (i.e., the ontology is represented explicitly and interpreted by the implementation). However, the context-specific knowledge of an experience base is based on the structural knowledge the ontology provides. Hence, the context-specific knowledge has to be reorganized with each tailoring of the underlying ontology. Advanced implementations will provide support for this kind of reorganizations. For example, if a new attribute to a concept is added, the attribute values of the concept's instances may be computed automatically (e.g., if a value inference is defined for the attribute). If the value range of a type is changed, the new values may be computed using the old values.

Dynamic symbol types In addition there may be some »minor« changes to the ontology which should be possible to perform »on the fly«. Extending symbol types is such an example. Often, the complete value range of symbol types is not known at the time an ontology is developed. If a new instance is inserted, it has to be possible to extend such *dynamic* symbol types.¹ Extending symbol types involves the precise definition of the new symbol in the symbol glossary as well as a redefinition of the similarity function. However, for all symbol types using the default similarity function, the similarity function can be adapted automatically to the extended value range.

5.2.3 Validating an Ontology

The evolution of an ontology is triggered by a continuous validation of the adequacy of an ontology. If the structure of the context-specific knowledge is no longer perceived as adequate, the ontology must be evolved.

In addition, an initial validation should be performed after a new ontology has been developed. This can lead to changes in the ontology before context-specific knowledge is inserted in the experience base. It is important that inadequacies of an ontology are discovered as early as possible because the adaptation of context-specific knowledge may have to be performed manually. The less context-specific knowledge exists the less adaptation effort will be required.

For instance, during the validation of the ontology defined in Appendix ² it turned out that the symbols for the types »organizational process model« (»no«, »high-level«, »low-level«) and »level of automation« (»high«, »low«) could not be defined unambiguously. Therefore, the symbol type »organizational process model« was changed to boolean and attributes of type »level of automation« were removed.In this case, an automatic adaptation of already existing instances could have been performed (in the former case, »no« would have to be replaced with »false«, »high-level« and »low-level« with »true«; in the latter case, the removal of an attribute would not require any recalculation at all).

In general, measures for evaluating the adequacy of ontologies need to be defined. Such measurement programs may result in data collection during the retrieval of context-specific knowledge.

1 Dynamic symbol types are defined by the keyword »DYNAMIC« in the value range column of the type table.

2 The validation was done in form of a demonstration for reusing GQM plans. This demonstration included only parts of the ontology, but showed nevertheless some improvement potential.

Applying REFSENO: Benefits and Lessons Learned

5.3 Epistemological Level

On the epistemological level, knowledge is represented using REFSENO. Therefore, this section focuses on the benefits and preliminary validation results of REFSENO.

5.3.1 Benefits of REFSENO

The benefits of REFSENO include:

- the possibility to model software engineering knowledge explicitly in a precise, consistent, and complete manner using alternate representations.
- the possibility to conceptualize software engineering knowledge explicitly in various application domains and contexts
- a clear terminology differentiating between conceptual and context-specific knowledge enabling the management of knowledge from various contexts
- the possibility to validate conceptual models of software engineering knowledge
- the operationalization of an experience base based on the conceptualization of software engineering knowledge

In the following, the first two benefits will be presented in detail.

Conceptualization of Software Engineering Knowledge

Tools for creating and changing software engineering artifacts use an implicit conceptualization of the artifacts. If more than one tool needs to access a software engineering artifact, they need to *share* the conceptualization requiring the conceptualization to be explicit. The sharing of conceptual knowledge is one of benefits ontologies provide [UG96]. If only concepts and relationships between them need to be modeled, modeling approaches like UML [Cor97] suffice. However, if an experience base is to be developed, additional knowledge such as knowledge on similarity computation and automatic value calculations have to be captured. Existing approaches do not allow this.

REFSENO was developed with these special requirements in mind. Therefore, it allows to describe explicitly all structural knowledge necessary to specify an experience base. The explicit conceptualization (ontology) allows to:

- communicate the structure model of an experience base
- operationalize an experience base by defining operations on the knowledge representation (so done in Chapter 4).

Precise defini- tion	Ontologies specified using REFSENO are precise. For instance, while developing the ontology described in Appendix , the following points of the original domain model could be improved:
	 Semantic relationships were defined using narrative text. In REFSENO, the epistemistic primitive »kind of nonterminal concept attribute« is used for this purpose. The epistemistic primitive prescribes what kind of knowledge is needed to define a semantic relationship unambiguously. The statement »to represent the interdependencies the GQM entities, in general, have the following attributes« cannot be expressed in REFSENO. Instead for all pairs of GQM entities the applicable interdependencies have to be defined.
Complete defi- nition	Ontologies specified using REFSENO are complete in the sense that all concep- tual knowledge necessary to instantiate an experience base is provided. This is done by using tabular representations for the epistemistic primitives. If an entry in the table is empty, it is not specified – thus the ontology is defined incom- pletely. For instance, while developing the ontology described in Appendix , the following points of the original domain model could be improved:
	 No cardinality was specified for the attributes. REFSENO requires to specify the cardinality as part of the concept attribute specification. For some of the semantic relationships no kind was specified. REFSENO requires to specify the kind as part of the nonterminal concept attribute specification. No similarity functions were defined. REFSENO requires to specify type similarity functions for each type and concept similarity functions for each concept. If similarity functions are not specified, the retrieval of similar software engineering artifacts is not possible.
Consistent def- inition	Ontologies specified using REFSENO are consistent in the sense that certain con- sistency criteria have to be fulfilled. Some of these consistency rules can be enforced automatically:
	 No two concepts may have the same names. No two attributes of a concept may have the same names. Polymorphism is not allowed, that is, if a concept is a specialization of another, it may not redefine any of the inherited attributes. No two types may have the same name. No two kinds may have the same name. No two instances may have the same name. Default values have to be within the value range of the attribute's type. Formulas for value inferences have to be type compatible with the attribute values they infer. Value inferences and <i>inferred attributes</i> must match. Advanced systems will compute the <i>inferred attributes</i> component automatically.

Applying REFSENO: Benefits and Lessons Learned

- Graphical representation of formulas must match formula. Advanced systems will construct the graphical representation automatically.
- Graphical representation of type hierarchy must match the type definitions. Advanced systems will construct the graphical representation automatically.
- For every nonterminal concept attribute there has to exist a corresponding reverse nonterminal concept attribute (i.e., all semantic relationships are bidirectional).
- The destination concept of a nonterminal attribute must be defined.
- Graphical representation of nonterminal concept attributes must match the tabular representation. Advanced systems will generate a graphical representation for each kind automatically.
- The syntax of formulas has to be correct.

For instance, while developing the ontology described in Appendix , the following points of the original domain model could be improved:

- »Question«/»GQM Question«, »Model«/»GQM Model«, and »Measure«/ »GQM Measure« were used as synonyms. This was discovered by using the graphical representation of relationships, but it could have been discovered automatically, too, because the destination concepts of some nonterminal attributes did not exist.
- Alternate representation allow to view a conceptualization from different viewpoints. For instance, the alternate (graphical) representation of nonterminal concept attributes can be used to overview the structural knowledge of an experience base. Such an overview can be used to talk about a conceptualization. This in turn helps to find inconsistencies and modeling errors early. For instance, while developing the ontology described in Appendix , the following points of the original domain could be improved:
 - It was not clear whether questionnaires are a specialization or a part of data collection instruments (the different kinds of relationships were specified in different sections), i.e., the concept »data collection instruments« was used with different meanings. This inconsistency was discovered while using the graphical representation of semantic relationships because between the two concepts there was a »is-a« as well as a »has-part« relationship which did not make sense.
 - The relationship from »GQM question« to »GQM measure« was not modeled because it would have duplicated knowledge and, thus, opened the way for storing inconsistent context-specific knowledge. The »GQM measure« of a »GQM question« can be accessed via navigation: »GQM question« to »GQM model« to »GQM measure«. Alternatively it could have been modeled using a value inference.
 - For the specification of a data collection instrument, both a taxonomy and a reference to a detailed characterization was used for the same concept. It was decided to use the reference.

Clear Terminology

The clear distinction of conceptual and context-specific knowledge allows to define whether knowledge has to be defined *once* on the conceptual level or *for each instance* on the linguistic level. Knowledge to be supplied only once is specified by REFSENO, knowledge to be supplied for every instance is specified by an ontology. For example, while developing the ontology described in Appendix , the following points of the original domain model could be improved:

• The purpose of capturing a GQM entity and guidelines for reuse were originally modeled as attributes of a GQM entity. However, this is part of the structural knowledge because purpose and guidelines for reuse are specified using a usage scenario. REFSENO requires this structural knowledge as part of the concept glossary.

5.3.2 Validation of REFSENO

By defining the ontology of Appendix using REFSENO based on an independently developed domain model, REFSENO was validated for the first time. Some of the lessons learned have already contributed to the definition of REF-SENO as it is presented in this report:

- The existence of concepts has to be justified. Description, purpose and intended user(s) specify for every concept »who and how the concept's instances will be used for what purpose«. This avoids a proliferation of concepts. Only concepts which are meaningful in the context of an experience base are defined.
- The existence of all kinds of relationships has to be justified. This avoids proliferation of relationship kinds. Only those relationships that have a meaning that can be precisely specified are introduced. Furthermore, the meaning and properties of all relationships have to be defined. This allows special operations to be defined based on the meaning (and properties). For example, a »has-parts« relationship can be used to generate reports automatically.
- A glossary for symbol types is required in order to avoid misunderstandings.
- Symbol sets may not contain the same symbol more than once. This restriction was extended to all sets, that is, to values of attributes with a cardinality > 1.¹
- 1 It remains to be seen whether this restriction is not too restrictive. However, up to now no multiple sets needed to be modeled for software engineering knowledge.

The rework of the first ontology version (for GQM planning) led to further extensions of REFSENO:

- Addition of assertion component to the primitive »concept«.
- Addition of precondition component to the primitive »concept«.
- Addition of interval types.

It is expected that these changes of REFSENO will not be the last ones. The following changes are likely as more and more ontologies are defined using REF-SENO:

- definition of more basic types
- definition of more functions for formulas
- for formulas: definition of an iterator and sequential computations using variables¹
- specification of concept similarity functions: in the current version of REF-SENO, user-defined definitions of concept similarity functions tend to be long and complex. On the other hand, up to now the standard concept similarity function was sufficient. It is not clear for which situations a user-defined similarity function is needed. Therefore, more experience needs to be gained before a redefinition of specifying concept similarity functions is possible.
- integration of views: every user has different knowledge needs depending on the task he is working on. Consequently, the conceptual knowledge used to guide the user at retrieval time should depend on the task to be performed. This can be modeled using views. However, experience regarding the difference between views (in terms of epistemological primitives) still needs to be collected. Moreover, it is unclear how beneficial a view mechanism would be, because persons using different views could no longer communicate about the conceptualization as a whole. Therefore, more experience on the adequacy of the current version of REFSENO and required extensions (for specific tasks) needs to be gained.

5.4 Implementation Level

As there existed no system implementing REFSENO completely at the time this report was written, only little experience has been gained at this level. However, it is clear that a commercial tool implementing an experience base based on REFSENO must have mechanisms for:

¹ This would allow the specification of algorithms. Consequently the term »formula« should be replaced by »algorithm«. However, the decision on this extension should be made with care because algorithms can be complex in terms of time. Since value inferences are initiated while a user interacts with the system, the performance of a system implementing REFSENO may decrease dramatically.

- Access rights. »Knowledge is power«. Therefore, people and organizations are very fond of protecting their knowledge. This can only be realized through access rights. Who may access context-specific knowledge is determined by the:
 - project/department/organization people work in (project-specific or organization-specific knowledge)
 - role people play (e.g., project manager, software developer)
 - knowledge source (e.g., effort data may only be changed by the person supplying it)
- **Evolution of the underlying ontology.** The evolution of ontologies has already been discussed in Section 5.2.

6 Summary and Outlook

In this report, the representation formalism REFSENO for software engineering ontologies has been defined. Ontologies conceptualize structural software engineering knowledge explicitly. Such explicit conceptualizations can serve as a means for communicating about adequate structure models for experience bases. Through clearly defined epistemistic primitives and operations on the conceptual knowledge representation, REFSENO provides in addition a means for operationalizing an experience base based on a conceptualization of structural software engineering knowledge.

Ontologies specified using REFSENO are defined precisely, completely (in the sense that all conceptual knowledge necessary to operationalize an experience base for the modeled »real world« entities is supplied), and consistently. Therefore, REFSENO also provides the means for checking structural software engineering knowledge for completeness and consistency.

The epistemistic primitives of REFSENO constitute a notation for software engineering ontologies. However, REFSENO does not address on *how* to build ontologies (i.e., how to acquire conceptual knowledge). A coarse sequence of tasks to be performed has been described in Section 5.2.1. But further research on defining an »engineering process« for building and evolving ontologies is necessary.

Another issue to be addressed is the validation of REFSENO. As more and more software engineering ontologies are built, additional characteristics may be identified that need to be modeled in order to get an adequate (i.e., easy-to-use) operationalization of an experience base. Therefore, it is expected that REF-SENO will evolve. Already defined epistemistic primitives are validated through the application of REFSENO for software engineering ontologies.

Finally, ontologies themselves must be validated. This requires to conduct case studies using ontologies specified using REFSENO. Such case studies will show whether the ontologies are adequate. If they are, this also validates REFSENO because then REFSENO obviously allows to specify adequate ontologies. However, at the present more research needs to be done to determine how adequacy can be measured and – more importantly – how it can be determined in what way to change the ontology (or REFSENO as its underlying representation formalism).

Acknowledgments

7 Acknowledgments

The authors would like to thank Klaus-Dieter Althoff and Markus Nick for many fruitful discussions and reviewing an earlier version of this report.

References

[Alt97]	Klaus-Dieter Althoff. Evaluating case-based reasoning systems: The Inreca case study. Postdoctoral thesis (Habilitationsschrift), Univer- sity of Kaiserslautern, July 1997.
[ASU86]	Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. <i>Compilers: Principles, Techniques, and Tools</i> . Addison-Wesley Publishing Co., Reading: MA, 1986.
[BAB+87]	Bruce A. Burton, Rhonda Wienk Aragon, Stephen A. Bailey, Kenneth D. Koehler, and Lauren A. Mayes. The reusable software library. <i>IEEE Software</i> , 4(7):25–33, July 1987.
[BCR94]	Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi- ence Factory. In John J. Marciniak, editor, <i>Encyclopedia of Software</i> <i>Engineering</i> , volume 1, pages 469–476. John Wiley & Sons, 1994.
[BR91]	Victor R. Basili and H. Dieter Rombach. Support for comprehensive reuse. <i>IEEE Software Engineering Journal</i> , 6(5):303–316, September 1991.
[Che76]	P. P. Chen. The Entity-Relationship Model - toward a unified view of data. <i>ACM Transactions on Database Systems</i> , 1(1):9–36, 1976.
[Cor97]	Rational Software Corporation. <i>Unified Modeling Language</i> , 1997. Version 1.1.
[DBSB91]	Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge, and Bruce W. Ballard. LaSSIE: a knowledge-based software information system. <i>Communications of the ACM</i> , 34(5):34–49, May 1991.
[FG90]	W. B. Frakes and P. B. Gandel. Representing reusable software. Information and Software Technology, 32(10):653–664, December 1990.
[Gäß95]	Sven Gäßner. A language for the specification of characterization schemes and similarity measures for the purpose of reuse (in German). Master's thesis, Department of Computer Science, University of Kaiserslautern, 67653 Kaiserslautern, Germany, February 1995.
[Gau95]	Wilhelm Gaus. <i>Documentation and Classification Science (in Ger-man)</i> . Springer-Verlag, Berlin, 1995.

- [GB97] Christiane Gresse and Lionel Briand. Requirements for the Knowledge-Based Support of Software Engineering Measurement Plans. In Proceedings of the Ninth International Software Engineering and Knowledge Engineering Conference (SEKE'97), pages 559–568, Madrid, Spain, June 1997.
- [GP98] Asunción Gómez-Pérez. Knowledge sharing and reuse. In Jay Liebowitz, editor, *The Handbook of Applied Expert Systems*. CRC Press, 1998.
- [GRA+98] Christiane Gresse von Wangenheim, Alexandre Moraes Ramos, Klaus-Dieter Althoff, Ricardo M. Barcia, Rosina Weber, and Alejandro Martins. Case-based reasoning approach to reuse of experiential knowledge in software measurement programs. In Lothar Gierl, editor, *Proceedings of the 6th German Workshop on Case-Based Reasoning*, Berlin, Germany, 1998.
- [Gru93] T. R. Gruber. A translation approach to portable ontologies. *Knowl-edge Acquisition*, 5(2):199–220, 1993.
- [Hen97] Scott Henninger. Capturing and formalizing best practices in a software development organization. In *Proceedings of the 9th International Conference on Software Engineering & Knowledge Engineering*, pages 24–31, Madrid, Spain, June 1997.
- [MBY97] John Mylopoulos, Ales Borgida, and Eric Yu. Representing Software Engineering Knowledge. *Automated Software Engineering*, (4):291–317, 1997.
- [OB92] Markku Oivo and Victor R. Basili. Representing software engineering models: The TAME goal oriented approach. *IEEE Transactions on Software Engineering*, 18(10):886–898, October 1992.
- [Ost92] Eduardo Jenkins Ostertag. A Classification System for Software Reuse. Dissertation, University of Maryland, 1992.
- [PDF87] Rubén Prieto-Díaz and Peter Freeman. Classifying software for reusability. *IEEE Software*, 4(1):6–16, January 1987.
- [Rei91] Ulrich Reimer. Introduction to Knowledge Representation: Net-like and Schema-Based Representation Formats (in German). Leitfäden der angewandten Informatik. Teubner, Stuttgart, Germany, 1991.
- [Rom96] H. Dieter Rombach. New institute for applied software engineering research. Software Process Newsletter, pages 12–14, Fall 1996. No. 7.

- [SM83] Salton and McGill. *Introduction to Modern Information Retrieval*, chapter Retrieval Evaluation, pages 157–198. McGraw Hill, 1983.
- [SPDM94] Wilhelm Schäfer, Rubén Prieto-Díaz, and Masao Matsumoto. *Software Reusability*. Ellis Horwood, 1994.
- [Stu95] Jens Stummhöfer. A direct manipulatable user interface for maintaining and querying an experience base (in German). Master's thesis, Department of Computer Science, University of Kaiserslautern, 67653 Kaiserslautern, Germany, June 1995.
- [SWT89] J. Solderitsch, K. Wallnau, and J. Thalhamer. Constructing domainspecific ada reuse libraries. In *Proceedings of the Seventh Annual National Conference on Ada Technology*, Ft. Monmouth, NJ, March 1989. U.S. Army Communications-Electronics Command.
- [TA97] Carsten Tautz and Klaus-Dieter Althoff. Using case-based reasoning for reusing software knowledge. In D. Leake and E. Plaza, editors, *Proceedings of the Second International Conference on Case-Based Reasoning Research and Development, (ICCBR97)*. Springer Verlag, 1997.
- [Tau93] Carsten Tautz. Design and implementation of a tool for comprehensive reuse of software processes (in German). Master's thesis, Department of Computer Science, University of Kaiserslautern, 67653 Kaiserslautern, Germany, July 1993.
- [UG96] Mike Uschold and Michael Gruninger. Ontologies: Principles, methods, and applications. *The Knowledge Engineering Review*, 11(2):93–136, 1996.
- [vHFAH+95] G. van Heijst, S. Falasconi, A. Abu-Hanna, A. Th. Schreiber, and M. Stefanelli. A case study in ontology library construction. *Artificial Intelligence in Medicine*, 7:227–255, 1995.
- [ZS95] Mansour Zand and Mansur Samadzadeh. Software reuse: Current status and trends. *Journal of Systems and Software*, 30(3):167–170, September 1995.

Appendix A: Example Ontology

Concept Glossary A.1

Glossary

Table 45: Concept Intended Name Description Purpose user(s) simplified version of the GQM plan quality assur-Abstraction Usage scenario: Sheet serving as an interface between - query for relevant abstraction sheet ance personquality assurance personnel and in order to prepare GQM interviews nel viewpoints. Artifact Event defines a data collection event wrt. Modelling: explicit representation of quality assurartefact and its state defining the the state transition of an artifact, ance persone.g. competition of design docuevent nel ment Context describes the context of a GQM Modelling: explicitly states the conexperience measurement program concerning text from which the knowledge origi-Characterizaengineer tion its organizational, project specific nates and measurement specific environment. Data Collecdefines a data collection event sub-Modelling: generalization of data colquality assursuming different types of events tion Event lection events (Artefact Event, Periance personodic Event and Process Event) nel Data Collec-Modeling: generalization of data coldefines how the data is to be colquality assurlection instruments (Tool, Questiontion Instrulected subsuming different types of ance personment instruments naire, Interview) nel Data Collecdetermines when, how, and by Usage scenario: quality assurtion Procewhom the data is collected - query for relevant a data collection ance personprocedure for a GQM measure dure nel Modelling: generalizes all experiences Experience describes a software engineering quality assurexperience (e.g. on measurement, inspections) ance personnel. experience engineer GQM Goal specifies a goal to be achieved by Usage scenario: quality assurthe measurement program - query for relevant GQM goals in a ance personspecific context nel Modelling: important for the reuse of appropriate GQM plans GQM Mea-A GQM measure is an operational Usage scenario: quality assurdefinition of an attribute. The data - support development of GQM plan ance personsure collected according to the meaby supplying adequate measures for nel sures are used by a model to a model answer the question in the GQM plan. GQM Model Models are used to define how to Usage scenario: quality assurcombine and compute the data - support development of GQM plan ance personmeasured in order to answer the by supplying adequate models for nel questions questions

Name	Description	Purpose	Intended user(s)
GQM Out- come	The resulted outcome of a solution applied to a problem occurred dur- ing the GQM planning process.	Usage scenario: - anticipate expected outcome in the future reusing the solution	quality assur- ance person- nel
GQM Plan	A GQM plan contains information necessary to motivate and define measures and interpret measure- ment data. Elementary compo- nents are GQM goal, questions, models and measures.	Modelling: structures GQM products	quality assur- ance person- nel
GQM Prob- lem	describes a problem occurred dur- ing the GQM planning process	Usage scenario: - points out potential problems in future measurement program plan- ning Modelling: important for the reuse of appropriate GQM Problem Solution Experiences	quality assur- ance person- nel
GQM Prob- lem Cause	describes the cause of a problem occurred during the GQM planning process	Usage scenario: - prevention of potential problems in future measurement program plan- ning	quality assur- ance person- nel
GQM Prob- lem Solution Experience	describes experiential knowledge on the GQM planning process pri- marily focusing on a specific prob- lem and its applied solution.	Usage scenario: - prevention of potential problems - solution of existing problems in future measurement program plan- ning	quality assur- ance person- nel
GQM Prod- uct	describes products developed by the GQM process, e.g. GQM plan, data collection instrument.	Modelling: generalizes all GQM prod- ucts	quality assur- ance person- nel
GQM Prod- uct Experi- ence	documents the planning of a mea- surement program by representing the related GQM products	Usage scenario: - support the planning of a GQM measurement program Modelling: structures all GQM (plan- ning) products related to a measure- ment program	quality assur- ance person- nel
GQM Ques- tion	A set of questions operationally define the measurement goal, expressing the respective need for information in natural language.	Usage scenario: - support development of GQM plan by supplying adequate questions refining the goal	quality assur- ance person- nel
GQM Solu- tion	describes the solution applied to a problem occurred during the GQM planning process.	Usage scenario: - solution of existing problems in future measurement program plan- ning	quality assur- ance person- nel
ltem	describes a refinement of the qual- ity focus on the Abstraction Sheet in natural language	Modelling: generalizes the items of the Abstraction Sheet (quality item, variation item)	quality assur- ance person- nel
Measure- ment Charac- terization	characterizes the environment where the measurement program takes place, focusing especially on characteristics, constraints, etc. regarding measurement.	Modelling: explicitly states the meas- urement context from which the knowledge originates	experience engineer

Name	Description	Purpose	Intended user(s)
Measure- ment Experi- ence	describes experiences on measure- ment	Modelling: generalizes experiences on measurement (GQM Product Experience, GQM Problem Solution Experience)	quality assur- ance person- nel
Measure- ment Plan	contains data collection procedures and data collection instruments of a measurement program	Modelling: structures GQM products	quality assur- ance person- nel
Organization Characteriza- tion	describes the organizational con- text. (The term organization is here used for any type of commercial, industrial or public institution cov- ering various levels, e.g., company, division, or department level)	Modelling: explicitly states the organ- izational context from which the knowledge originates	experience engineer
Periodic Event	defines a periodic data collection event, e.g. weekly.	Modelling: explicit representation of period defining the event	quality assur- ance person- nel
Process Event	defines a data collection event wrt. a process, e.g. end of requirement analysis.	Modelling: explicit representation of process defining the event	quality assur- ance person- nel
Project Characteriza- tion	characterizes a specific software project	Modelling: explicitly states the organ- izational context from which the knowledge originates	experience engineer
Quality Item	describes a quality factor stated on the Abstraction sheet refining the quality focus of the GQM goal	Modelling: structures the quality fac- tors of the quality focus on the Abstraction sheet	quality assur- ance person- nel
Question- naire	set of questions to be used for the collection of data	Modelling: structures Questionnaire Questions on the Questionnaire	quality assur- ance person- nel
Question- naire Ques- tion	a question on a particular question- naire for the collection of data	Usage scenario: - facilitates the design of question- naires given a measure and measure- ment procedure	quality assur- ance person- nel
Software Object	describes any object of software process, product or resource by its attributes	Modelling: explicit representation of software objects, e.g. data sources	quality assur- ance person- nel
TCardinal	A cardinal is an integer greater or equal to zero.	Modelling: representation of cardinal types	experience engineer
TGlossaryEn- tryOrdered	Symbol and Description for TOr- deredSymbol	Modelling: glossary entry for ordered symbols	experience engineer
TGlossaryEn- tryTax	Symbol and Description for TTax- onomyRoot	Modelling: glossary entry for a taxon- omy	experience engineer
TGlossaryEn- tryUnordered	Symbol and Description for TUnor- deredSymbol	Modelling: glossary entry for unor- dered symbols	experience engineer
TInteger	An TInteger is a number out of the set of natural numbers.	Modelling: representation of integer types	experience engineer
TIntegerInter- val	Tintegerinterval describes an inter- val. The lower bound is out of a left interval and the higher bound is out of a right interval	Modelling: representation of integer interval types	experience engineer

Name	Description	Purpose	Intended user(s)
Tool	describes tools used during the software process, e.g., CASE tools, compilers, debuggers, editors or measurement process, e.g. data collection tools.	Modelling: explicit representation of tools	quality assur- ance person- nel
TOr- deredSymbol	Ordered symbol is the type for a set of symbols with a total order.	Modelling: explicit representation of cardinal values	experience engineer
TReal	A real-number is an element out of the set of the real numbers.	Modelling: representation of real types	experience engineer
TRealInterval- Value	The value of an instance of TRe- alInterval	Modelling: representation of real interval types	
TTaxonomy	The supertype for TTaxonomyN- ode and TTaxonomyRoot	Modelling: representation of taxon- omy types	experience engineer
TTaxonomy- Node	A node of a Taxonomy.	Modelling: explicit representation of taxonomy nodes	experience engineer
TTaxonomy- Root	Taxonomy is a collection of hierar- chical ordered Symbols. TTaxono- myRoot is the root of the hierarchical tree	Modelling: explicit representation of the root node of a taxonomy	experience engineer
TText	A not limited string	Modelling: representation of String type	experience engineer
ТТуре	The supertype of all the types	Modelling: represents an arbitraty type	experience engineer
Variation Item	defines a variation factor with potential impact on the quality fac- tors wrt. the GQM goal	Modelling: structures the variation factors on the Abstraction sheet	quality assur- ance person- nel

A.2 Terminal And Nonterminal Concept Attributes

Table 46: Terminal, Nonterminal Concept Attributes

Conce Super	pt: Abstracti concept: GQ	on Sheet M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stand- ard weight
artif	quality item	refinement of the qual- ity focus of the GQM goal	1*	has-parts [Quality Item].[abs traction sheet]	-	yes	-	-	1
	variation item	set of relevant variation factors with expected impact on quality items	0*	has-parts [Varia- tion Item].abs traction sheet]	-	no	-	-	1
	baseline hypothesis	states the expected val- ues of quality item(s)	0*	Text	-	no	-	-	0
	impact on baseline hypothesis	states the expected impact of variation item on baseline hypothesis of quality item	0*	Text	-	no	-	-	0
I/F	gqm goal	GQM goal to which the knowledge documented in the Abstraction Sheet refers	1	Text	-	yes	-		0
ctxt	gqm plan	references the respec- tive GQM Plan	1	part-of [GQM Plan].[abs traction sheet]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE on: TRUE								
Conce Super	pt: Artefact	Event ta Collection Event							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stand- ard weight
artif	artefact state	describes if the state	1	State	-	yes	-	-	1
	Comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

Conce Super	pt: Artefact concept: Da	Event ta Collection Event							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stand- ard weight
I/F	artifact	describes the artifact which state transition triggers data collection	1	SWPro- ductTax- onomy	-	yes	-	_	1
ctxt									
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE on: TRUE								
Conce Super	pt: Context concept: CC	Characterization NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	- Value infer- ence	To infer :	Stand- ard weight
artif	organiza- tion con- text	characterizes the organ- ization in which the measurement program takes place	1	has-parts [Organi- zation Charac- teriza- tion]	-		-	-	
	project context	characterizes the spe- cific software project in which the measurement program takes place	1	has-parts [Project Charac- teriza- tion]	-		-	-	
	measure- ment con- text	characterizes the spe- cific characteristics, con- straints etc. concerning the measurement pro- gram	1	has-parts [Meas- urement Charac- teriza- tion]	-		-	-	
	Comments	any additional informa- tion or comment	01	Text	-		-	-	

I/F

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stand- ard weigh
ctxt	measure- ment expe- rience	references the respec- tive Measurement Expe- rience	01	part-of [Meas- urement Experi- ence].[co ntext]	-		-	[Meas- ure- ment Char- acteri- zation]: [numbe r of goals], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]:	
								zation]: [numbe r of meas- ures]	
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard						zation]: [numbe r of meas- ures]	
sim _{arti} precor asserti	_f , sim _{l/F} , sim _c nd: TRUE on: TRUE	_{txt} : standard						zation]: [numbe r of meas- ures]	
sim _{arti} precor asserti Conce Super	_f , sim _{l/F} , sim _c nd: TRUE on: TRUE ept: Data Col concept: GC	_{txt} : standard lection Event M Product						zation]: [numbe r of meas- ures]	
sim _{artii} precor asserti Conce Super Layer	_f , sim _{l/F} , sim _c nd: TRUE on: TRUE pt: Data Col concept: GQ Name	_{txt} : standard lection Event M Product Description	Cardinality	Туре	Default value	Manda- tory	Value infer- ence	zation]: [numbe r of meas- ures]	Stand ard weigh
sim _{artii} precor asserti Conce Super Layer artif	_f , sim _{I/F} , sim _c nd: TRUE on: TRUE pt: Data Col concept: GQ Name data collec- tion proce- dure	txt [:] standard lection Event M Product Description references the respec- tive Data Collection Pro- cedure	Cardi- nality 1	Type part-of [Data Collec- tion Pro- cedure].[event]	Default value	Manda- tory yes	Value infer- ence -	zation]: [numbe r of meas- ures] To infer	Stand ard weigh 1

Conce Super	ept: Data Col concept: GC	lection Event M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stand- ard weight
ctxt									
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precoi asserti	nd: TRUE ion: TRUE								
Conce Super	ept: Data Col concept: GC	lection Instrument M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stand- ard weight
artif	data collec- tion proce- dure	references the respec- tive Data Collection Pro- cedure	01	defined- by [Data Collec- tion Pro- cedure].[i nstru- ment]	-	no	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
I/F	measure- ment plan	references the respec- tive measurement plan	01	part-of [Meas- urement Plan].[dat a collec- tion instru- ments]	-	no	-	-	1
ctxt				-					

sim_{artif}, sim_{I/F}, sim_{ctxt}: standard

precond: TRUE assertion: TRUE

Conce Super	pt: Data Col concept: GQ	lection Procedure M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	- Value infer- ence	To infe	r Stand- ard weight
artif	resource	states whether the data is derived by question- ing or interviewing a person or by invoking a tool	1	Resource	-	yes	-	-	1
	collector	states role or position of people in the organiza- tion by whom the data is collected	01	Role	-	no	-	-	1
	validator	specifies who validates the collected data	1	Role	-	yes	-	-	1
	active	states whether data is currently collected or not	1	Boolean	-	yes	-	-	1
	data stor- age	defines where the data is stored	0*	Data Store	-	no	-	-	1
I/F	event	specifies when the data will be collected	1	has-parts [Data Collec- tion Event].[D ata Col- lection Proce- dure]	-	yes	-	-	1
	data source	specifies the object and its respective attribute to be measured	1	refers-to [Soft- ware Object]	-	yes	-	-	1
	depend- ency	states on which other measure(s) the collec- tion of this measure depends	0*	(depends -on [Data Collec- tion Pro- cedure]	-	no	-	-	1
	instrument	references the data col- lection instrument which is used to collect the corresponding data	1	(defines [Data Collec- tion Instru- ment].[D ata Col- lection Proce- dure)	-	yes	-	-	1

Conce Super	ept: Data Col concept: GQ	lection Procedure M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	r Stand- ard weight
ctxt	measure	references the respec- tive GQM Measure of the GQM Plan	1*	defined- by [GQM Meas- ure].[data collec- tion pro- cedure]	-	yes	-	-	1
	measure- ment plan	references the respec- tive Measurement Plan	1	part-of [Meas- urement Plan].[dat a collec- tion pro- cedure]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
Conce	ept: Experience								
Super Layer	concept: CO Name	NCEPT Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	r Stand- ard
artif	viewpoint	states the role from whom the experience captured was acquired	0*	Role	-	no	-	-	weight 1
	representa- tion form	states in which form the experience is captured	01	Repre- senta- tionForm	-	no	-	-	1
	owner	specifies who is respon- sible for maintaining the experience	01	Text	-	no	-	-	0
	status	specifies the current sta- tus of the experience	- 1	Status	"non- exist- ent"	yes	-	-	1
	version	specifies the version of the experience	01	Version	-	no	-	-	1
	last change	specifies when the experience was modi- fied last	1	Date	-	yes	-	-	1
	readers	specifies who is allowed to have read access (the owner has per default read and write access)	0*	Text	-	no	-	-	0

Conce Super	pt: Experienc concept: CO	ce NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	Stand- ard weight
I/F	precondi- tions for reuse	describing necessary preconditions for the reuse of the entity	0*	Text	-	no	-	-	0
ctxt	acquisition technique	specifies how the entity was derived	0*	Acquisi- tionTech- nique	-	no	-	-	1
	expected adaptations	describing adaptations done in the past when reusing the entity and the relevant factors which caused the adap- tations	0*	Text	-	no	-	-	0
	expected cost of reuse	describing the expected cost of reusing the entity as a basis to decide whether the entity should be reused or rather be developed from scratch.	0*	Text	-	no	-	-	0
	dates of reuse	in order to provide an overview on when and how often this entity was reused, facilitating also the removal of enti- ties of the knowledge base, which are never used	0*	Date	-	no	-	-	1
	guidelines of reuse	on how to reuse the entity	0*	Text	-	no	-	-	0
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
	cino cino	, standard							

 sim_{artif} , $sim_{I/F}$, sim_{ctxt} : standard

precond: TRUE

assertion: TRUE

Layer	Name	Description	Cardi-	Type	Default	Manda-	-Value infer-	To infer	Stand-
			nality	.)	value	tory	ence		ard weight
artif	object of study	defines the object to be analyzed	1	SwOb- jectTax- onomy	-	yes	-	-	1
	purpose	states why the object will be analyzed	1	Purpose	-	yes	-	-	1
	quality focus	specifies which prop- erty of the object will be analyzed	1	SWQuali- tyTaxon- omy	-	yes	-	-	1
	viewpoint	expresses who will use the data collected and analysis results	1*	Role	-	yes	-	-	1
I/F	quality item	enumerates questions defined by this goal	1*	defines [Quality Item]	-	yes	-	-	1
ctxt	context	identifies the context in which the analysis takes place	1	Text	-	yes	-	-	0
	gqm plan	references respective GQM Plan	1	part-of [GQM Plan].[gq m goal]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

 sim_{artif} , $sim_{I/F}$, sim_{ctxt} : standard

Concept: GQM Measure Super concept: GQM Product

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard weight
artif	definition	defines what data has to be collected	1	Text	-	yes	-	-	0
	scale	defines the scale of the measure	1	Scale	-	yes	-	-	1
	unit	declares the unit of the measure	01	Unit	-	no	-	-	1
	range	declares the range of the values of the meas- ures	01	has- parts[TTy pe].[GQ MMeas- ure- Range]	-	no	-	-	1

precond: TRUE assertion: TRUE

Conce Super	ept: GQM Me concept: GQ	easure M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	-Value infer- ence	To infer	Stand- ard weight
I/F	assumption	states assumptions about the environment for the applicability of the measure	0*	Text	-	no	-	-	0
	model	references the corre- sponding model	1*	defined- by [GQM Model].[g qm measure]	-	yes	-	-	1
	data collec- tions proce- dure	references the corre- sponding data collec- tion procedure	1	defines [Data Collec- tion Pro- cedure].[measure]	-	yes	-	-	1
	question- naire ques- tion	references the corre- sponding question on the questionnaire, if col- lected by a question- naire	01	defines [Ques- tionnaire Ques- tion].[me asure]	-	no	-	-	1
ctxt	gqm plan	references the respec- tive GQM Plan	1*	part-of [GQM Plan].[gq m meas- ure]	-	yes	-	-	1
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE ion: TRUE								
Conce Super	ept: GQM Mc concept: GQ	odel IM Plan							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda-	-Value infer-	To infer	Stand- ard

Conce Super	ept: GQM M concept: G0	odel QM Plan							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard weight
artif	type	specifies if the model focuses on resources or qualities	1	Model- Type	-	yes	-	-	1
	category	specifies the category of the model	1	Model- Category	-	yes	-	-	1
	definition	defines the abstract concepts the model expresses	1	Text	-	yes	-	-	0

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	a- Value infer- ence	To infe	r Stand- ard weight
I/F	assumption	states assumptions about the environment for the application of the model	0*	Text	-	no	-	-	0
	data source	defines the attributes to be measured as "input" of the model	1*	refers-to [Soft- ware Object]	-	yes	-	-	1
	gqm meas- ure	defines the model oper- ationally denoting data that can be directly col- lected	1*	defines [GQM Meas- ure].[mod el]	-	yes	-	-	1
	question	references the corre- sponding question	1*	defined- by [GQM Ques- tion].[mo del]	-	yes	-	-	1
ctxt	gqm plan	references the respec- tive GQM Plan	1*	part-of [GQM Plan].[gq m model]	-	yes	-	-	1
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
preco assert	nd: TRUE ion: TRUE								

Conce Super	ept: GQM Ou concept: CO	tcome NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	Stand- ard weight
artif	assessment	states explicitly if the problem was successfully solved by the solution or failed	1 /	Assess- ment	-	yes	-	-	1
	failure explanation	If the applied solution failed to solve the prob- lem, an explanation is given on why the goal of the respective task was still not achieved	1*	Text	-	yes	-	-	0

Conce Super	ept: GQM Ou concept: CC	itcome NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	-Value infer- ence	To infe	[·] Stand- ard weight
I/F	results	describes the results of the solution applied by the state of the object stated in the problem description after the application of the solu- tion	1*	refers-to [Soft- ware Object]	-	yes	-	-	1
	next gqm- pse	If the applied solution failed to solve the prob- lem, the next attempt to solve the problem, stored as a new case in the experience base, is referenced, e.g. case_43.	01	next [GQM Problem Solution Experi- ence]	-	no	-	-	1
ctxt	gqm prob- lem solu- tion experience	references the respec- tive GQM Problem Solu- tion Experience	1	part-of [GQM Problem Solution Experi- ence].[ou tcome]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

precond: TRUE assertion: TRUE

Super	concept: GQIVI Pla	n IM Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stand- ard weight
artif	gqm goal	goals to be achieved by the measurement pro- gram	1	has-parts [GQM Goal].[gq m plan]	-	yes	-	[Meas- ure- ment Char- acteri- zation]: [numbe r of goals]	1
	abstraction sheet	summarizes the GQM plan in a simplified form	1*	has-parts [Abstrac- tion Sheet].[g qm plan]	-	yes	-	-	1
	gqm ques- tion	expresses the informa- tion need wrt. the GQM goal	1*	has-parts [GQM Ques- tion].[gq m plan]	-	yes	-	[Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions]	1
	gqm model	operationalizes the GQM Question	1*	has-parts [GQM Model].[g qm plan]	-	yes	-	-	1
	gqm meas- ure	specifies data to be col- lected	1*	has-parts [GQM Meas- ure].[gqm plan]	-	yes	-	[Meas- ure- ment Char- acteri- zation]: [numbe r of meas- ures]	1
<u>//F</u> ctxt	gqm prod- uct experi- ence	references the respec- tive GQM Product Expe- rience	1	part-of [GQM Product Experi- ence].[gq m plan]	-	yes	-	-	1
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE on: TRUE								

Layer	Name	Description	Cardi-	Туре	Default	Manda	Manda-Value infer-		r Stand-
2			nality		value	tory	ence		ard weight
artif	problem object state	the object affected by the problem and its state causing the problem are explicitly stated	1	refers-to [Soft- ware Object]	-	yes	-	-	1
	object type	the type of the objects affected by the problem is stated explicitly	1	SWOb- jectType	-	yes	-	-	1
	problem task	the task in which the problem occurred is stated	1	GQM- Proc- essTaxon omy	-	yes	-	-	1
	problem role	roles of the software organization involved in the problem are listed, e.g., <i>developer</i> .	0*	Role	-	no	-	-	1
	goal unat- tained	the goal of the respec- tive gqm task which has not been attained because of the problem is stated	01	Text	-	no	-	-	0
I/F	gqm prob- lem solu- tion experience	references the respec- tive GQM Problem Solu- tion Experience	1	part-of [GQM Problem Solution Experi- ence].[pr oblem]	-	yes	-	-	1
ctxt	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

precond: TRUE assertion: TRUE

Layer	Name	Description	Cardi-	Туре	Default	efault Manda-Valu		To infe	r Stand-
			naiity		value	lory	ence		ard weight
artif	explanation	for each cause is pro- vided in order to explain the relation between the problem and the stated cause	01	Text	-	no	-	-	0
	cause task	the task causing the actual problem, which can be different from the task of problem occurrence, is identified	01	GQM- Proc- essTaxon omy	-	no	-	-	1
	cause role	roles of the organization involved in causing the problem are stated	0*	Role	-	no	-	-	1
	constraint	constraints wrt. the soft- ware project which influ enced the problem	-0* -	Text	-	no	-	-	0
I/F	cause object state	describes the cause of the problem by the respective object and its state	1	refers-to [Soft- ware Object]	-	yes	-	-	1
ctxt	gqm prob- lem solu- tion experience	references the respec- tive GQM Problem Solu- tion Experience	1	part-of [GQM Problem Solution Experi- ence].[ca use]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

precond: TRUE assertion: TRUE
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	Value infer- ence	To infer	Stand- ard weigh ⁻
artif	problem	describes the problem occurred during the planning of a GQM- based measurement program	1	has-parts [GQM Prob- lem].[gq m prob- lem solu- tion experi- ence]	-	yes	-	-	1
	solution	describes the solution strategy adopted	1	has-parts [GQM Solu- tion].[gq m prob- lem solu- tion experi- ence]	-	yes	-	-	1
	outcome	describes the outcome resulting of the solution applied	1	has-parts [GQM Out- come].[g qm prob- lem solu- tion experi- ence]	-	yes	-	-	1
I/F									
ctxt	cause	describes the cause(s) of the problem, if known	0*	has-parts [GQM Problem Cause].[g qm prob- lem solu- tion experi- ence]	-	no	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

Conce Super	ept: GQM Pro concept: CC	oduct NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	a-Value infer- ence	To infe	r Stand- ard weight
artif									
I/F									
ctxt	Comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_{if} , sim _{l/F} , sim _c	_{txt} : standard							
preco assert	nd: TRUE ion: TRUE								

ayer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stand- ard weigh ⁻
ərtif	gqm plan	describes the GQM goal, the corresponding abstraction sheet and the refinement of the GQM goal into ques- tions, models, and measures	1*	has-parts [GQM Plan].[gq m prod- uct expe- rience]	-	yes	-	[Meas- ure- ment Char- acteri- zation]: [numbe r of goals], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Meas- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Numbe r of ques- tions], [Numbe r of ques- ure- ment Char- acteri- zation]: [numbe r of ques- tions], [Numbe r of ques- tions], [Numbe r of ques- tion]: [numbe r of ques- tion]: []	1
	measure- ment plan	describes who measures what, when and how concerning the GQM measures defined in the GQM plan(s) and includes data collection instruments	1	has-parts [Meas- urement Plan].[gq m prod- uct expe- rience]	-	yes	-	[GQM Plan]:[g qm meas- ure]	1
/F									

artif qu artif qu hy qu ca I/F me ite ctxt gc co sim _{artif} , si precond: assertion:	uestion ypothesis uestion ategory nodel em qm plan	represents informational needs wrt. the measure- ment goal in natural language specifies the expected values wrt. quality dimensions or variation factors focused in the question categorization of ques- tions by their concerns operationalizes this question states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	1 0* 1 1 1 1*	Text Text Question- Category defines [GQM model].[q uestion] defined- by [Item] part of		yes no yes yes yes		- - -	ard weight 0 0
artif qu hy qu ca VF mo ite tr ctxt go ctxt go co sim _{artif} , si precond: assertion:	uestion ypothesis uestion ategory nodel em qm plan	represents informational needs wrt. the measure- ment goal in natural language specifies the expected values wrt. quality dimensions or variation factors focused in the question categorization of ques- tions by their concerns operationalizes this question states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	1 0* 1 1 1*	Text Text Question- Category defines [GQM model].[q uestion] defined- by [Item] part of	-	yes no yes yes	-	-	0 0 1 1 1
hy qu ca VF me ite ctxt gc co sim _{artif} , si precond: assertion:	uestion ategory nodel em qm plan	specifies the expected values wrt. quality dimensions or variation factors focused in the question categorization of ques- tions by their concerns operationalizes this question states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	0* 1 1 1 1 1*	Text Question- Category defines [GQM model].[q uestion] defined- by [Item] part of	-	no yes yes	-	-	0 1 1 1 1 1
qu ca I/F ma ite ctxt gc ctxt gc sim _{artif} , si precond: assertion:	uestion ategory nodel em qm plan	categorization of ques- tions by their concerns operationalizes this question states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	1 1 1 1*	Question- Category defines [GQM model].[q uestion] defined- by [Item] part of	-	yes yes yes	-	-	1
I/F me ite ctxt gc co sim _{artif} , si precond: assertion:	em qm plan	operationalizes this question states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	1 1 1*	defines [GQM model].[q uestion] defined- by [Item] part of	-	yes yes	-	-	1
ctxt gc ctxt gc co sim _{artif} , si precond: assertion:	em qm plan	states the respective item (quality item or variation item) of the abstraction sheet references the respec- tive GQM Plan	1	defined- by [Item] part of	-	yes	-	-	1
ctxt gc co sim _{artif} , si precond: assertion:	qm plan	references the respec- tive GQM Plan	1*	part of	-				
sim _{artif} , si precond: assertion:				[GQM Plan].[gq m ques- tion]		yes	-	-	1
sim _{artif} , si precond: assertion:	omments	any additional informa- tion or comment	01	Text	-	no	-	-	0
	sim _{l/F} , sim _{ct} TRUE TRUE	_{xt} : standard							
Super cor	: GQM Sol ncept: CO	ution NCEPT							
Layer Na	lame	Description	Cardi- nality	Туре	Default value	Manda- tory	- Value infer- ence	To infer	Stand- ard weight
artif ch ob	hanged bject state	describes the solution by stating the modified, added or deleted object(s) and its state	1*	refers-to [Soft- ware Object]	-	yes	-	-	1
jus	ustification	for the solution, focus- ing on the interdepen- dencies between the cause, its explanation and the applied colution	1	Text	-	yes	-	-	0

Conce Super	ept: GQM So concept: CC	Iution DNCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	Stand- ard weight
ctxt	gqm prob- lem solu- tion experience	references the respec- tive GQM Problem Solu- tion Experience	1	part-of [GQM Problem Solution Experi- ence].[sol ution]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _d	_{:txt} : standard							
precon assert	nd: TRUE ion: TRUE								
Conce Super	ept: Item concept: GC)M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	Stand- ard weight
artif									
I/F									
ctxt	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _o	_{txt} : standard							
preco assert	nd: TRUE ion: TRUE								

once Iper	concept: CO	ment Characterization NCEPT							
yer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	er Stand- ard weight
tif	measure- ment inte- grated	measurement pro- grams regularly estab- lished accompanying software development and maintenance	01	Boolean	-	no	-	-	1
	experi- ences with measure- ment	specifies if no experi- ences are available or either positive or nega- tive experiences have been made with meas- urement in the past	01	Measure- ment- Knowled ge	-	no	-	-	1
	core meas- ures	specifies if a set of core measures is collected in each project if measure- ment programs are per- formed regularly	01	Boolean	-	no		-	1
	attitude	of management and project personnel con- cerning software qual- ity improvement in general	01	Attitude	-	no	-	-	1
	effort	on the planning and execution of the meas- urement program in person-months	01	EffortPM	-	no	-	-	1
	duration	of the measurement program in calendar months	01	Dura- tionM	-	no	-	-	1
	duration of data collec- tion	period in calendar months	01	Dura- tionM	-	no	-	-	1
	frequency of feedback sessions	during the execution phase per calendar month	01	FreqM	-	no	-	-	1
	training	describes training(s) of the participants regard- ing the GQM approach and its application which took place during the planning phase	01	Text	-	no	-	-	1
	number of goals	size of the measure- ment program in terms of number of GQM goals	01	Cardinal	-	no	card(union(fil ter([GQM Product Exper rience], [con- text].[measur ement experi ence]).[gqm plan].[gqm goal]))	 - -	1

Conce Super	pt: Measure concept: CC	ment Characterization NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	^r Stand- ard weight
	number of questions	size of the measure- ment program in terms of number of questions in the GQM plans	01	Cardinal	-	no	card(union(un ion(fil- ter([GQM Product Expe- rience], [con- text].[measur ement experi- ence]).[gqm plan]).[gqm question]))	-	1
	number of measures	size of the measure- ment program in terms of number of measures in the GQM plans	01	Cardinal	-		card(union(un ion(fil- ter([GQM Product Expe- rience], [con- text].[measur ement experi- ence]).[gqm plan]).[gqm measure]))		
I/F	constraints	on the measurement program, e.g., fixed amount of effort assigned to the meas- urement program	0*	Text	-	no	-	-	0

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stand- ard weigh
ctxt	context	references the respec- tive context characteri- zation	01	part-of [Context Charac- teriza- tion].[me asure- ment context]	-	no	-	[Meas- ure- ment Char- acteri- zation]: [number r of goals], [Meas- ure- ment Char- acteri- zation]: [number r of ques- tions], [Meaus rement Char- acteri- zation]: [number r of char- acteri- zation]: [number r of meas- ures]	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{artif}	, sim _{l/F} , sim _c	_{txt} : standard							
precon assertic	d: TRUE on: TRUE								
Concer Super o	ot: Measure concept: Exp	ment Experience berience							
	Name	Description	Cardi-	Туре	Default	Manda-	Value infer-	To infer	Stand-

Conce Super	ept: Measure concept: Exp	ment Experience perience							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	^r Stand- ard weigh
ctxt	context	describes the environ- ment in which the measurement program takes place (including organizational, project and measurement spe- cific characteristics)	1	has-parts [Context Charac- teriza- tion].[me asure- ment experi- ence]	-	yes	-	-	1
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE ion: TRUE								
Conce Super	ept: Measure concept: GQ	ment Plan M Product							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	Stand- ard weigh
artif									
I/F	data collec- tion proce- dure	determines when, how, and by whom data is to be collected	1*	has-parts [Data Collec- tion Pro- cedure].[measure- ment plan]	-	yes	-	-	1
	data collec- tion instru- ments	defines the instrument used for the data collec- tion	1*	has-parts [Data Collec- tion Instru- ment].[m easure- ment plan]	-	yes	_	-	1
ctxt	gqm prod- uct experi- ence	references the respec- tive GQM Product Expe- rience	1	part-of [GQM Product Experi- ence].[me asure- ment	-	yes	-	-	1

comments any additional informa- 0..1 Text - no - - 0 tion or comment

Layer Name Description Cardi- nality Type nality Default value Manda-Value infer- tory To infer sim _{artif} , sim _{VF} , sim _{ctxt} : standard	Stand-
sim _{artif} , sim _{I/F} , sim _{ctxt} : standard precond: TRUE assertion: TRUE Concept: Measurement Tool Super concept: Data Collection Instrument Layer Name Description Cardi- Type Default Manda- Value infer- To infer nality value tory ence artif name states the name of the 1 Text - yes tool functional- describes the function- 01 Text - no ity ality offered by the tool call com- describes how to invoke 01 Text - no mand the tool documen- describes where to find 01 Text - no tation documentation and fur- ther information on the	ard weight
precond: TRUE assertion: TRUE Concept: Measurement Tool Super concept: Data Collection Instrument Layer Name Description Cardi- Type Default Manda-Value infer- To infer nality value tory ence To infer value tory ence	
Concept: Measurement Tool Super concept: Data Collection Instrument Cardinality Type nality Default Manda-Value inferrance To inferrance Layer Name Description Cardinality Type nality Default Manda-Value inferrance To inferrance artif name states the name of the tool 1 Text - yes - - functional- describes the function- 01 Text - no - - ity ality offered by the tool - no - - - and the tool - - no - - - documen- describes where to find 01 Text - no - - documen- the tool - - no - - - documen- the tool information on the 01 Text - no - -	
Layer Name Description Cardi- nality Type nality Default value Manda-Value infer- tory To inference artif name states the name of the tool 1 Text - yes - - functional- ity describes the function- ality offered by the tool 01 Text - no - - call com- mand describes how to invoke 01 Text - no - - documen- tation describes where to find 01 Text - no - -	
artif name states the name of the 1 Text - yes - - functional- describes the function- 01 Text - no - - ity ality offered by the tool - no - - - call com- describes how to invoke 01 Text - no - - mand the tool - - - - - - documen- describes where to find 01 Text - no - - tation documentation and fur- ther information on the - - - -	Stand- ard weight
functional- itydescribes the function- offered by the toolText-nocall com- manddescribes how to invoke01Text-nodocumen- tationdescribes where to find01Text-nodocumen- tationdescribes where to find01Text-no	0
call com- describes how to invoke 01 Text - no - - mand the tool documen- describes where to find 01 Text - no - - documen- describes where to find 01 Text - no - - tation documentation and fur- ther information on the - - -	0
documen- describes where to find 01 Text - no tation documentation and fur- ther information on the	0
tool	0
I/F precondi- describes environment 01 Text - no tions for in which tool may be use used, e.g., platform or operating system	0
ctxt comments any additional informa- 01 Text - no tion or comment	0
sim _{artif} , sim _{I/F} , sim _{ctxt} : standard	

Conce Super Layer	pt: Organiza concept: CO	tion Characterization NCEPT							
ayer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stand- ard weight
rtif	organiza- tion name	states the name of the organization	01	Text	-	no	-	-	1
	size of soft- ware devel- opment	number of employees	01	Cardinal	-	no	-	-	1
	business sectors	set of business sectors the organization oper- ates in	0*	Business- Sector	-	no	-	-	1
	certifica- tions	regarding the software process held by the organization	0*	Certifica- tion	{}	no	-	-	1
	quality assurance group	availability of an inde- pendent quality assur- ance group at the organization	01	Boolean	"false"	no	-	-	1
	activities docu- mented	describes if a standard software process exists in terms of activities to be performed	01	Boolean	"false"	no	-	-	1
	entry/exit criteria doc- umented	describes if a standard software process exists in terms of entry and exist criteria for each activity	01	Boolean	"false"	no	-	-	1
	input/out- put docu- mented	describes if a standard software process exists in terms of inputs and outputs for each activity	01	Boolean	"false"	no	-	-	1
	life-cycle models used	set of life-cycle models used for the develop- ment and maintenance by the organization	0*	Lifecy- cleModel	-	no	-	-	1
	tools	used during develop- ment and maintenance, e.g., CASE tools, com- pilers, debuggers, edi- tors	0*	Text	-	no	-	-	0
	program- ming lan- guages	used for software devel- opment	0*	ProgLang	-	no	-	-	1
	types of software	produced through the organization	0*	SwType	-	no	-	-	1
	average number of installations	of the software prod- ucts	01	Cardinal Interval	-	no	-	-	1
	memory constraints	typically formulated wrt. the system developed, e.g., regarding the required size of working memory	01	Con- straint	-				

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	Stand- ard weigh
I/F									
ctxt	strategic goals	of the organization, reflecting the long-term organizational goals, e.g., "obtain a market share of 60%"	0*	Text	-	no	-	-	0
	business goals	of the organization, focusing on the short- term organizational goals, e.g., "reduce pro- duction cost of product xyz by 10%"	0*	Text	-	no	-	-	0
	improve- ment goals	of the software organi- zation, e.g., "reduce cycle time and/or costs", "improve the quality of the software systems", "increase user satisfaction"	0*	Text	-	no	-	-	0
	context	references the respec- tive context characteri- zation	0*	part-of [Context Charac- teriza- tion].[org anization context]	-	no	-	-	0
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti} precoi asserti	_f , sim _{l/F} , sim _c nd: TRUE ion: TRUE	_{txt} : standard							

Super	concept. Da	ta Collection Event							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard weight
artif	period		1	Collec- tionPe- riod	-	yes	-	-	1
I/F									
ctxt	Comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

Conce Super	ept: Periodic concept: Da	Event ta Collection Event							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	[·] Stand- ard weight
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precoi assert	nd: TRUE ion: TRUE								
Conce Super	ept: Process E concept: Da	vent ta Collection Event							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	Stand- ard weight
artif	timing	describes if the data is collected at the begin or end of the respective phase/activity	1	Collec- tionTim- ing	-	yes	-	-	1
I/F	process	describes the phase or activity when data is collected	1	SWProc- essTaxon- omy	-	yes	-	-	1
ctxt	Comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _c	_{:txt} : standard							

assertion: TRUE

Conce Super	pt: Project C concept: CO	haracterization NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	-Value infer- ence	To infe	r Stand- ard weight
artif	project name	states name of project	01	Text	-	no	-	-	0
	project start	date of the start of the project	01	Date	-	no	-	-	1
	project end	date of the end of the project	01	Date	-	no	-	-	1
	duration	of the project in calen- dar months	01	Dura- tionM	-	no	-	-	1
	team size	number of project team members allocated to the project	01	Cardinal Interval	-	no	-	-	1
	effort	of the project in person months	01	EffortPM	-	no	-	-	1
	project-spe- cific goals	e.g., to complete the development in time	0*	Text	-	no	-	-	0
	application of stand- ard soft- ware process	states the degree to which the standard process model was applied in the specific project	01	Reuse- Type	-	no	-	-	1
	life-cycle model used	life-cycle model used in the project	01	Lifecy- cleModel	-	no	-	-	1
	tools	used during develop- ment and maintenance, e.g., CASE tools, com- pilers, debuggers, edi- tors	0*	Text	-	no	-	-	0
	program- ming lan- guages	used in the project	0*	ProgLang	-	no	-	-	1
	estimated product size	in KLOC	01	Cardinal	-	no	-	-	1
	type of software	produced in the project	01	SwType	-	no	-	-	1
	number of installations	of the software prod- ucts	01	Cardinal	-	no	-	-	1
	memory constraints	typically formulated wrt. the system developed, e.g., regarding the required size of working memory	01	Con- straint	-	no	-	-	1
	perform- ance con- straints	typically formulated wrt. the system developed, e.g., regarding the response time to user requests	01	Con- straint	-	no	-	-	1
	portability	of the system to differ- ent hardware and/or software environments	01	Impor- tance	-				

Conce Super	ept: Project C concept: CO	haracterization NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	-Value infer- ence	To infe	Stand- ard weight
artif	portability	of the system to differ- ent hardware and/or software environments	01	Impor- tance	-	no	-	-	1
I/F									
ctxt	project goal	project-specific goal, e.g., "terminate project within budget and time"	0*	Text	-	no	-	-	0
	context	references the respec- tive Context Characteri- zation	0*	part-of [Context Charac- teriza- tion].[proj ect con- text]	-	no	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precoi assert	nd: TRUE ion: TRUE								
Conce Super	ept: Quality It concept: Iter	em n							
Layer	Name	Description	Cardi-	Туре	Default	Manda	-Value infer-	To infe	Stand-

Conce Super	ept: Quality It concept: Iter	nem m							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	a-Value infer- ence	To infe	r Stand- ard weight
artif	quality fac- tor	informal information on the quality focus of the GQM goal	1	Text	-	yes	-	-	0
	hypothesis	specifies the expected value(s) of the quality factor	0*	Text	-	no	-	-	0
I/F	gqm ques- tion		1*	defines [GQM Question]	-	yes	-	-	1

Conce Super	ept: Quality If concept: Iter	tem m							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	-Value infer- ence	To infe	r Stand- ard weight
ctxt	variation factors	captures the factors of the context which are expected to influence the baseline hypothesis	0*	defines [Varia- tion Item].[qu ality fac- tors]	-	no	-	-	1
	abstraction sheet	references the corre- sponding abstraction sheet	1	part-of [Abstrac- tion sheet].[q uality item]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
conce	nd: TRUE ion: TRUE pt: Question	naire							
Super	concept: Da	ta Collection Instrument	Cardi	Tupo	Dofault	Manda	Value infor	To info	rStand
Layer	Name	Description	nality	туре	value	tory	ence	to inte	ard weight
artif	collector	states role or position of people in the organiza- tion by whom the corre- sponding data is collected	1*	Role	-	yes	-	-	1
	administra- tive para- graph	includes information for the administration of the collected data, e.g., project identifier	1	Text	-	yes	-	-	0
	question	references the questions on the questionnaire	1*	has-parts [Ques- tionnaire Ques- tion].[que stion- naire]	- :	yes	-	-	1
I/F	event	specifies when the data will be collected	1*	Data Col- lection Event	-	yes	-	-	1
ctxt	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

Super concept: Data Collection Instrument Cardi- nality Type value Default Manda-Value infer- tory To infer St. arr sim _{artif} , sim _{ufr} , sim _{ufr} , sim _{ctxt} : standard mainty Default Manda-Value infer- value To infer St. arr Concept: Questionnaire Question Super concept: GQM Product E E E E Layer Name Description Cardi- nality Default Manda-Value infer- value To infer St. arr question textual form of question 1 Text - no - 0 question explanation e.g. terms used. answer 0.1 Text - no - 0 answer declares the range of nanswer 0.1 Text - no - 0 answer references the corre- sponding measure 1 defined- by [GQM Meas- ure].[que stion- naire yes - 1 1 VF toor references the corre- sponding questionnaire 1.* part-of yes - 1 VF comments any additional informa-	Conce	pt: Question	naire							
Sim _{artif} , sim _{uff} , sim _{ctxt} ; standard Image: Sim _{artif} , sim _{uff} , sim _{ctxt} ; standard grecond: TRUE Super concept: Questionnaire Question Super concept: GQM Product Cardi- Type nality Default Manda-Value infer- value To infer Standard Layer Name Description Cardi- Type nality Default Manda-Value infer- value To infer Standard artif question textual form of question 1 Text - yes - - 0 question explanation e.g. terms used. answer - no - - 0 answer declares the range of 01 Text - no - - 0 answer explanation on the 01 Text - no - - 0 answer explanation range of the answer 01 Text - no - 1 Meas- urel[.que stion- - 0 - - 1 VF tot maire sponding questionnaire 1.* part-of yes - 1 1 Question-	Super Layer	concept: Dat Name	a Collection Instrument Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	^r Stand- ard weight
precond: TRUE assertion: TRUE Concept: Questionnaire Question Super concept: GQM Product Layer Name Description Cardi- Type nality Value tory ence artif question textual form of question 1 Text - yes 0 question explains the question, 01 Text - no 0 question e.g. terms used. answer declares the range of 01 Text - no 0 answer answer explanation on the 01 Text - no 0 range the answer answer explanation on the 01 Text - no 0 question range of the answer measure references the corre- sponding measure I F Ctxt question- references the corre- naire question] LF comments any additional informa- 01 Text - no 1	sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							weight
Concept: Questionnaire Question Super concept: GQM Product Description Cardinality Default Value informed Value inferrence To infer Stresson artification question textual form of question 1 Text - yes - - 0 artification question textual form of question, 01 Text - yes - - 0 question explanation e.g. terms used. 01 Text - no - - 0 answer declares the range of 01 Text - no - - 0 answer declares the range of 01 Text - no - - 0 answer explanation on the explanation range of the answer 01 Text - no - - 0 measure references the corresponding measure 1 defined- yes - - 1 VF guestion-naire guestion-naire - - 1 Image references the corresponding questionnaire 1* part-ofpic <td>precoi assert</td> <td>nd: TRUE on: TRUE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	precoi assert	nd: TRUE on: TRUE								
Layer Name Description Cardi-nality Type Default Manda-Value infer- nality value tory ence ence To infer Sta artif question textual form of question 1 Text - yes 0 question explains the question, 01 Text - no 0 explanation e.g. terms used. answer unit defines the unit of the 01 Text - no 0 answer declares the range of 01 Text - no 0 range the answer answer explanation on the 01 Text - no 0 explanation range of the answer measure references the corre- sponding measure 1 defined - yes 1 <i>VF</i> ctxt question- naire sponding questionnaire 1* part-of - yes 1 comments any additional informa- 01 Text - no - 0 comments any additional informa- 01 Text - no - 0 comments any additional informa- 01 Text - no - 0 comment text any additional informa- 01 Text - no - 0 comment text any additional informa- 01 Text - no - 0 to range text any additional informa- 01 Text - no - 0 comment text any additional informa- 01 Text - no - 0 comment text any additional informa- 01 Text - no - 0 to no - 0 comment text any additional informa- 01 Text - no - 0 to no - 0 comment text any additional informa- 01 Text - no - 0 to no - 0 to no - 0 comment text any additional informa- 01 Text - no - 0 to no - 0	Conce Super	pt: Question concept: GQ	naire Question M Product							
artif question textual form of question 1 Text - yes - - 0 question explanation e.g. terms used. - no - - 0 answer answer unit defines the unit of the 01 Text - no - - 0 answer declares the range of 01 Text - no - - 0 answer declares the range of 01 Text - no - - 0 answer declares the range of 01 Text - no - - 0 answer explanation on the onswer 01 Text - no - - 0 answer explanation range of the answer 01 Text - no - - 0 measure references the corresponding measure 1 defined- yes - - 1 //F text question- references the correnaire 1* part-of yes - - 1	Layer	Name	Description	Cardi- nality	Туре	Default value	Manda- tory	Value infer- ence	To infe	^r Stand- ard weight
questionexplains the question, explanation01Text-no0answer unit defines the unit of the answer01Text-no0answerdeclares the range of the answer01Text-no0answerdeclares the range of the answer01Text-no0answerexplanation on the explanation range of the answer01Text-no0measurereferences the corre- sponding measure1defined- by [GQM Meas- ure].[que stion- naire question]yes1//Fctxtquestion- references the corre- naire1* sponding questionnairepart-of [Ques- tion- naire].[qu estion]yes1commentsany additional informa- tion or comment01Text-no-0	artif	question	textual form of question	1	Text	-	yes	-	-	0
answer unit defines the unit of the answer 01 Text - no - - 0 answer declares the range of the answer 01 Text - no - - 0 answer declares the range of the answer 01 Text - no - - 0 answer explanation on the explanation range of the answer 01 Text - no - - 0 measure references the corresponding measure 1 defined yes - - 1 by [GQM Meas- weight of the answer weight of the answer - - 1 //F text question- references the corre- 1* part-of - yes - - 1 //F tion- naire sponding questionnaire 1* part-of - yes - 1 (Ques- tion- naire].[que estion] - - 1 comments any additional informa- 01 Text - no - <td></td> <td>question explanation</td> <td>explains the question, e.g. terms used.</td> <td>01</td> <td>Text</td> <td>-</td> <td>no</td> <td>-</td> <td>-</td> <td>0</td>		question explanation	explains the question, e.g. terms used.	01	Text	-	no	-	-	0
answer rangedeclares the range of the answer01Text-no0answer explanation range of the answer01Text-no0measure measurereferences the corre- sponding measure1defined- by [GQM Meas- ure].[que stion- naire question]1VFctxtquestion- references the corre- sponding questionnaire1* part-of (Ques- tion- naire].[qu estion]1commentsany additional informa- tion or comment01Text-no-0		answer unit	defines the unit of the answer	01	Text	-	no	-	-	0
answer explanation on the explanation range of the answer 01 Text - no - - 0 measure references the corresponding measure 1 defined- - yes - - 1 by [GQM Meas-ure].[que stion-naire question] Westion-naire - 1		answer range	declares the range of the answer	01	Text	-	no	-	-	0
measure references the corre-sponding measure 1 defined yes - - 1 by [GQM Meas-ure].[question-naire question] Meas-ure].[question-naire question] - 1 //F question-naire question] - - 1 ctxt question-sponding questionnaire 1* part-of - yes - - 1 comments any additional informa- 01 Text - no - 0		answer explanation	explanation on the range of the answer	01	Text	-	no	-	-	0
VF ctxt question- references the corre- naire 1* part-of - yes - 1 Ques- tion- naire].[qu estion] [Ques- tion- naire].[qu estion] - 0 comments any additional informa- tion or comment 01 Text - no - 0		measure	references the corre- sponding measure	1	defined- by [GQM Meas- ure].[que stion- naire question]	-	yes	-	-	1
ctxt question- naire references the corre- sponding questionnaire 1* part-of [Ques- tion- naire].[qu estion] yes - - 1 comments any additional informa- tion or comment 01 Text - no - 0	I/F									
comments any additional informa- 01 Text - no 0 tion or comment	ctxt	question- naire	references the corre- sponding questionnaire	1*	part-of [Ques- tion- naire].[qu estion]	-	yes	-	-	1
		comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

Conce Super	ept: Software concept: CC	e Object DNCEPT							
Layer	Name	Description	Cardi nality	- Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard weight
artif	object	states the software object	1	SwOb- jectTax- onomy	-	yes	-	-	1
	attribute	measurable data item from the software entity	01 /	SwAttrib- ute	-	no	-	-	1
	state	value of attribute	01	has- parts[TTy pe].[Soft- wareOb- jectState]	-	no	-	-	1
I/F									
ctxt	Comments	any additional informa- tion or comment	01	Text	-	no	-	-	0
asserti Conce	ept: TCardina	il Inc							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda tory	-Value infer- ence	To infe	Stan- dard weight
artif	Lower Bound	Lower Bound of the interval	1	Cardinal	0	yes	-	-	1
	Upper Bound	The upper bound.	1	Cardinal	536870 912	yes	-	-	1
I/F									
ctxt									
sim _{arti}	_f , sim _{l/F} , sim _c nd: TRUE	_{txt} : standard							

assertion: [LowerBound]≤[UpperBound]

lavor	Namo	Description	Car-	Τνρο	Dofault	Manda.	Value infer-	To infor	Stan-
Layei	Name	Description	dinal- ity		value	tory	ence	10 inter	dard weigh
artif	Symbol	The name of the symbol	1	String	-	yes	-	-	1
	Description	Description of the sym- bol	1	String	-	yes	-	-	1
	VRange	Reverse link to the attribute in unordered Symbol	1	decompo- sition- of[TOr- deredSym- bol].[VRan ge]	-	yes	-	-	1
I/F									
ctxt									
precor asserti	nd: TRUE on: TRUE								
precor asserti Conce Super Layer	nd: TRUE on: TRUE pt: TGlossary concept: CO Name	/EntryTax NCEPT Description	Car- dinal-	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stan- dard
precor asserti Conce Super Layer	nd: TRUE on: TRUE pt: TGlossary concept: CO Name	/EntryTax NCEPT Description	Car- dinal- ity	Type	Default value	Mandatory	Value infer- ence	To infer	Stan- dard weight
precor asserti Conce Super Layer artif	nd: TRUE on: TRUE pt: TGlossary concept: CO Name Symbol Description	/EntryTax NCEPT Description The name of the symbol Description of the sym- bol	Car- dinal- ity 1	Type String String	Default value -	Manda- tory yes yes	Value infer- ence -	To infer - -	Stan- dard weight 1 1
precor asserti Conce Super Layer artif	nd: TRUE on: TRUE pt: TGlossary concept: CO Name Symbol Description VRange	/EntryTax NCEPT Description The name of the symbol Description of the sym- bol A symbol of the range of the taxonomy	Car- dinal- ity 1 1 01	Type String String range- of[TTaxon- omy- Root].[VRa nge]	Default value - -	Manda- tory yes yes no	- Value infer- ence - -	To infer - -	Stan- dard weight 1 1

Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stan- dard weigh
artif	Symbol	The name of the symbol	1	String	-	yes	-	-	1
	Description	Description of the sym- bol	1	String	-	yes	-	-	1
	VRange	Reverse link to the attribute in unordered Symbol	1	decompo- sition- of[TUnor- deredSym- bol].[VRan ge]	-	yes	-	-	1
I/F									
ctxt									
assert	ion: TRUE								
assert Conce	ion: TRUE pt: TInteger concept: TTy	rpe							
Conce Super Layer	ept: TInteger concept: TTy Name	/pe Description	Car- dinal- ity	Туре	Default value	Manda- tory	Value infer- ence	To infer	Stan- dard weight
Conce Super Layer artif	ion: TRUE ept: TInteger concept: TTy Name Lower Bound	/pe Description Lower Bound of the interval	Car- dinal- ity 1	Type	Default value - 536870 912	Manda- tory yes	Value infer- ence -	To infer -	Stan- dard weight 1
Conce Super Layer artif	ion: TRUE ept: TInteger concept: TTy Name Lower Bound Upper Bound	/pe Description Lower Bound of the interval Upper Bound of the interval	Car- dinal- ity 1	Type integer integer	Default value - 536870 912 536870 912	Manda- tory yes yes	Value infer- ence -	To infer -	Stan- dard weight 1
Conce Super Layer artif	ept: TInteger concept: TTy Name Lower Bound Upper Bound	rpe Description Lower Bound of the interval Upper Bound of the interval	Car- dinal- ity 1	Type integer integer	Default value - 536870 912 536870 912	Manda- tory yes yes	Value infer- ence -	To infer -	Stan- dard weight 1
Conce Super Layer artif	ept: TInteger concept: TTy Name Lower Bound Upper Bound	/pe Description Lower Bound of the interval Upper Bound of the interval	Car- dinal- ity 1	Type integer integer	Default value - 536870 912 536870 912	Manda- tory yes yes	Value infer- ence -	To infer -	Stan- dard weight 1

Conce Super	pt: TIntegerl concept: TTy	nterval ype							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda- tory	Value infer- ence	To infe	r Stan- dard weight
artif	LeftLower Bound	Lower Bound of the left interval	1	integer	- 536870 912	yes	-	-	1
	LeftUpper Bound	Upper Bound of the left interval	1	integer	536870 912	yes	-	-	1
	Right- Lower Bound	Lower Bound of the right interval	1	integer	- 536870 912	yes	-	-	1
	RightUp- per Bound	Upper Bound of the left interval	1	integer	536870 912	yes	-	-	1

I/F

ctxt

sim_{artif}, sim_{I/F}, sim_{ctxt}: standard

precond: TRUE

. assertion: [LeftLowerBound]≤[LeftUpperBound] AND [RightLowerBound]≤[RightUpperBound] AND [LeftLower-Bound]≤[RightLowerBound] AND [LeftUpperBound]≤[RightUpperBound]

Conce Super	ept: TOrdere concept: TT	edSymbol Fype							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stan- dard weight
artif	VRange	Defines the range of a Symbol	1*	has- decompo- sition[Glos- saryEntryO rdered].[VR ange]	-	yes	-	-	1
I/F									
ctxt									

sim_{artif}, sim_{I/F}, sim_{ctxt}: standard

Conce Super	ept: TReal concept: T	Туре							
Layer	Name	Description	Car- dinal ity	Type -	Default value	Mano tory	la-Value infer- ence	To inf	fer Stan- dard weight
artif	Lower Bound	Lower Bound of the interval	1	real	-1.0e30	yes	-	-	1
	Upper Bound	Upper Bound of the interval	1	real	1.0e30	yes	-	-	1

I/F

ctxt

 sim_{artif} , $sim_{I/F}$, sim_{ctxt} : standard

precond: TRUE assertion: [LowerBound]≤[UpperBound]

Conce Super	pt: TRealnte concept: TTy	rval ype							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Mand tory	a-Value infer- ence	To inf	er Stan- dard weight
artif	LeftLower Bound	Lower Bound of the left interval	1	real		yes	-	-	1
	LeftUpper Bound	Upper Bound of the left interval	1	real		yes	-	-	1
	Right- Lower Bound	Lower Bound of the right interval	1	real		yes	-	-	1
	RightUp- per Bound	Upper Bound of the left interval	1	real		yes	-	-	1

I/F

ctxt

 $\mathsf{sim}_{\mathsf{artif}},\,\mathsf{sim}_{\mathsf{I/F}},\,\mathsf{sim}_{\mathsf{ctxt}}\!:\,\mathsf{standard}$

precond: TRUE

assertion: [LeftLowerBound]≤[LeftUpperBound] AND [RightLowerBound]≤[RightUpperBound] AND [LeftLowerBound]≤[RightLowerBound] AND [LeftUpperBound]≤[RightUpperBound]

Concept: Super con	Taxonomy ept: TType				
Layer Na	ne Description	Car- Type dinal- ity	Default value	Manda-Value infer- tory ence	To infer Stan- dard weight
artif					

Conce Super	pt: TTaxonor concept: TTy	ny /pe							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda tory	- Value infer- ence	To infer	Stan- dard weigh
I/F	LowerLevel	The next deeper level in the hierarchy	0*	has- decompo- sition[TTax- onomyNod e].[Upper- Level]	-	no	-	-	1
ctxt									
sim _{arti}	_f , sim _{I/F} , sim _c	_{txt} : standard							
precor asserti	nd: TRUE on: TRUE								
Conce Super	pt: TTaxonor concept: TTa	myNode axonomy							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda tory	- Value infer- ence	To infer	Stan- dard weigh
artif	Symbol	Symbol stored in this node	1	has- decompo- sition[TGlo ssaryEn- tryTax].[Tax Node]	-	yes	-	[TTax- onomy- Root]:[VRange]	1
I/F	UpperLevel	The next higher level	1	decompo- sition- of[TTaxon- omy].[Low- erLevel]	-	yes	-	-	0
	RootLevel	Link to the root of the taxonomy	1	to- root[TTax- onomy-	-	yes	-	-	0

precond:pos(1, [RootLevel].[VRange].[Symbol], [Symbol].[Symbol]])=0 assertion: TRUE

Conce Super	pt: TTaxono concept: TT	myRoot axonomy							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda- tory	-Value infer- ence	To infer	⁻ Stan- dard weight
artif	VRange	The Range of the whole taxonomy	1*	has- range[Glos saryEn- tryTax].[VR ange]		yes	[All].[Symbol]	-	1
I/F	All	The link from root to all the nodes of the taxon- omy. Needed because the precondition.	0*	from- root[TTax- onomyN- ode].[Root Level]	-	no	-	-	1
ctxt									
sim _{arti}	_f , sim _{l/F} , sim _d	_{ctxt} : standard							
precor asserti	nd: TRUE on: TRUE								
Conce Super	pt: TText concept: TT	уре							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stan- dard weight
artif									
I/F									
ctxt									
sim _{arti} precor asserti	_f , sim _{I/F} , sim _d nd: TRUE on: TRUE	_{ctxt} : standard							
Conce	pt: TUnorde	redSymbol							
Layer	Name	Description	Car- dinal- ity	Туре	Default value	Manda- tory	-Value infer- ence	To infer	Stan- dard weight
artif	Number	The number of the pos- sible choosen Symbols (Symbol Set).	1	Cardinal	1	yes	-	-	1
	VRange	Shows the range of the value of a Symbol	1*	decompo- sition[Glos- saryEntryU nor- dered].[VR ange]	-	yes	-	-	1
I/F									

Conce Super	ept: TUnorde concept: TTy	redSymbol /pe							
Layer	Name	Description	Car- dinal- ity	Гуре	Default value	Manda- tory	-Value infer- ence	To infe	r Stan- dard weight
ctxt									
sim _{arti}	_f , sim _{l/F} , sim _c	_{txt} : standard							
precoi assert	nd: TRUE ion: card([Val	lueLink])≤[Number]							
Conce Super	ept: TType concept: CO	NCEPT							
Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard weight
artif									
I/F	GQMMeas- ureRange	Reverse range link	01	part- of[GQM- Meas- ure].[rang e]	-	no	-	-	1
	Varia- tionltem- Range	Reverse range link	01	part- of[Varia- tion Item].[ran ge]	-	no	-	-	1
	Software- ObjectState	Reverse value link	01	part- of[Soft- wareOb- ject].[stat e]	-	no	-	-	1
	Varia- tionItemEx- pectedValu e	Reverse value link	01	part- of[Varia- tionItem]. [Expect- edValue]	-	no	-	-	1

Layer	Name	Description	Cardi- nality	Туре	Default value	Manda tory	- Value infer- ence	To infe	r Stand- ard
									weight
artif	variation factor	factor pertaining to the object of interest and the domain with poten- tial impact on a quality item	1	Text	-	yes	-	-	0
	range	range of the variation factor as defined in gen- eral in the specific envi- ronment	01	has- parts[Typ e].[Varia- tionItem- Range]	-	no	-	-	1
	impact	describes the expected impact of the variation factor on the baseline hypothesis of the affected quality factor	1*	Text	-	yes	-	-	0
I/F	quality fac- tors	specifies the quality item affected by this variation item ^a	1*	defined- by[Qual- ity Item].[var iation factors]	-	yes	-	-	1
ctxt	expected value	of the variation factor in the specific environ- ment where the actual measurement program takes place	01	has- parts[TTy pe].[Vari- ationIte- mExpecte dValue]	-	no	-	-	1
	abstraction sheet	references correspond- ing abstraction sheet	11	part-of [Abstrac- tion Sheet].[va riation item]	-	yes	-	-	1
	comments	any additional informa- tion or comment	01	Text	-	no	-	-	0

A.3 Type Table

Table 47: Type Table

Name	Supertype	Value range	Unit of measure	e Similarity
Acquisi- tionTech- nique	UnorderedSym- bol	"observation", "statistical anal- ysis", "inter- view", "discussion"	n/a	Standard
Attitude	OrderedSymbol	"rejecting", "disinter- ested", "moti- vated"	n/a	see Supertype
Business- Sector	UnorderedSym- bol	"aerospace", "electrical engi- neering", "energy", "information technology", "mechanical engineering", "motor vehi- cles", "tele- communication s"	n/a	Standard
Certifica- tion	UnorderedSym- bol	"ISO9000", "CMM2", "CMM3", "CMM4", "CMM5"	n/a	Standard
Collection- Period	OrderedSymbol	"daily", "weekly", "monthly", yearly"	n/a	see Supertype
Collection- Timing	UnorderedSym- bol	"begin", "end"	n/a	Standard
Constraint	OrderedSymbol	"minimal", "normal", "severe"	n/a	see Supertype
DataStor- age	Identifier	-	n/a	-
DurationM	Real	[0.00*]	calendar months	Standard
EffortPM	Real	[0.00*]	person months	Standard
FreqM	Real	[0.00*]	per month	Standard
GQMProc- essTaxon- omy	TaxonomySym- bol	Taxonomy 7:	n/a	Standard
Impor- tance	OrderedSymbol	"unimpor- tant", "desira- ble", "important", "crucial"	n/a	Standard
KLOC	Cardinal	[0*]	KLOC	see Supertype

Name	Supertype	Value range	Unit of measure	Similarity
Lifecy- cleModel	UnorderedSym- bol	"iterative enhance- ment", "proto- typing", "spiral", "waterfall"	n/a	Standard
Measure- ment- Knowledg e	OrderedSymbol	"not availa- ble", "nega- tive", "positive"	n/a	Standard
Model- Category	UnorderedSym- bol	"descriptive", "evaluation", "predictive"	n/a	Standard
Model- Type	UnorderedSym- bol	"quality model", "resource mode"	n/a	Standard
Newness	OrderedSymbol	"version with- out new fea- tures", "enhanced ver- sion", "initial delivery", "pro- totype", "research pro- totype"	n/a	see Supertype
Platform	UnorderedSym- bol	"embedded processors", "main frame computers", "mini comput- ers", "PC", "workstations"	n/a	Standard
ProgLang	UnorderedSym- bol	"Ada", "Assembler", "C", "C++", "COBOL", "Fortran", "Smalltalk"	n./a	Standard
Purpose	UnorderedSym- bol	"characteriza- tion", "moni- toring", "evaluation", "prediction", "control", "change"	n/a	Standard
Question- Category	TaxonomySym- bol	Taxonomy 4:	n/a	Standard

Name	Supertype	Value range	Unit of measure	eSimilarity
Represen- tationForm	UnorderedSym- bol	"diagram", "graph", "rule", "struc- tured text", "table", "unstructured text"	n/a	Standard
Resource	UnorderedSym- bol	"human", "tool"	n/a	Standard
ReuseType	OrderedSymbol	"not used", "used with many modifica- tions", "used with few modi- fications", "used as is"	n/a	see Supertype
Role	UnorderedSym- bol		n/a	Role-Graph
Scale	OrderedSymbol	"nominal", "ordinal", "interval", "ratio", "abso- lute"	-	Standard
Status	OrderedSymbol	"non-exist- ent", "incom- plete", "complete"	n/a	-
SwAttrib- ute	TaxonomySym- bol	Taxonomy 5:	n/a	Standard
SwObject- Taxonomy	TaxonomySym- bol	Taxonomy 1:	n/a	Standard
SwObject- Type	UnorderedSym- bol	"product", "process", "resource"	n/a	Standard
SwProc- essTaxon- omy	TaxonomySym- bol	Taxonomy 2:	n/a	Standard
SwPro- ductTax- onomy	TaxonomySym- bol	Taxonomy 3:	n/a	Standard
SwType	UnorderedSym- bol	"batch process- ing", "decision support", "embedded/ real-time sys- tems", "inter- active/reactive systems", "product/man- ufacturing sys- tems", "transaction processing"	n/a	Standard

Name	Supertype	Value range	Unit of r	measure Similarity
Unit	TaxonomySym- bol	Taxonomy 6:	n/a	Standard
Version	Real	[0.0199.99]	n/a	-

Role-Graph [BMS95] Graph 1:

Taxonomy 1: SwO bjectTaxonomy

SW process • QA activities •

root

- •
- maintenance process
 development process
 requirements analysis
- design •
- implementation . test
 - component testing unit testing ٠
- •
- SW product
 - development document
 - requirements document
 - design document •

 - code test document test cases
 - test procedures
 - resource
 - hardware •
 - software communication
- •

Taxonomy 2: SwPr ocessTaxonomy

 QA activities maintenance process

root

- development process
 requirements analysis
 design
 implementation

 - test
 - •
 - component testing unit testing

Taxonomy 3: SwPr oductTaxonomy

- root development document requirements document design document

 - code
 - test document
 - test cases ٠
 - test procedures •

A.4 Symbol Glossary

Table 48: Symbol Glossary

Туре	Symbol	Description						
Acquisi-	observation	gathering information by noting facts or occurrences						
tion i ech- nique	statistical analysis	mathematics dealing with the analysis of masses of numerical data						
	interview	a meeting at which information is obtained from a person						
	discussion	consideration of a question in open usually informal debate						
Attitude	rejecting	refusing to accept and support measurement						
	disinterested	without any interest wrt. measurement						
	motivated	interested in and agreeing on the application of measurement						
Business-	aerospace	manufacture or use of vehicles used in aerospace						
Sector	electrical engineering	engineering that deals with the practical applications of electricity						
	energy	manufacture or use of power plants						
	information technology	technologies of computers and telecommunications						
	mechanical engineering	related to machinery						
	motor vehicles	related to motor vehicles						
	telecommunicat related to means of distance communication ions							
Certifica-	ISO9000	organization certified with ISO9000						
tion	CMM2	organization certified on level 2 of CMM						
	CMM3	organization certified on level 3 of CMM						
	CMM4	organization certified on level 4 of CMM						
	CMM5	organization certified on level 5 of CMM						
Collection-	daily	data is collected once a day						
Period	weekly	data is collected once a week						
	monthly	data is collected once a month						
	yearly	data is collceted once a year						
Collection-	begin	data is collected at the begin of an activity						
nining	end	data is collected at the end of an activity						
Constraint	minimal	not considered as critical						
	normal	not considered as strongly critical but also not neglected completely						
	severe	strongly critical						

Туре	Symbol	Description
GQMProc- essTaxan- omy	GQM process	defines the planning, execution and packaging of GQM-based measurement programs
	Prestudy	describes the activities to establish all preconditions necessary for a GQM-based measurement program
	Identification of GQM goals	describes the activity of identifying GQM goals
	Development of GQM plan	describes the activities wrt. the derivation of measures via questions and models.
	GQM inter- views	describes the planning, performance and documentation of GQM interviews
	Development of questions	describes the development of questions based on the interview results
	Development of models	describes the development of models wrt. the questions
	Development of measures	describes the development of measures based on the models
	Review of GQM plan	describes the review process of GQM plan to check completeness and correctness
	Development of measurement plan	describes the development of data collection procedures and data collection instruments wrt. the measures defined in the GQM plan
	Development of data collection procedures	describes the definition of collection procedures determining when, how and by whom data has been collected wrt. the measures defined in the GQM plan
	Development of data collection instruments	describes the development of data collection instruments wrt. the data collection procedures
	Review of measurement plan	describes the review of measurement plan
	Data collection	describes the collection, validation and storage of measurement data
	Data analysis and interpreta- tion	describes the analysis and interpretation of measurement data
	Analysis	describes the analysis of measurement data
	Interpretation	describes the planning, execution and documentation of feedback sessions
	Packaging	describes the packaging of measurement data and experiences in models, stand- ards, etc.
Impor- tance	unimportant	having no influence
	desirable	worth seeking
	important	having great influence
	crucial	of the utmost importance

Туре	Symbol	Description
Lifecy- cleModel	iterative enhancement	software development technique in which requirement analysis, design, imple- mentation and testing occur in an overlapping, iterative (rather than sequential) manner, resulting in incremental completion of the overall software product.
	prototyping	A development technique in which a preliminary version of part or all of the soft- ware is developed to permit user feedback, determine feasibility, or investigate timing or other issues in support of the development process.
	spiral	A model of the software development process in which the constituent activities, requirement analysis, preliminary and detailed design, coding, integration and testing, are performed iteratively until the software is completed.
	waterfall	A model of the development process in which the constituent activities, require- ment phase, design phase, implementation phase, test phase, are performed in that order, possibly with overlap, but with little or no iteration.
Measure-	not available	measurement has never been applied in organization
Knowledg	negative	measurement has been introduced before with negative results
е	positive	mesurement has been established before with positive results
Model-	descriptive	describe a measure based on integrating other measures, e.g. m=F(x1,,xn)
Category	evaluation	capture situation in which a particular attribute needs to be evaluated based on one or more of its measures, e.g. $d=f(x_1,,x_n)$ with $d=(d_1,,d_2)$ decisions
	predictive	predict a particular attribute based on one or more of its measures, e.g., $\hat{e}=f(x1,xn)$ or the occurrence of a certain event $p(e)=f(x1,xn)$
Model-	quality model	model concerning a quality of a sw object, e.g. reliability, reusability
туре	resource mode	model concerning resources related to a sw object, e.g. effort
Newness	version without new features	improved version (correction of faults) but without adding any new features
	enhanced version	improved version with new features
	initial delivery	no delivered versions existed before
	prototype	A preliminary type, form or instance of a system that serves as a model for later stages or for the final, complete version of the system.
	research prototype	A preliminary type, form or instance of a system that serves for research objec- tives.
Platform	embedded processors	used as part of a system or machine.
	main frame computers	
	mini computers	
	РС	

workstations

Туре	Symbol	Description
ProgLang	Ada	Imperative programming language unifying different concepts from several pro- gramming languages.
	Assembler	Machine-oriented programming language.
	С	Programming language with properties and elements of assembler similar and higher programming languages.
	C++	Object-oriented programming language based on C.
	COBOL	Imperative programming language for commercial data processing.
	Fortran	Imperative programming language for applications in natural sciences and engineering.
	Smalltalk	Object-oriented programming language.
Purpose	characterization	aims at forming a snapshot of the current state/performance of the software development products and processes
	monitoring	aims at following the trends/evolution of the state/performance of processes and products
	evaluation	aims at comparing and evaluating products and processes
	prediction	aims at identifying relationships between various process and product factors using these relationships to predict relevant external attributes of products and processes
	control	aims at identifying causal relationships that influence the state/performance of products and processes
	change	aims at identifying causal relationships in order to change the development proc- ess to obtain higher product quality and process productivity
Question- Category	domain understanding	quantitative characterization of the object to which the process is applied and an analysis of the process performer's knowledge concerning this object
	process conformance	quantitative characterization of the process and an assessment of how well it is performed
	process definition	category that contains questions concerning factors that may have an impact on the values of the quality attributes wrt. the studied process
	process/product definition	category that contains questions concerning factors that may have an impact on the values of the quality attributes
	product definition	category that contains questions concerning factors that may have an impact on the values of the quality attributes wrt. the studied product
	internal attributes	quantitative characterization of the product in terms of physical attributes such as size, complexity, etc.
	development cost	quantitative characterization of the resources expended related to this product in terms of effort, computer time, etc.
	development changes	quantitative characterization of the errors, faults, failures, adaptations, correc- tions, and enhancements related to this product
	operational context	quantitative characterization of the customer community using this product and their operational profiles
	quality focus	descriptive models of the quality perspective of interest

Туре	Symbol	Description			
Represen- tationForm	diagram	drawing, sketch, plan or chart that makes something clearer or easier to under- stand			
	graph	diagram that represents change in one variable factor in comparison with that of one or more other factors or pictorial representation of a set of points (as a line or curve) that satisfy a mathematical equation or belong to a given set.			
	rule	prescribed guide for conduct or an action			
	structured text	a textual description organized by a defined structure			
	table	systematic arrangement of data in rows and columns			
	unstructured text	a textual description			
Resource	human	A human resource allocated to the development, testing, analysis, maintenance or measurement of a program or its documentation.			
	tool	A computer program that is used in the development, testing, analysis, maintenance or measurement of a program or its documentation.			
ReuseType	not used	no object has been reused			
	used with many modifications	object has been reused, but with many modifications			
	used with few modifications	object has been reused with few modifications			
	used as is	object has been reused without any modifications			
Role	Configuration Manager	integrates updates into the system, coordinates the production and release of versions of the system, and provides tracking of change requests.			
	Maintainer	analyze changes, make recommendations, perform changes, perform unit and change validation testing after linking the modified units to the existing system, perform validation and regression testing after the system is recompiled by the Configuration Manager.			
	Testers	present acceptance test plans, perform acceptance test and provide change request to the maintainers when necessary.			
	Users	suggest, control and approve performed changes.			
Scale	nominal	classification of objects, where the fact that objects are different is preserved (one-to-one mappings)			
	ordinal	objects are ranked according to some criteria, but no information about the dis- tance between the values is given (monotonic increasing transformations)			
	interval	differences between the values are meaningful ($M'=aM+b$ (a>0))			
	ratio	there is a meaningful "zero" value, and ratios between values are meaningful (M'= aM (a>0))			
	absolute	no transformation is meaningful ($M' = M$)			
Status	non-existent	Product does not exist.			
	incomplete	Product does exist, but is still incomplete.			
	complete	Product exists and is complete.			
Туре	Symbol	Description			
-----------------------	--------------------------------------	--	--	--	--
SwAttrib- ute	cohesion	cohesion of a module is the extent to which its individual components are needed to perform the same task.			
	coupling	coupling is the degree of interdependence between modules.			
	duration	duration of a software process/phase/activity			
	effort	human effort allocated to a software process/phase/activity			
	process attribute	attribute of software process			
	product attribute	attribute of software product			
	size	size of software product, e.g. in terms of length, functionality, complexity or reuse.			
	structure	structure of software products, concerning control flow, data flow and data structure.			
SwObject- Taxonomy	test	An activity in which a system or component is executed under specified condi- tions, the results are observed or recorded, and an evaluation is made of som aspect of the system or component.			
	test cases	A set of inputs, execution conditions, and expected results developed for a par- ticular objective, such as to exercise a particular program path or to verify compl ance with a specific requirement.			
	test document	Documentation describing plans for, or results of, the testing of a system or co ponent.			
	unit test	Testing of individual software units or groups of related units.			
SwObject- Type	process	processes are activities which are performed during a project. They create, read and modify products.			
	product	the final software product is called product as well as all by-products, artifacts, and parts of a product's documentation.			
	resource	resources are entities that are necessary to perform the process.			
SwType	batch processing	inputs to the system are collected an processed all at one time, rather than being processed as they arrive			
	decision support	system aiming at the support of decisions.			
	embedded/real- time systems	software as part of a larger system which performs some of the requirements of that system/computation is performed during the actual time that an external process occurs.system in which each user			
	interactive/ reactive systems				
	product/ manufacturing systems				
	transaction processing				

Туре	Symbol	Description			
SwObject- Taxonomy	code	Computer instructions and data definitions expressed in a programming lan guage or in a form output by an assembler, compiler or other translator.			
	communication	Activities related to the exchange of information, e.g., meetings, business trips.			
	component testing	Testing of individual components or groups of related components.			
	design	The process of defining the architecture, components, interfaces, and other characteristics of a system or component.			
	design document	A document that describes the design of a system or component.			
	development document	A collection of material pertinent to the development of a given software unit or set of related units.			
	development process	The process of developing a software system, typically includes requirement phase, design phase, implementation phase and test phase.			
	hardware	Physical equipment used to process, store, or transmit computer programs or data.			
	implementation	The process of translating a design into software components.			
	maintenance process	The process of modifying a software system or component after delivery to correct faults, improve performance, or other attributes, or adapt to a changed environment.			
	QA activities	A set of activities designed to evaluate the process by which products are devel- oped or maintained.			
	requirements analysis	The process of studying user needs to arrive at a definition of system, hardware, or software requirements.			
	requirements document	A document that specifies the requirements for a system or a component.			
	resource	Means used to develop a product or perform a service.			
	software	Computer programs, procedures, and possibly documentation and data pertain- ing to the operation of a computer system.			
	SW process	A sequence of steps performed for the development or maintenance of software.			
	SW product	The complete set of computer programs, procedures, and possibly associated documentation and data designated for delivery to a user or any of these individual items.			
	test	An activity in which a system or component is executed under specified condi- tions, the results are observed or recorded, and an evaluation is made of some aspect of the system or component.			
	test cases	A set of inputs, execution conditions, and expected results developed for a par- ticular objective, such as to exercise a particular program path or to verify compli- ance with a specific requirement.			
	test document	Documentation describing plans for, or results of, the testing of a system or component.			
	unit test	Testing of individual software units or groups of related units.			

Туре	Symbol	Description				
SwPro- ductTax- onomy	code	Computer instructions and data definitions expressed in a programming lan- guage or in a form output by an assembler, compiler or other translator.				
	design document	A document that describes the design of a system or component.				
	development document	A collection of material pertinent to the development of a given software unit set of related units.				
	hardware	Physical equipment used to process, store, or transmit computer programs or data.				
	requirements document	A document that specifies the requirements for a system or a component.				
	resource	Means used to develop a product or perform a service.				
	software	Computer programs, procedures, and possibly documentation and data pertaining to the operation of a computer system.				
	SW product	The complete set of computer programs, procedures, and possibly associated documentation and data designated for delivery to a user or any of these indiv ual items.				
	test cases	A set of inputs, execution conditions, and expected results developed for a paticular objective, such as to exercise a particular program path or to verify com ance with a specific requirement.				
	test document	Documentation describing plans for, or results of, the testing of a system or component.				
SwProc- essTaxon- omy	communication	Activities related to the exchange of information, e.g., meetings, business trips.				
	component testing	Testing of individual components or groups of related components.				
	design	The process of defining the architecture, components, interfaces, and other characteristics of a system or component.				
	development process	The process of developing a software system, typically includes requirement phase, design phase, implementation phase and test phase.				
	implementation	The process of translating a design into software components.				
	maintenance process	The process of modifying a software system or component after delivery to correct faults, improve performance, or other attributes, or adapt to a changed environment.				
	QA activities	A set of activities designed to evaluate the process by which products are developed or maintained.				
	requirements analysis	The process of studying user needs to arrive at a definition of system, hardware, or software requirements.				
	SW process	A sequence of steps performed for the development or maintenance of soft ware.				
	test	An activity in which a system or component is executed under specified condi- tions, the results are observed or recorded, and an evaluation is made of some aspect of the system or component.				
	unit test	Testing of individual software units or groups of related units.				

Туре	Symbol	Description		
Unit	codesize	units refering to the size of code		
	LOC	total number of lines of code		
	person-hour	one working hour		
	person-month	one working month (=24 days)		
	SLOC	number of source lines of code excluding comments		
	time	units refering to time		

A.5 Predefined Kinds

Table 49: Predefined Kinds

19. FIE-	Kind	Reverse name	Description	Structure	Properties
	defines	defined-by	In the context of GQM measurement planning a specific organizational inter- dependency between GQM products has been identi- fied, the <i>defines</i> relation (see Figure 12). This relation describes the fact that a GQM product (e.g., a ques- tion in the GQM plan) is defined based on another GQM product (e.g., a qual- ity dimension in the abstrac- tion sheet). The explicit modelling of this interde- pendency guarantees the traceability between the individual GQM products in a measurement program.	DAG	transitivity
	depends	R(depends)	A special kind used for data collection procedures. The collection of data may depend on the collection of other data. For example, the finish date needs only be collected if the start date has also been collected in order to compute the dura- tion of a process step. In this case, the collection of the finish date depends on the collection of the start date. If a measure is deactivated (i.e., temporarily no data for this measure is collected), all of its dependents should also be deactivated. (see Figure 14)	DAG	transitivity

Kind	Reverse nam	e Description	Structure Properties		
next	previous	A special kind of relation- ship used to point at the next solution applied, in case a solution applied to a problem which occurred failed. This helps to keep track of the solutions applied until the problem has been successfully solved. (see Figure 15)	DAG	transitivity	
refers-to	referred-by	Relationship that indicates entities of the software process, e.g., design docu- ment or requirement analy- sis which are related to measurement entities (see Figure 13)	DAG	transitivity	
to-root	from-root	Link from all nodes to the root of the taxonomy.	tree		
has-range	range-of	Declares th e range of val- ues.	tree		

Figure 10: Kind »isa« (generalization)

Example Ontology

Document Information

Title:

REFSENO – A Representation Formalism for Software Enginering Ontologies

Date:OctoReport:IESEStatus:FinaDistribution:Public

October 20, 1998 IESE-015.98/E Final Public

Copyright 1998, Fraunhofer IESE. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means including, without limitation, photocopying, recording, or otherwise, without the prior written permission of the publisher. Written permission is not needed if this publication is distributed for non-commercial purposes.