Fraunhofer Institut

Experimentelles
Software Engineering

The Library Systems Product Line
A KobrA Case Study

Authors:
Joachim Bayer
Dirk Muthig
Brigitte Gopfert

IESE-Report No. 024.01/E
Version 1.0
November 22, 2001

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

The institute transfers innovative software
development technigues, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern

Executive Summary

This report presents a case study in the domain of library and information sys-
tems that accompanied the KobrA method definition to illustrate the method’s
concepts and to experiement with alternative ideas.

Keywords: KobrA, Product Line Engineering

Copyright © Fraunhofer IESE 2001

Vi

Copyright © Fraunhofer IESE 2001

Table of Contents

_ e
wWwN -

Wi o s

Introduction
Background

PuLSE

KobrA

Library System Case Study
Objectives

Outline

Part I: Framework for Library Systems

Copyright © Fraunhofer IESE 2001

NNNNN
wiN =

2.2

2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
228
2.2.9
2.3

2.4

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2

Framework Scope
Product Line Members
I[ESE Research Library
University Library

City Library

Features

Catalog

Item Acquisition
Periodical Kardex
Data Management
Data Exchange

Loan Management
Charges

Reports and Profiles
OPAC (Online Public Access Catalog)
Product Map

Reduced Product Map

Context Realization

Enterprise Model

Enterprise Concept Diagram
Enterprise Process Diagram
Structural Model

Context Realization Class Diagram
Context Realization Object Diagram
Activity Model

Activity Diagrams

Use Case Model

ij_bwé__\

Vii

3.4
3.4.1
3.5

4.1

411
4.1.2
4.1.3
4.1.4
4.2

4.2.1
4.2.2

Part II: Basic Library System

7

viii

Interaction Model
Sequence Diagrams
Decision Model

Library System
Specification
Structural Model
Functional Model
Behavioral Model
Decision Model
Realization
Structural Model
Activity Model
Interaction Model
Decision Model

Loan Manager
Specification
Structural Model
Functional Model
Behavioral Model
Decision Model
Realization
Structural Model
Activity Model
Interaction Model
Decision Model

Reservation Manager
Specification

Structural Model
Functional Model
Behavioral Model
Decision Model
Realization

Structural Model
Activity Model
Interaction Model
Collaboration Diagrams
Decision Model

Basic Library System

25
25
27

29
29
29
31
34
35
39
39
40
40
42

45
45
45
47
51
52
54
54
55
56
58

61
61
61
62
64
64
65
65
66
67
67
68

69

71

Copyright © Fraunhofer IESE 2001

Copyright © Fraunhofer IESE 2001

7.1 Specification
7.1.1 Structural Model
7.1.2 Functional Model
7.1.3 Behavioral Model
7.1.4 Resolution Model
7.2 Realization

7.2.1 Structural Model
7.2.2 Activity Model
7.2.3 Interaction Model
7.2.4 Resolution Model
8 Basic Loan Manager
8.1 Specification
8.1.1 Structural Model
8.1.2 Functional Model
8.1.3 Behavioral Model
8.1.4 Decision Model
8.2 Realization

8.2.1 Structural Model
8.2.2 Activity Model
823 Interaction Model
8.2.4 Decision Model
References

71
71
73
75
76
79
79
80
80
82

83
83
83
85
88
90
92
92
93
94
96

97

Copyright © Fraunhofer IESE 2001

Introduction

1 Introduction

The KobrA method, which has been developed at the Fraunhofer Institute for
Experimental Software Engineering (IESE), provides a common and integrated
viewpoint on several I[ESE competencies under the umbrella of a systematic
method for component-based product line engineering. This report presents the
case study in the domain of library and information systems that accompanied
the KobrA method definition to illustrate the method’s concepts and to experie-
ment with alternative ideas. More information on the background of the case
study is given in Section 1.1.

Section 1.2, then, ellaborates on the objectives of the case study project and on
the reasons for spending effort on an academic case study instead of taking
material from the context of our transfer projects in industrial contexts. Section
1.3 finally gives the outline of the remaining parts of the report.

1.1 Background

We expect that most of the readers of this report have read the KobrA book and
want to look at the case study described there in more detail. That is, most of
the readers know about the KobrA method and also know some of the dia-
grams presented in this report. Therefore, we ommited any process descriptions
and artifact definitions.

In this section, the background of the KobrA method from one of the integrated
IESE compentencies’ perspective, namely product line engineering, is given.
First, PULSE is introduced as the framework for product line engineering devel-
oped at IESE. Then, KobrA is motivated as an instance of the PuLSE framework.
Finally, we define the domain selected as subject of interest for the case study at
a general level.

1.1.1 PulSE

Domain engineering' has been expected to improve the efficiency of software
development because of the notion of economics of scope. Focussing on an

1 see http://www.iese.thg.de/Domain Engineering for general bibliographic information on domain engi-
neering

Copyright © Fraunhofer IESE 2001 1

Introduction

area, or domain, where applications significantly overlap enables leveraging the
similarities through reuse. Building a reusable infrastructure once for the domain
allows multiple applications to be built more efficiently than building them in
isolation.

However, domain engineering relies on the notion of an application domain to
scope the reusable infrastructure. An application domain spans all possible
applications in that domain. Domains have proved difficult to scope and engi-
neer from an enterprise stand point because a domain captures many extrane-
ous elements that are of no interest to an enterprise. Hence, the domain view
provides little economic basis for scoping decisions. Instead, enterprises focus on
particular products (existing, under development, and anticipated). This differ-
ence in focus is essential for practically supporting the product-driven needs of
enterprises. Products span, as well as, integrate multiple application domains,
yet most often only cover a fraction of these whole domains.

The mission of the IESE is to transfer innovative technologies to our customers to
help them improve their software engineering and organization practices.
Within that context, we have attempted to transition domain engineering
know-how. Our initial approach was to use documented methods, such as
Commonality Analysis [AW99], Feature-oriented Domain Analysis [FODA98], or
Synthesis [SPC93]. As we used some of their components, problems immedi-
ately surfaced: the methods have been either not flexible enough to meet the
needs of various industrial situations, or they have been too vague, not applica-
ble without strong additional interpretation and support.

These problems forced us to find solutions throughout the logical phases of the
domain engineering lifecycle. Slowly, these solutions together evolved towards
an integrated approach of its own: PULSE™ (Product Line Software Engineer-
ing)" [BFK+99]. PULSE is the result of a typical bottom-up effort: the methodol-
ogy captures and leverages the lessons learned from our technology transfer
activities with our industrial customers.Therefore, PULSE is a flexible method that
can be customized to support various enterprise situations.

The lifecycle of a software product line in PULSE is split into the following
phases?: initialization, product line infrastructure construction, usage, and evo-
lution. PULSE provides technical components for the different deployment
phases that contain the technical know how needed to operationalize the prod-
uct line development. The technical components are customizable to the respec-
tive context. Customization of PULSE to the context where it will be applied

1 PulSE is a registered trademark of the Fraunhofer IESE.
2 see http://www.iese.fhg.de/PuLSE for more information on PuLSE

Copyright © Fraunhofer IESE 2001

1.1.2 KobrA

Introduction

ensures that the process and products are appropriate. In the initialization
phase, the other phases and the technical components are tailored. Through this
tailoring of the technical components, customized versions of the construction,
usage, and evolution phases of PULSE are created.

The principle dimensions of customization are the nature of the application
domain, the organizational context, reuse aims and practices, as well as the
project structure and available resources.

PuLSE has been applied successfully in various different contexts for different
purposes. Among other things it has proven helpful for introducing sound docu-
mentation and development techniques into existing development practices.
However, in circumstances where there were no pre-existing processes or well-
defined products, the introduction of PULSE turned out to be problematic. In
such cases, the "customization" of PULSE was actually more concerned with the
introduction of basic software engineering processes than with the adaptation
of the product line ideas to existing processes. Especially in immature environ-
ments, the effort for this process definition can be considerable and even pro-
hibitive.

From the perspective of the PULSE method, therefore, there is much to be
gained by the definition of a "ready-to-use" customization of the method that
already contains the required software development processes that may be miss-
ing in immature organizations. The result of this effort is the KobrA method
[ABB+01]".

The KobrA method represents a synthesis of several advanced software engi-
neering technologies. Besides product line development, it includes component-
based development, frameworks, architecture-centric inspections, quality mod-
eling and process modeling. These have been integrated in KobrA with the basic
goal of providing a systematic approach to the development of high-quality,
component-based application frameworks. Numerous methods claim to support
component based development, but these invariably tend to be rather vague
and unprescriptive in nature. They define a lot of possibilities, but provide little if
any help in resolving the resulting choices between them. KobrA, in contrast,
aims to be as concrete and prescriptive as possible.

1 see http://www.iese.fhg.de/KobrA for more information on the KobrA method and related activities

Copyright © Fraunhofer IESE 2001 3

Introduction

From a product line perspective KobrA represents an object-oriented customiza-
tion of the PULSE method. The infrastructure construction phase of PuLSE corre-
sponds to KobrA's framework engineering activity, the infrastructure usage
phase of PULSE corresponds to KobrA's application engineering activity, and the
product line evolution phase of PULSE corresponds to the maintenance of the
frameworks and applications.

The purpose of the framework engineering activity is to create, and later main-
tain, a generic framework that embodies all product variants in a family, includ-
ing information about their common and disjoint features. The purpose of the
application engineering activity is to instantiate this framework to create particu-
lar variants in the product family, each tailored to meet the specific needs of dif-
ferent customers, and later to maintain these concrete variants. A given frame-
work can therefore be instantiated multiple times to yield multiple applications.

1.1.3 Library System Case Study

For our case study it was essential to find a suitable domain with a sufficient
spectrum of variability, which is easily understandable. As a customer-oriented
example the domain of library systems seems to be a good choice, because
nearly everyone is familiar with some features as a user of a modern city library
for private purposes or has used a university library during his or her study.

However, beside the above mentioned two types of library, libraries can be clas-
sified into far more different library types - each with specific mission, target
groups, and tasks. The library types common in Germany can be classified into
the following main categories [Hac92]:

National Libraries
Central Subject Libraries
Regional Libraries
Academic Libraries
Special Libraries

Each category includes a large variety of library types as shown in the table
below [PCM96]. This example offers a sufficient spectrum of variability for a
small, but yet non-trivial case study. Three of the above mentioned library types

Copyright © Fraunhofer IESE 2001

Introduction

(underlined and printed bold in the table) will serve as examples of product line

members.
National Central Subject Regional Academic Special
Libraries Libraries Libraries Libraries Libraries
Die Deutsche Universitatsbiblio- Regional Libraries of University Company
Bibliothek thek a German 'Land' (e. Libraries Libraries
e Deutsche Biblio- Technische Informa- g., Sachsische
g:ﬁwar?kfurt tionsbibliothek Landesbibliothek
i o
e Deutsche UB/TIB Hannover DresdenfBa.dlsche
Blicherei Leipzig Landesbibliothek
* Deutsches Karlsruhe;Nieder-
’\/Iu5|karch|v Ber- sachsische Landes-
in bibliothek Hannover)
Friher: Deutsche Deutsche Zentralbib- City Libraries of Research
Staatsbibliothek Ber- liothek Medizin ZB Libraries specialized higher Libraries
lin und Staatsbiblio- Med. KoéIn education institu-
thek PreuBischer tions (polytechnic)
Kulturbesitz Berlin
Jetzt:Staatsbiblio-
thek zu Berlin -
PreuBischer Kul-
turbesitz
Bayerische Deutsche Departmental Parlamentary and
Staatsbibliothek Zentralbibliothek fur Libraries Administrative
Munchen Wirtschaftswissen- Libraries
schaften ZBW Kiel
Deutsche Zentralbib- Institute Patent Office
liothek fur Landbau- Libraries Libraries
wissenschaften ZBL
Bonn
Seminar Hospital
Libraries Libraries
Music
Libraries
Military
Libraries
Church
Libraries
Art
Libraries

1.2 Objectives

This section ellaborates on the objectives of the case study project and on the
reasons for spending effort on an academic case study instead of demonstrating
the KobrA method by material taken from one of our transfer projects in indus-
trial contexts.

Copyright © Fraunhofer IESE 2001 5

Introduction

1.3

Outline

The case study was performed to serve two major purposes. On the one hand, a
case study was needed to play around with new ideas and to experiment with
alternative apporaches for realizing diverse concepts in the method. For this pur-
pose, material from an industrial context is not suitable for two reasons. First,
researchers are typically no experts in the particular application domain and they
also have no access to the experts in the industrial organization. Hence, it is dif-
ficult to work with such a material. Second, industry matrial is typically large and
thus it costs much effort to realize a conceptual change consistenly.

On the other hand, the case study was planned as an example that illustrates all
aspects and features of the KobrA method. Also for this purpose, material from
an industrial context is not suitable for several reasons. First, most parts of indus-
try material is concerned with details of an application domain that is not under-
stood by anybody. Second, such a material is not fully owned by the researchers
and thus they are usually not permitted to publish it completey and in all details.
Third, industry material is large and thus many aspects of it do not concern
method features but simply add complexitiy to the example.

For the given reasons, we decided to do an academic case study that is, on the
one hand, small enough to enable our experimental research approach. That is,
the effort needed to propagate changes to all models and thus to keep the
entire case study consistent was realistic. On the other hand, the academic case
study was large and complex enough to illustrate all features and concepts of
the KobrA method. Especially the illustration of product line variabilities, their
complexity, and the need for special mechanisms for managing them require an
appropriate level of complexity.

As described in the previous section, we selected the domain of library and
information systems for our case study. This report documents the parts of the
case study that complement and complete the examples given in the KobrA
book to provide a more complete picture of the KobrA method for interested
readers.

This report is organized as follows. Part | presents the library system product line.
It consists of the scope (chapter 2), the generic context realization (chapter 3), as
well as the generic Komponents LibrarySystem (chapter 4), LoanManager (chap-
ter 5), and ReservationManager (chapter 6).

Part Il presents a product line member of the library systems product line, the

basic library system. It consists of the specific Komponents LibrarySystem (chap-
ter 7) and LoanManager (chapter 8).

Copyright © Fraunhofer IESE 2001

Part| Framework for Library Systems

Copyright © Fraunhofer IESE 2001

Copyright © Fraunhofer IESE 2001

Framework Scope

2 Framework Scope

In this chapter, the domain of library and information systems is anaylzed to
determine the scope of the case study. In general, the domain of library systems
encompasses systems that help librarians and information professionals to per-
form their work. Library systems provide support for different aspects of library
work. This includes assistance in customer interaction, stock management, and
accounting. The scope of the domain of library systems is characterized by the
common and variable aspects of the different systems in the library systems
product line.

We defined the scope of the product line on the basis of three types of library
systems: a city library, a university library, and a research library (i.e. the IESE
inhouse research library). We selected these three systems as examples, because
all three library types are represented in Kaiserslautern. The three product line
members are generally characterized in Section 2.1. Section 2.2 defines the fea-
tures of the domain. Section 2.3 provides an overview of the features and sets
them in realtion to the three product line members in form of a product map.
Section 2.4 identifies the part of the scope that is used for the book example by
presenting a reduced product map.

2.1 Product Line Members

This section characterizes the product line members which were used as basis
for defining the scope of the case study. The three types of library systems,
namely a city library, a university library, and a research library, are described in
the following subsections.

2.1.1 IESE Research Library

The IESE research library is a specialized, scientific library for the researchers, stu-
dents, and employees working at the Fraunhofer Institute for Experimental Soft-
ware Engineering (IESE). It is also responsible for different information gathering,
documentation, training, and consulting tasks. The purpose of the IESE research
library is to supply people at IESE with specialized information based on their
specific needs for research and project work.

Copyright © Fraunhofer IESE 2000 9

Framework Scope

2.1.2 University Library

A university library is a scientfic library. Its purpose is to provide university mem-
bers (i.e., students, professors, and other scientific staff) comprehensively with
scientific literature. The research areas and the curriculum subjects of the univer-
sity are covered by the library. In most cases, university libraries are also part of a
supra-regional inter-library lending system.

2.1.3 City Library

2.2

2.2.1

10

Features

Catalog

A city library is a public library. Its purpose is to provide all citizens of a city and
the surrounding areas with literature and media for personal education and
training, for day-to-day management, and as a basis for forming their own opin-
ions. Its stock includes fiction and non-fiction, poetry, juvenile literature, and
periodicals. Further purposes of a city library are to teach competence in the use
of media and to promote reading.

The following is a list of features or services for the library system product line.
Those features can be either shared by different systems in the product line or
they can be specific. The identification of the features that a specific system pro-
vides is done in the product map (cf. Section 2.3).

Catalog

The system indexes and stores each library item in a Catalog. Depending on the
item type, different data is entered. This data includes bibliographic description
and subject indexing. The Catalog provides search, report, and print facilities.

Monograph Catalog
The Catalog provides support for indexing and storing monographs.

Periodical Catalog
The Catalog provides support for indexing and storing periodicals and newspa-
pers.

Issue Catalog
The Catalog provides support for indexing and storing single issues of a journal.

Copyright © Fraunhofer IESE 2000

Framework Scope

CoP Catalog
The Catalog provides support for indexing and storing component parts (CoPs,
e.g., single periodical articles, conference papers, or book chapters).

2.2.2 Item Acquisition

Acquisistion on Approval

Items that are ordered on approval can be entered in the Catalog temporarily.
After a given period, these items are either removed from the Catalog or
entered permanently.

Item Suggestion
The system supports the process of managing items suggested by library users.

Firm Order
The system supports the process of ordering an item from a supplier.

Order Claim
The system monitors undelivered orders. In case ordered items are not delivered
on time by the supplier, a notice of claim is sent to the supplier.

Order Cancellation
The system supports the process of order cancellation.

2.2.3 Periodical Kardex

Kardex

The system provides a kardex for monitoring regular accession and for register-
ing the date of receipt of each issue, depending on the publication frequency of
a subscribed periodical.

Trial Subscription
The system supports the handling of trial subscriptions.

Subscription
The system supports subscriptions of periodicals.

Subscription Claim
The system monitors subscribed periodicals using the kardex. In case a sub-
scribed periodical is not delivered on time by the supplier, a notice of claim is
sent to the supplier.

Copyright © Fraunhofer IESE 2000 11

Framework Scope

Subscription Binding
The system handles periodicals that are bound to volumes when a certain vol-
ume is complete.

Routing
The system provides support for the routing (or circulation) of single issues of
subscribed periodicals.

2.2.4 Data Management

User Management
The system processes standardized data about the users of the library. This
includes support for user registration, account reporting, etc.

Supplier Management
The system processes standardized data about the suppliers of the library.

Publisher Management
The system processes standardized data about publishers of items in the library
stock.

Classification Management
The system processes standardized data about the classification used in the
library.

Keywords Management
The system processes standardized data about subject headings used to charac-
terize the contents of items in the library.

Descriptor Management

The system processes standardized data about descriptors (i.e., subject headings
taken from a controlled vocabulary) used to characterize the contents of items in
the library.

2.2.5 Data Exchange

12

Data exchange covers all ways of communication between the library system
and systems that either act as data provider or as data consumer.

Data Consumer

The system can import data provided by another system. For example, an inter-
face to a publication database is available, which provides means to handle all
necessary steps involved in storing inhouse items (from registration to putting in
library stock).

Copyright © Fraunhofer IESE 2000

Framework Scope

Data Provider
The system can actively export data to other systems. For example, newly
entered data of a specific kind are exported to an external Catalog.

Union Catalog Interface

An interface is provided to a union Catalog that is the result of the co-operative
cataloguing performed by a network of libraries. The system then provides Cat-
alog information for download.

Z39.50 Interface
A standardized union Catalog interface.

2.2.6 Loan Management

2.2.7 Charges

Loan
The system supports the librarian in checking out an item from the library stock
and lending it to a library user for a determined period of time.

Return
The system supports the librarian in checking an item into the library stock that
has been returned by a library user.

Renewal
The loan period for a loaned item is renewed.

Reservation
If an item a user wants to loan is already lent to someone else, the user can
reserve it. He or she is then informed when the item is available for loan again.

Return Claim
The system monitors loaned items. If the return date of a loaned item is
exceeded, a notice of claim is sent to the library user.

Loan Fee
The system supports the librarian in collecting fees or charges from library users
for borrowing items from the library.

Reservation Fee
The system supports the librarian in collecting fees or charges from library users
for reserving an item.

Copyright © Fraunhofer IESE 2000 13

Framework Scope

Overdue Fee
The system supports the librarian in collecting fees or charges from library users
for exceeding the loan period.

Loss Fee
The system supports the librarian in collecting fees or charges from library users
for lost items.

2.2.8 Reports and Profiles

Minimal Report Format
The system provides information on items in a minimal report format.

Maximal Report Format
The system provides information on items in a maximal report format.

DIN 1505 Report Format
The system provides information on items in this standardized report format.

Accession Profiling
The system provides library users with the accession list.

Periodical Profiling
The system provides library users with information on the periodicals collection.
2.2.9 OPAC (Online Public Access Catalog)

OPAC
The system enables library users to access their catalog online.

Simple OPAC Search
The OPAC provides simple search facilities.

Advanced OPAC Search
The OPAC provides advanced search facilities.

Expert OPAC Search
The OPAC provides expert search facilities.

OPAC Index
The OPAC provides indices.

OPAC Reference Linking
The OPAC provides reference linking to identify related work.

14 Copyright © Fraunhofer IESE 2000

OPAC Reservation

Framework Scope

The OPAC provides facilities to reserve items that are currently on loan online.

OPAC Renewal

The OPAC provides facilities to renew the loan period for an item online.

OPAC Profiling

The OPAC allows library users to define search profiles.

OPAC Borrowers’ File

The OPAC allows library users to view their own user account (“borrowers’ file")
(i.e., loaned items, return dates, and reservations).

2.3 Product Map

A product map displays the relationships between the features identified above
and the members of a product line in a two-dimensional matrix. The gray-
shaded features are variable among the three products.

City Library

University Library

IESE Research Library

Catalog

X

X

X

Monograph Catalog

X

X

Periodical Catalog

X

X

Catalog

Issue Catalog

Article Catalog

X | X| X| X

Acquisition on Approval

Item Suggestion”

Firm Order

Order Claim

Item Acquisition

Order Cancellation

X| X| X| X

Kardex

Trial Subscription

Subscription

Subscription Claim

Subscription Binding

Periodical Kardex

X| X| X| X| X| X| X| X| X| X

Routing

Copyright © Fraunhofer IESE 2000

15

Framework Scope

16

City Library

University Library

IESE Research Library

Data Management

User Management*

X

X

X

Supplier Management

Publisher Management

Classification Management”

X
X
X

Keyword Management

X | X| X| X

X | X| X| X

Descriptor Management

Data Exchange

Internal Database Interface

External Database Interface

Union Catalog Interface

739.50 Interface

Loan Management

Loan

Return

Renewal

Reservation

X| X| X| X

Return Claim”

X

X| X| X| X| X| X| X

X| X| X| X| X

Charges

Loan Fee

via annual fee

Reservation Fee

Overdue Fee

Loss Fee

Reports/Profiles

Minimal Report Form

Maximal Report Form

x| X| X| X

DIN 1505 Report Format

Accession Profiling

Periodical Profiling

X| X| X| X| X| X

Copyright © Fraunhofer IESE 2000

Framework Scope

City Library

University Library

IESE Research Library

OPAC

X

X

X

Simple OPAC Search

X

Extended OPAC Search

Expert OPAC Search

X
X
X

OPAC Index

OPAC

OPAC Reference Linking

OPAC Reservation

X| X| X| X| X| X

OPAC Renewal

OPAC Profiling

OPAC Borrowers'’ File

* Variabllities at a more detailed level are expected.

2.4 Reduced Product Map

The product map shown in the previous section was the result of relating the
identified features to the three systems in the product line. In order to be able to
present the case study as running example in the KobrA book, the scope had to
be reduced. The result of this feature reduction is shown in the product map
below, which is the basis for the remainder of this report. f

K'Town City Library University Library IESE Library
_c Registration X X X
2
§ @ Unregistration X X X
8
O § Registration Change X X X
=
Loan X X
-
S Return X X
c E
b g Report Loss X X
o
rEs Item Reservation X X
Item Suggestion X X
Overdue Control X X
- Inventorying X X
[=
~ aé Statistics X X
3 &
& S Classification Management X X X
©
2 Keyword Management X X
Descriptor Management X

Copyright © Fraunhofer IESE 2000

17

Framework Scope

K'Town City Library University Library IESE Library
E Item Acquisition X X X
£
GE, g [tem Registration X X X
o
S Item Removal X X X
=
Subscription Acquisition X X
2 Periodical Registration X X
_§ 2 Periodical Monitoring X X
3o
R Periodical Contents Registration X X
a ©
= Periodical Removal X X
Periodical Unsubscribing X X
g Data Import X X
© C
s ©
&< Data Export X X
o
o Billing X
[=
=)
o c
g =
<
OPAC X X
18 Copyright © Fraunhofer IESE 2000

3

3.1

3.1.1

Figure 1:

Context Realization

Context Realization

Context realization activities include a complete and detailed analysis of the
organization behind the library visible to its customers. Unfortunately, such an
analysis could not be done for the libraries that are part of this case studies. The
reason was the significant effort required from both sides, the external analyzer
and the people in the library organization, that is simply too big to be useful in
the context of a case study only. Therefore, the context realization activities were
done more abstract and from an external point-of-view. That is, organization
issues impacting the implementation of business processes related to the library
system are not modeled in great detail. As a consequence, the borders between
business processes independent of a library system to support them, their refine-
ment into use cases, and finally into system services is not very sharp. In short,
the models presented are only examples to illustrate KobrA’s context realization
models and their inter-relationships. The models are a means to support people
interested in the KobrA method to understand the role of a context realization.
They are not meant to provide insights into real world library organizations.

Enterprise Model

Enterprise Concept Diagram

<<
Lba A ad =
1 al
1 |
* | *
<< 1 * << <<
A 1 .
*
*
<< <<
i Libaia La
* 1 1
1 << <<
Lib a i
1 1 *
* 1 1
<< <<
Lib aia d aa

Enterprise Concept Diagram

Copyright © Fraunhofer IESE 2001 19

5920,
“125gnsun lerowsy | [Bay siusyuo] [buuoyuoly | [uonensibay | [uonisinboy way| way way Em:m\A E
[e21pOLIdd [e21pOLIag [e21pOLIRg |e2IpOLIdyd |e2Ipoiad | |uondudsgns|| anowsy 1335169y aunboy =
_ _ _ _ _ _ | _ | pusten
uoniuaq uoniuyaq uoniuaq uswabeue]| uswabeue| [ZCINEN] Bue |onuo)
Jodinsag piomAay | |uonediyisse|d)| |edipoliad Mg sonsiels Aiojusnuj anpJanQ

puswabeue|
way

wayf wa| 507 Swa)| SWaY| Sy uonensibay
ng s1aysl|gng 1915169, 915169
Buiuieiutepy | | Buieyurepy «mwm_m:m mam_mwm t.uﬂmz cmﬂ_v_mz E:_Hmz cm_S wmc_m:u Ja1sibaiun 1 ,m Y

GIENRE)

Bululeulepy eleq eleq ueo] JawoIsn)

EEIRE] Uon>esau|
Bununoxy yo1eas e worsny

_ Hodx3 _ Hodw _ _Ewc,_m.m:ms_ uswabeue|

Copyright © Fraunhofer IESE 2001

Context Realization

3.1.2 Enterprise Process Diagram

Wd1SAS
Aieiqn

Enterprise Process Diagram

Figure 2:

20

3.2 Structural Model

3.2.1 Context Realization Class Diagram

Context Realization

i ib a a S
* % 1
l at
* a ount
<< << u ct
iba i
* chang ccount
nt ccount
c at ccount <<
o ccount I - -
i ai L2]
oant
nt ccountno aton
tunt N
oant | 1 * *
cont o ut aa
u at o nton
u at c to nton *
u at a caton nton * %
o t <<
c at t i %
nt oga hcno | i * * Z:‘
ca t aa ahcno
a ant t
aant o t
ach
aant ca t * *
a ant nt a cc a]
aant co ct on aa
a ant nt c t
a ant tn oca u at
a ant t tat tca ata
a ant o oca u e
a ant n a * a llrail *
a ant ugg tt a
a ant chang cuaton out
aant chang a
a ant ot ata l
a ant ot ata
a ant nt cuaton t
a ant nt a a I 1a I 1a
a ant gt oca u
a ant gt oun ou ‘
a ant gt a ntt
<< <<
i ai
a aaba u
<< % <<
b
ach
Figure 3: Context Realization Class Diagram
3.2.2 Context Realization Object Diagram
<< er
:brs e !
<<
r er
<<
<< <<
WS1:WebServer WS :WebServer
Figure 4: Context Realization Class Diagram

Copyright © Fraunhofer IESE 2001

21

Context Realization

3.3 Activity Model

The activity model plays an important role in projects where the target organiza-
tion(s) are modeled in detail. As mentioned above, this has not been done in this
case study, therefore, the activity model does not clearly work out the difference
between business processes, use cases, and system services. The processes pre-
sented here are performed mainly by a single role, the service librarian, who
directly interacts with the users of the library.

3.3.1 Activity Diagrams

In this section, the activities related to loan and reservation functionality are pre-

sented.

createNewAccount

<<variant>>
printLibraryAccessCard

l

handOutinfoMaterial

6

Figure 5: Activity Diagram Register()

22 Copyright © Fraunhofer IESE 2001

!

identifyAccount)

C

balanceAccount)

[account balanced]

[account unbalanced]

<<variant>>
withdrawLibraryAccessCar

[card withdrawn]

[card not withdrawn]

C

removeAccount >

b |

Figure 6: Activity Diagram Unregister()

[More items]

.

[No more items]

printAccountinformation

®

Context Realization

identifyAccount

identifyltem

e)
(registerLoan)
®

Figure 7: Activity Diagram Loanltems() and a refinement of loanltem()

Copyright © Fraunhofer IESE 2001

23

Context Realization

identifyAccount

identifyltem

unregisterLoan

returnitem

[No more items]

printAccountinformation

Figure 8: Activity Diagram returnltems() and a refinement of returnitem()

identifyAccount

reloanitem

[No more items]

identifyltem

<Ll
Ut

printAccountinformation

extendLoan

Figure 9: Activity Diagram reloanltems() and a refinement of reloanltem()

identifyAccount

identifyltem

registerReservation

Figure 10: Activity Diagram reserveltem()

24 Copyright © Fraunhofer IESE 2001

Context Realization

3.3.2 Use Case Model

The context realization activities begin with the business processes shown above
in form of a business process hierarchy (see Figure 2), and then refines these
processes as shown above using activitiy diagrams. The activities in the business
process refinements can also be arranged into a hierarchy, which can be inte-
grated with the business process hierarchy. For example, Figure 11 refines the
business process in the area customer management and loan management and
exactly contains the activities used in the activity models above.

In this hierarchy, some layers can be identified as the activities usually under-
stood as use cases (cmp. with grayed activities). Some of the use cases are not
supported by the library system (printLibraryAccessCard, withdrawLibraryAccess-
Card, and handOutinfoMaterial). Others are too fine-granular to be seen as a
use case, such as registerLoan, extendLoan, or balanceAccount. The use cases
identified are presented in the use case diagram shown in Figure 12.

3.4 Interaction Model

3.4.1 Sequence Diagrams

The interaction model ultimately assigns behavior to objects (representing data).
That is, data and behavior are integrated with each other. An object-oriented
view on the system is created. Here, some examples of sequence diagrams are
given related to the activity diagrams presented above. (Note that activity dia-

customerinteraction

customer
Management

regist regist <svariant>> loanlt turnl loanlt

egister unregister - reloanitems returnitems oanltems
t A t | femoveAccount reloanltem returnltem Rl ; loanitem

createilewAccoun ccountinformatio

loanManagement

C

<<variant>> <<variant>>
printLibrary withdrawLibrary
AccessCard

Figure 11:

Copyright © Fraunhofer IESE

AccessCard
) identifyAccount identifyltem
handOutinfoMaterial

bal <<variant>> d)
alanceAccount registerReservatio extendLoan unregisterLoan @

Activity hierarchy

2001 25

Context Realization

<<uses>>

<<uses>> . .
identifyltem

<<uses>>

<<variant>>

reserveltem
reloanltem

<<uses>>

Service \

Librarian . <<uses>>
pnnt <<uses>>
A Account
Informatiol \
<<uses>>
<<uses>> .)
identifyAccount

<<uses>>
removeAccount
handOutinfoMaterial createNewAccount
<<variant>>

withdrawLibrary
Figure 12: Use case diagram for the actor Servicelibrarian

O
/

<<variant>>
printLibrary
AccessCard

LibrarySystem

AccessCard

grams with swim-lanes are, in general, equivalent to sequence or collaboration
diagrams.

O
/

Service <<Komponent>>
Librarian LS:LibrarySystem
selector:=identifyAccount(AccountSelector) |
»
loanltem(select:ltemSelector)
Figure 13: Sequence diagram for loanltem()
Service <<Komponent>>
Librarian LS:LibrarySystem
selector:=identifyAccount(AccountSelector) |
»
reloanitem(select:ItemSelector)
Figure 14: Sequence diagram for reserveltem()

26 Copyright © Fraunhofer IESE 2001

Context Realization

3.5 Decision Model

ID Variation Resolution Effect
CR-1 | Reservation yes (default) yes: CR1.1, CR2.1, CR5.1
no no: CR1.1, CR2.1, CR5.1
CR-2 | External Database yes yes: CR1.2, CR2.2, ...
no (default) no: LS13.2, LS14.1, ...
CR-3 | Suggestion yes (default) yes: CR1.3, CR2.3, ...
no no: CR1.3, CR2.3, ...
CR-4 | LibraryAccessCard yes yes: CR2.4, CR3.1, CR4.1, CR5.2, ...
no no: CR2.4, CR3.1, CR4.1, CR5.2, ...
Table 1: Integrated Decision Model for the LibrarySystem Context Realization
ID Variation Resolution ‘ Effect

There is no variability in the enterprise concept model presented in this report. This kind of diagram will contain variability when the
analysis of the target organizations is performed in detail. To which extend it is possible or useful to integrate different organiza-
tions in an integrated model depends on the domain and the variety of customer organizations.

Table 2: Decision Model for Enterprise Concept Model (Figure 1)
ID |Variation Resolution Effect
CR1.1| Reservation yes (default) —
no remove process reserveltem
CR1.2| External Database yes —
no (default) remove process data exchange (and its subprocesses)
CR1.3| Suggestion yes (default) —
no remove process suggestitem
Table 3: Decision Model for the enterprise process diagram (Figure 2)
ID |Variation Resolution Effect
CR2.1| Reservation yes (default) —
no remove method LibrarySystem.reserveltem()
remove association class Reservation
CR2.2| External Database yes —
no (default) remove Komponent ExternalDatabase
remove method LibrarySystem.importData
remove method LibrarySystem.exportData
CR2.3| Suggestion yes (default) —
no remove class Suggestion
remove method LibrarySystem.suggestltem()
Table 4: Decision Model for Context Realization Class Diagram (Figure 3)

Copyright © Fraunhofer IESE 2001 27

Context Realization
ID | Variation Resolution Effect
CR2.4| LibraryAccessCard yes —
no remove class LibraryAccessCard
Table 4: Decision Model for Context Realization Class Diagram (Figure 3)
ID Variation Resolution Effect
CR3.1/| Library Access Card yes —
no remove activity printLibraryAccessCard
Table 5: Decision Model for Activity Dlagram register() (Figure 5)
ID Variation Resolution Effect
CR4.1 | Library Access Card yes —
no remove activity withdrawLibraryAccessCard
Table 6: Decision Model for Activity Dlagram unregister() (Figure 6)
ID |Variation Resolution Effect
CR5.1| Reservation yes (default) —
no remove process reserveltem
CR5.2| LibraryAccessCard yes —
no remove use case printLibraryAccessCard
remove use case withdrawLibraryAccessCard
Table 7: Decision Model for the use case diagram (Figure 12)

28

Copyright © Fraunhofer IESE 2001

Library System

4 Library System

41 Specification

The specification of LibrarySystem is not presented completely but this report
focuses on loan and reservation-related functionality in the library domain.

Therefore, some of the models are incomplete with respect to the scope defini-
tion given in the previous chapter.

4.1.1 Structural Model

4.1.1.1 Class Diagram

<<Komponent>>
Printer
*

<<Komponent>>
ReportWriter

currem
P 0 Account *| ¥ 0.1

<<Komponent>>
MessageHandler
displayMessage()

<<varian't>> Account |------
Suggestion

id

<<Komponent>>
AccountManager

4 createAccount()
identifyAccount()
<<subject>> K> removeAccount)

LibrarySystem .

identifyAccount()
AccountSelector createNewAccount()

removeAccount()
identifyltem()
% Iognl(em() X
[Fom | JE Rl I s .
Disni . 4| retoantem(LoanManager <<variant>> . L Loan
isplay G Reservation
i) loanitem() creationDate
’) y creationDate

<<acquires>>

returnDate
) noExtensions
<<variant>> reserveltem()
<<variant 1 32'25222232.0
Komponent>> printLoaninformation
setStockManager()
ExternalDatabase cetMessageHandler(x *
LsotReportiiiterg | Item
cas ———e—e id
o bibliographicinfo
<<Komponent>> isLoanable()
StockManager | itemManager
4 :
‘
<<Komponent>> | « 1| <<Komponent>> |
WebServer OPAC
search()
Figure 15: LibrarySystem Specification Class Diagram

Copyright © Fraunhofer IESE 2001

29

Library System

4.1.1.2 Supplied and Required Interfaces

Printer

LibrarySystem

identifyAccount()
createNewAccount()
removeAccount()
identifyltem()

loanltem()
printAccountinformation()
returnltem()

reloanltem()

<<variant>> reserveltem()
<<variant>> suggestltem()

K <<variant Komponent>>
ExternalDatabase

Figure 16: Supplied and Required Interfaces of the LibrarySystem Komponent

4.1.1.3 Object Diagram

<<Komponent>>
OPAC:OPAC
<<Komponent>> <<subject>>
laser1:Printer LibrarySystem

<<Komponent>>
laser2:Printer

]

Figure 17: LibrarySystem Specification Object Diagram

30

<<variant Komponent>>
DB:ExternalDatabase

Copyright © Fraunhofer IESE 2001

4.1.2 Functional Model

Library System

4.1.2.1 Operation Specifications

loanltem

Name

loanltem()

Description

The loan of an Item to currentAccount is registered

Receives

selector: ItemSelector

Sends

<variant> Message “Reserved” </variant>
Message “Already Loaned”

Rules

An item is loanable if it is not an item that must always stay in the library (e.g., antique
books).

An item is currently loanable if it is loanable and not loaned <variant> or reserved </vari-
ant> by another user.

Changes

new Loan

Assumes

Subject is in the state accountldentified
Selector selects exactly one Item

Result

item selected by selector has been obtained
if item is currently loanable
a new Loan object, loan, has been created that relates item and currentAccount
and has the attribute values
- creationDate = today
- returnDate = today + <loanPeriod> and
= noExtensions = 0
and, loan has been stored.
if item is not currently loanable
one of the messages has been displayed to the user
<variant> = “Reserved” or </variant>
- "Already Loaned"

returnitem

Name

returnitem()

Description

Makes an item loanable again
<variant> and returns a message if the item is reserved </variant>.

Receives

selector:ltemSelector

Sends

<variant> Message “Reserved” </variant>

Rules

Changes

destroy loan

Copyright © Fraunhofer IESE 2001

31

Library System

Assumes

subject is in the state accountldentified
selector selects exactly one item
item is loaned to currentAccount

Result

item selected by selector has been obtained

the loan for item and currentAccount has been destroyed

<variant>
if item is reserved, the message displayMessage(”item reseverved”) has been sent to
MH

</variant>

reloanltem

Name

reloanltem()

Description

An item loaned is reloaned to the currentAccount

Receives

selector:ltemSelector

Sends

<variant> Message “Reserved” </variant>
Message “Over Extension”

Rules

An item is reloanable if it is loanable and the number of extension is less or equal to
<maxExtensions> <variant> and it is not reserved </variant>.

Changes

loan

Assumes

Subject is in the state accountldentified
selector selects exactly one item
Item is loaned to currentAccount

Result

item selected by selector has been obtained

if item is reloanable
the loan containing item has the attrbibute values
- returnDate = today + <loanPeriod>
= noExtensions = noExtensions+1

if item is not reloanable
one of the following messages has been sent to MH
<variant> = displayMessage(”Reserved”) or </variant>
- displayMessage(” OverExtensions”)

<<variant>> reserveltem

Name

<<variant>> reserveltem()

Description

A reservation fo an item is registered to currentAccount.

Receives

selector:ltemSelector

Sends

Message “Not Reservable”

Rules

An item is reservable if it is loanable.

Changes

new Reservation

32

Copyright © Fraunhofer IESE 2001

Library System

Assumes

subject is in the state accountldentified
selector selects exactly one item

Result

item selected by selector has been obtained
if item is reservable

a new Reservation has been created that relates item and currentAccount and has the

attribute value
- creationDate = today
and reservation has been stored
if item is not reservable
the message “not reservable” has been sent

printAccountinformation

Name

printAccountinformation()

Description

All information concerning the current account is printed.

Receives

Sends

Printer.print(data)

Rules

Changes

Assumes

subject is in state accountldentified

Result

The data capturing customer data, current loans
<variant>, and reservations </variant>
has been obtained, formatted, and sent to Printer.

createNewAccount

Name

createNewAccount()

Description

An account is created for a new customer

Receives

selector:AccountSelector

Sends

Rules

Changes

new Account

Assumes

selector does not select any existing account

Result

A new account:Account has been created according to the attributes of selector.

identifyAccount

Name

identifyAccount()

Description

An existing account is identified and opened.

Receives

selector:AccountSelector

Sends

Rules

Changes

currentAccount

Copyright © Fraunhofer IESE 2001

33

Library System

removeAccount

Assumes selector selects exactly one Account
Result account:Account selected by selector has been obtained
Library has been transitioned to state accountldentified with currentAccount=account
Name removeAccount()
Description The currently selected account is closed and removed from the library
Receives —
Sends Message “Return all items first”
Rules —
Changes destroy loan
Assumes subject is in the state accountldentified
Result If no Loans are related to currentAccount,

<variant> first, all existing reservations related to currentAccount are removed,
then </variant>
currentAccount is destroyed.

4.1.3 Behavioral Model

4.1.3.1 Statechart Tables

34

In general, the behavioural model of systems of this size (or even bigger) is too
complex for being captured in a useful state diagram. But if we hide the process
support of the library system and focus only when which operations can be
invoked, three main states of the library system can be identified:

e neutral: The system has no state information.

e accountldentified: A particular account has been identified, which will be
supplied to invoked operations (typically services with direct customer inter-
action with the library work via the customer account).

e itemldentifed: A particular item has been identifed, which will be supplied to
invoked operation (typically services in the background to maintain the
library’s stock etc. are item-centric tasks)

Copyright © Fraunhofer IESE 2001

Library System

The following statechart table lists for each of these three states the operations
that can be invoked directly (i.e., not within a process execution) from a user.

identifyAccount
identifyltem

No State Information createNewAccount

removeAccount

loanitem
printAccountinformation
returnitem

reloanltem

<<variant>> reserveltem
<<variant>> suggestltem

accountldentified

itemldentified * reportlLoss

4.1.3.2 State Diagram

The statechart table can be translated into the form of a UML statechart dia-
gram. Here, the state diagram illustrates the conceptual states of the library sys-
tem.

Figure 18:
State Transition Diagram:

The main states of a library identifyAccount,
createNewAccount
system

neutral identifyltem,

removeAccount, reportLoss,

accountldentified itemldentified

4.1.4 Decision Model

In the scope definition given in the second chapter of this report, the considered
library systems covered various varying concepts. In this report, we focus on vari-
ability related to features handling loaning and reserving items in a library. The
generic specification of the komponent LibrarySystem varies in the following
features:

e Reservation: support for reservations
External Database: support for data ecxhange with an external database
Suggestion: support for suggestions

Copyright © Fraunhofer IESE 2001 35

Library System

* maxExtensions: the number of extensions a customer can get on a loaned

item (integer value)

e |oanPeriod: the length of a loan period (time value)

ID Variation

Resolution

Effect

LS-S1| Reservation

yes (default)

yes: LS1.1, LS2.1, LS4.1, LS5.1, LS6.1, LS7.1, LS8.1,
LS11.1,LS12.1, LS-R1

no no: LS1.1,LS2.1, LS4.1, LS5.1, LS6.1, LS7.1, LS8.1, LS11.1,
LS12.1, LS-R1
LS-S2 | External Database yes yes: LS1.2,LS2.2, LS3.1, LS12.1, ..., LS-R2

no (default)

no: LS1.2, 1S2.2, LS3.1, LS12.1, ..., LS-R2

LS-S3| Suggestion

yes (default)

yes: LS1.3,152.3,L5S12.2, ..., LS-R3

no no: LS1.3, LS2.3,L512.2, ..., LS-R3
LS-S4| loanPeriod value [time] replace loanPeriod by actual value: LS4.2, LS6.2
LS-S5| maxExtensions value [int] replace maxExtensions by actual value: LS6.3
Table 8: Integrated Decision Model for LibrarySystem Specification
ID | Variation Resolution Effect

LS1.1| Reservation

yes (default)

no

remove method LibrarySystem.reserveltem)
remove association class Reservation

LS1.2 | External Database

yes

no (default)

remove Komponent ExternalDatabase
remove method LibrarySystem. ...

LS1.3| Suggestion

yes (default)

no remove class Suggestion
remove method LibrarySystem.suggestltem)
Table 9: Decision Model for LibrarySystem Specification Class Diagram(Figure 15)
ID | Variation Resolution Effect

LS2.1| Reservation

yes (default)

no

remove method reserveltem()

LS2.2 | External Database

yes

no (default)

remove required Interface ExternalDatabase
remove method ...

LS2.3| Suggestion

yes (default)

no remove method suggestltem()
Table 10: Decision Model for LibrarySystem Specification Supplied and Required Interfaces (Figure 16)
ID | Variation Resolution Effect
LS3.1| External Database yes —
no (default) remove Komponent ExternalDatabase

Table 11: Decision Model for LibrarySystem Specification Object Diagram (Figure 17)

36

Copyright © Fraunhofer IESE 2001

Library System

ID | Variation Resolution Effect
LS4.1 | Reservation yes (default) —
no remove variant tags and content
LS4.2 | loanPeriod value [time] replace loanPeriod by actual value
Table 12: Decision Model for LibrarySystem.loanltem() operation schema
ID | Variation Resolution Effect
LS5.1| Reservation yes (default) —
no remove variant tags and content
Table 13: Decision Model for LibrarySystem.returnltem() operation schema
ID | Variation Resolution Effect
LS6.1| Reservation yes (default) —
no remove variant tags and content
LS6.2 | loanPeriod value [time] replace loanPeriod by actual value
LS6.3| maxExtensions value [int] replace maxExtensions by actual value
Table 14: Decision Model for LibrarySystem.reloanltem() operation schema
ID | Variation Resolution Effect
LS7.1| Reservation yes (default) —
no exclude operation specification from functional model
Table 15: Decision Model for LibrarySystem.reserveltem() operation schema
ID |Variation Resolution Effect
LS8.1 | Reservation yes (default) —
no remove variant tags and content in result clause
Table 16: Decision Model for LibrarySystem.printAccountinformation() operation schema
ID | Variation Resolution Effect
LS11.1| Reservation yes (default) —
no remove variant tags and content in result clause
Table 17: Decision Model for LibrarySystem.removeAccount() operation schema
ID |Variation Resolution Effect
LS12.1| Reservation yes (default) —
no remove method reserveltem()
Table 18: Decision Model for LibrarySystem Statechart Table

Copyright © Fraunhofer IESE 2001

Library System

ID | Variation Resolution Effect
LS12.1| External Database yes (default) —
no remove method ...
LS12.2| Suggestion yes (default) —
no remove method suggestltem()
Table 18: Decision Model for LibrarySystem Statechart Table

38

Copyright © Fraunhofer IESE 2001

Library System

4.2 Realization

The Realization of LibrarySystem focuses here on services that LibrarySystem
assigns to the subkomponent LoanManager. Functionality that is aquired by

other subcomponents of LibrarySystem from LoanManager is not taken into
account.

4.2.1 Structural Model

4.2.1.1 Class Diagram

<<Komponent>>
Printer
¥

<<variant>>

Figure 19:

;; K°mp‘::e:;|» <<Komponent>> Suggestion Account [-----
essageriandier ReportWriter]
displayMessage() current
) Account *| ¥ 0.1
<<Komponent>>
AccountManager
createAccount()
/\ 1 identifyAccount()
<<subject>> K>—— removeAccount()
ItemSelector LibrarySystem P 0
identifyAccount()
AccountSelector createNewAccount()
removeAccount() > <<acquires>>
identifyltem()
. ; loanitem()
Form retumitem() ' <<Komponent>>
- 1| retoanttem <<variant>> L
Display * LoanMai r Reservation oan
<<variant>> reserveltem() loanltem() creationDate
0) creationDate returnDate
) noExtensions
<<variant>> reserveltem()
N setAccount()
<<variant 1 closeAccount()
Komponent>> printLoanInformation
setStockManager()
ExternalDatabase setMessagetandier(x *
setReportWiriter Item

St

1

<<Komponent>> | x 1| <<Komponent>>
WebServer OPAC

search()

Library Realization Class Diagram

Copyright © Fraunhofer IESE 2001

<<Komponent>> |

id
bibliographicinfo
isLoanable()

39

Library System

4.2.1.2 Object Diagram

<<Komponent>> <<Komponent>> <<variant Komponent>>
SM:StockManager OPAC:OPAC DB:ExternalDatabase
<<Komponent>> <<subject>>
AM:AccountManager Library
<<Komponent>> | | <<Komponent>> <<Komponent>>
LM:LoanManager MH:MessageHandler RW:ReportWriter
Figure 20: Library Realization Object Diagram

4.2.2 Activity Model

The simplicity of the activities taken into account in this report (i.e., activities
related to loaning and reserving items) allowed us to realize them without inter-
mediate refinement steps.

4.2.3 Interaction Model

In general, there are three ways for a subkomponent to be involved in the real-
ization of its parent komponent’s services:

e Delegation: a parent komponent does not add anything to the services pro-
vided by a subkomponent

e Synchronization: the state of the parent komponent changes in a way that
requires a state change of the subkomponent to keep the system consistent.

e Usage: the parent komponent integrates numberous services of subkompo-
nents to realize its (more powerful) services

4.2.3.1 Collaboration Diagrams

In our case of the loan and reservation functionality, the LibrarySystem fully del-
egates these services to a subkomponent (i.e., LoanManager)

loanitem(item:ItemSelector) 1:loanitem(item:ItemSelector)

———— > LS:LibrarySystem LM:LoanManager
Figure 21: Collaboration Diagram for the loanltem() Operation

40 Copyright © Fraunhofer IESE 2001

Library System

reloanltem(item:ItemSelector) 1:reloanltem(item:ltemSelector)
—————» LS:LibrarySystem » LM:LoanManager
Figure 22: Collaboration Diagram for the reloanitem() Operation
returnltem(item:ItemSelector) 1:returnitem(item:ItemSelector)
—» LS:librarySystem » LM:LoanManager
Figure 23: Collaboration Diagram for the returnitem() Operation
<<variant>> 1: <<variant>>
reserveltem(item:ltemSelector) reserveltem(item:ItemSelector)
——— > LS:LibrarySystem » LM:LoanManager
Figure 24: Collaboration Diagram for the reserveltem() Operation

The LoanManager is not a stateless component but requires to specify an
account first (currentAccount) which is then subject of subsequent actions. The
AccountManager is responsible for Accounts independent of the LonaManager,
therefore, some usages of AccountManager by the LibrarySystem requires an
explicit state synchronization with the LoanManager komponent.

createNewAccount(customer:CustomerSelector) 2:setAccount(acc:Account)
—» LS:LibrarySystem » LM:LoanManager

l:acc=
createAccount(customer)

A

AM:AccountManager

Figure 25: Collaboration Diagram for the createNewAccount() Operation

identifyAccount(account:AccountSelector) 2isetAccount(acc:Account)

—»| LS:LibrarySystem » LM:LoanManager

Tacc=
identifyAccount(account:AccountSelector)

A

AM:AccountManager

Figure 26: Collaboration Diagram for the identifyAccount() Operation
removeAccount() . 1:closeAccount()
LS:LibrarySystem » LM:LoanManager

2: removeAccount()

AM:AccountManager

Figure 27: Collaboration Diagram for the removeAccount() Operation

Copyright © Fraunhofer IESE 2001 41

Library System

The LibrarySystem allows account information to be printed in a single report.
This information is spread over two of its subkomponents: AccountManager and
LoanManager. Therefore, to provide the service of printing account information,
LibrarySystem must use and coordinate services of its subkomponents.

RW:ReportWriter

A

1: printAccountinformation()

printAccountinformationt() 3:printLoaninformation() |

LS:LibrarySystem LM:LoanManager

2: printAccountinformation()

Figure 28:

4.2.4 Decision Model

A

AM:AccountManager,|

Collaboration Diagram for the printAccountinformation() Operation

ID Variation

Resolution

Effect

LS-R1| Reservation

yes (default)

yes: LS13.1, LS15.1

no

no: LS13.1, LS15.1

LS-R2 | External Database

yes

yes: LS13.2, LS14.1, ...

no (default)

no: LS13.2, LS14.1, ...

LS-R3| Suggestion

yes (default)

yes: LS13.3, ...

no

no: LS13.3, ...

Table 19:

Integrated Decision Model for LibrarySystem Realization

ID Variation

Resolution

Effect

LS13.1| Reservation

yes (default)

no

remove method LibrarySystem.reserveltem()
remove association class Reservation

LS13.2| External Database

yes

no (default)

remove Komponent ExternalDatabase
remove method LibrarySystem. ...

LS13.3| Suggestion

yes (default)

no

remove class Suggestion
remove method LibrarySystem.suggestltem()

Table 20:

42

Decision Model for LibrarySystem Realization Class Diagram(Figure 19)

Copyright © Fraunhofer IESE 2001

ID Variation

Library System

LS14.1| External Database

Resolution

Effect

yes

no (default)

remove Komponent ExternalDatabase

Table 21:

Decision Model for LibrarySystem Specification Object Dlagram (Figure 20)

ID Variation Resolution Effect
LS15.1| Reservation yes (default) —
no exclude collaboration diagram from interaction model
Table 22:

Copyright © Fraunhofer IESE 2001

Decision Model for LibrarySystem.reserveltem() Collaboration Diagram (Figure 24)

43

Library System

44

Copyright © Fraunhofer IESE 2001

Loan Manager

5 Loan Manager

5.1 Specification
5.1.1 Structural Model

5.1.1.1 Class Diagram

<<Komponent>>
ReportWriter <<acquires>>
print() 1 1 <<subject>>
LoanManager -
loanltem() 1 <<Val'lant>>
<<Komponent>> reumton) ReservationList
MessageHandler <<acquires>> <cvariant>> reserveltem() g
displayMessage() 1 setAccount()
closeAccount()
printLoaninformation *
. setStockManager() <<variant>>
<<; >> setMessageHandler() .
<<Komponent>> |~ acquites’ 3 Reservation
ItemManager 1 croationDate
getitem()
1
0..1]currentAccount
Account N N Item
w)
ieLoanatle
0.1 * | biblographicinfo
. Loan
pe—
returnDate
noOfExtensions:
Figure 29: LoanManager Specification Class Diagram

Copyright © Fraunhofer IESE 2001

Loan Manager

5.1.1.2 Supplied and Required Interfaces

ItemManager
LoanManager
setReportWriter
setltemManager
setMessageHandler Py
loanltem %
printLoanInformation o
reloanltem %
returnitem =
setAccount g’
closeAccount =
<variant> reserveltem
K MessageHandler
Figure 30: Supplied and Required Interfaces of the LoanManager Komponent
5.1.1.3 Object Diagram
<<subject>>
LoanManager
<<Komponent>> <<Komponent>> <<Komponent>>
IM:ltemManager MH:MessageHandler RW:ReportWriter

Figure 31: LoanManager Specification Object Diagram

46

Copyright © Fraunhofer IESE 2001

5.1.2 Functional Model

Loan Manager

5.1.2.1 Operation Specifications

setAccount

Name

setAccount()

Description

Receives a reference to an Account and stores it as currentAccount

Receives

currentAccount:Account

Sends

Rules

Changes

Assumes

Result

currentAccount has been stored and subject is in state accountldentified

closeAccount

Name

closeAccount()

Description

The current account is closed.

Receives

Sends

Rules

Changes

Assumes

Result

currentAccount is empty and subject is in state noAccountldentified

Copyright © Fraunhofer IESE 2001

47

Loan Manager

loanltem

Name

loanltem()

Description

The loan of an Item to currentAccount is registered

Receives

selector: ItemSelector

Sends

MH.displayMessage()
[tem item = IM.getltem(filter)

Rules

An item is loanable if it is not when it is not not an item that must always stay in the
library (e.g., antique books).

An item is currently loanable if it is loanable and not loaned <variant> or reserved by
another user </variant>.

Changes

new Loan

Assumes

Subject is in the state accountldentified
Selector selects exactly one Item

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(filter)
if item is currently loanable
a new Loan object, loan, has been created that relates item and account, and has the
attribute values
- creationDate = today
- returnDate = today + <loanPeriod> and
= noExtensions = 0
and, loan has been stored.
if item is not currently loanable
one of the messages has been sent to MH
<variant> = displayMessage("Reserved”) or <variant>
- displayMessage(" Already Loaned")

returnitem

Name

returnitem()

Description

Makes an item loanable again
<variant> and returns a message if the item is reserved </variant>.

Receives

selector:ltemSelector

Sends

MH.displayMessage()
item Item = IM.getltem(selector)

Rules

Changes

destroy loan

Assumes

subject is in the state accountldentified
item is loaned to currentAccount

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(selector)
the loan for item and currentAccount has been destroyed
<variant>
if item is reserved, the message displayMessage(”item reseverved”) has been sent to
MH
</variant>

48

Copyright © Fraunhofer IESE 2001

reloanltem

Loan Manager

Name

reloanitem()

Description

An item loaned is reloaned to the currentAccount

Receives

selector:ltemSelector

Sends

MH.displayMessage()
Item item = IM.getltem(selector)

Rules

An item is reloanable if it is loanable and the number of extension is less or equal to
<maxExtensions> <variant> and it is not reserved </variant>.

Changes

loan

Assumes

Subject is in the state accountldentified
Item is loaned to currentAccount

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(selector)
if item is reloanable
the loan containing item has the attrbibute values
= returnDate = today + <loanPeriod>
= noExtensions = noExtensions+1
if item is not reloanable
one of the following messages has been sent to MH
<variant> = displayMessage("Reserved”) or <variant>
- displayMessage(”OverExtensions”)

reserveltem

Name

<variant> reserveltem()

Description

A reservation fo an item is registered to currentAccount.

Receives

selector:ltemSelector

Sends

MH.displayMessage()
item Item = IM.getltem(selector)

Rules

An item is reservable iff it is loanable.

Changes

new Reservation

Assumes

subject is in the state accountldentified

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(selector)
if item is reservable
a new Reservation has been created that relates item and currentAccount and has the
attribute value
= creationDate = today
and reservation has been stored
if item is not reservable
the message displayMessage(”not reservable”) has been sent to MH

Copyright © Fraunhofer IESE 2001

49

Loan Manager

printLoaninformation

setltemManager

Name

printLoanInformation()

Description

All information concerning loans of currentAccount is printed.

Receives

Sends

RW.printLoanInfo(currentAccount)

Rules

Changes

Assumes

subject is in state accountldentified

Result

A message printLoaninfo(currentAccount) has been sent to RW.

Name

setitemManager()

Description

Receives a reference to an temManager komponent and stores it.

Receives

IM:ItemManager

Sends

Rules

Changes

Assumes

Result

IM has been stored

setMessageHandler

50

Name

setMessageHandler()

Description

Receives a reference to a MessageHandler komponent and stores it.

Receives

MH:MessageHandler

Sends

Rules

Changes

Assumes

Result

MH has been stored

Copyright © Fraunhofer IESE 2001

setReportWriter

Loan Manager

Name

setReportWriter()

Description

Receives a reference to a reportWriter komponent and stores it.

Receives

RW:ReportWriter

Sends

Rules

Changes

Assumes

Result

RW has been stored

5.1.3 Behavioral Model

5.1.3.1 Statechart Diagram

Figure 32:

5.1.3.2 Statechart Tables

!

neutral

setAccount closeAccount

accountldentified

printLoanInformation/
loanltem/

reloanltem/

returnitem/

<<variant>> reserveltem/

LoanManager Statechart Diagram

Source State UML Transition String Target State
neutral setAccount() accountldentified
accountldentified closeAccount() neutral

accountldentified

printLoanInformation() accountldentified
loanltem()

reloanltem()
returnltem()

<<variant>>reserveltem()

Copyright © Fraunhofer IESE 2001

51

Loan Manager

5.1.4 Decision Model

The loan managers covered in this generic komponent vary in the following fea-
tures:

e Reservation: support for reservations

e maxExtensions: the number of extensions a customer can get on a loaned
item (integer value)

e |oanPeriod: the length of a loan period (time value)

ID Variation

Resolution

Effect

LM-S1| Reservation

yes (default)

yes: LM1.1, LM2.1, LM3.1, LM4.1, LM5.1, LM6.1, LM7.1,
LM8.1, LM-R1

no no: LM1.1, LM2.1, LM3.1, LM4.1, LM5.1, LM6.1, LM7.1,
LM8.1, LM-R1
LM-S2| loanPeriod value [time] replace loanPeriod by actual value: LM3.2, LM5.2
LM-S3| maxExtensions value [int] replace maxExtensions by actual value: LM5.3

Table 23:

Integrated Decision Model for LoanManager Specification

ID Variation

Resolution

Effect

LM1.1| Reservation

yes (default)

no

remove method LoanManager.reserveltem()
remove class ReservationList
remove association class Reservation

Table 24:

Decision Model for LoanManager Specification Class Diagram(Figure 29)

ID Variation

Resolution

Effect

LM2.1| Reservation

yes (default)

no

remove method reserveltem

Table 25:

Decision Model for LoanManager Specification Supplied and Required Interfaces (Figure 30)

ID Variation

Resolution

Effect

LM3.1| Reservation

yes (default)

no

remove variant tags and content

LM3.2| loanPeriod

value [time]

replace loanPeriod by actual value

Table 26:

Decision Model for LoanManager.loanltem() operation schema

ID Variation

Resolution

Effect

LM4.1| Reservation

yes (default)

no

remove variant tags and content

Table 27:

52

Decision Model for LoanManager.returnltem() operation schema

Copyright © Fraunhofer IESE 2001

Loan Manager

ID Variation

Resolution

Effect

LM5.1| Reservation

yes (default)

no remove variant tags and content
LM5.2| loanPeriod value [time] replace loanPeriod by actual value
LM5.3| maxExtensions value [int] replace maxExtensions by actual value

Table 28:

Decision Model for LoanManager.reloanitem() operation schema

ID | Variation

Resolution

Effect

LM®6.1| Reservation

yes (default)

no

exclude operation specification from functional model

Table 29:

Decision Model for LoanManager.reserveltem() operation schema

ID | Variation

Resolution

Effect

LM7.1| Reservation

yes (default)

no

remove event reserveltem

Table 30:

Decision Model for LoanManager Statechart Diagram (Figure 32)

ID | Variation

Resolution

Effect

LM8.1| Reservation

yes (default)

no

remove method reserveltem()

Table 31:

Decision Model for LoanManager Statechart Table

Copyright © Fraunhofer IESE 2001

53

Loan Manager

5.2 Realization

5.2.1 Structural Model

5.2.1.1 Class Diagram

<<acquires>>

Selector
ItemSelector 1
<<Komponent>> * <<Rvariantl§omhgonent>>
i eservationManager
ReportWriter <<acquires>> Ll <<creates>>| ierssenedy
print) 1 <<subject>> resorveltom()
LoanManager
Toantton
<<Komponent>> retumitom) 1 ‘
L M geHandler <<acquires>> <cvariant> <<variant>>
1 [[dispiayMessagel) 1 1 :T;::Ziig‘u?u) ReservationList
printLoanlinformation 1
. setStockManager() . ‘
<< >> setMessageHandler()
<<Komponent>>] acqultes p it <<variant>>
ItemManager 1 1 Reservation
getitem() creationDate
1
0..1{currentAccount
Account . . Item
] P
isLoanable
0.1 * | bibliographiclnfo
1
LoanStore N Loan
isLoaned creationDate
incon retamDate
remove noOfExtensions
create()
getExtensions()
Figure 33: LoanManager Realization Class Diagram
5.2.1.2 Object Diagram
<<subject>>
LoanManager
<<Komponent>> <<Komponent>> <<Komponent>> <<Komponent>>

RM:ReservationManager|

IM:ltemManager

MH:MessageHandler

RW:ReportWriter

Figure 34:

54

LoanManager Realization Object Diagram

Copyright © Fraunhofer IESE 2001

5.2.2 Activity Model

5.2.2.1 Activity Diagram

Loan Manager

LoanManager

LoanStore

IltemManager

<<variant>>

getltem

<<variantKomponent>>
ReservationManager

<<variant>>

<<variant>>
isReserved

MessageHandler

isLoaned

<<variant>>
displayMessage

se)

create

insert

displayMessage

Figure 35: Activity Diagram for the loanltem Activity

Copyright © Fraunhofer IESE 2001

55

Loan Manager

5.2.3 Interaction Model

5.2.3.1 Collaboration Diagrams

<<Komponent>>
IM:itemManager

<<variantKomponent>>
RM:ReservationManage

1: item:=get|tem(selector)T
2: <<variant>> isReserved:=isReserved(item)
loanltem(selector:ltemSelector) 3: loaned:=isLoaned(item)
<<subject>> -LoanCollecti
LM:LoanManager — ‘LoanCollection
5: insert(loan)
4: [not loaned . "
<variant> and not isReserved </variant>] \Lél’: [loaned or isReserved] displayMessage()
create(today, currentAccount, item))
loan:L <<Komponent>>
oan:L.oan MH:MessageHandler
Figure 36: Collaboration Diagram for the loanltem() Operation
<<Komponent>> . N
IM:ltemManager ‘LoanCollection
1: item:=getltem(selector)q\
2: remove(item)
returnitem(selector:ltemSelector) <<variant>> 3: reserved:=isReserved(item)
— <<subject>> —> <<variantKomponent>>
LM:LoanManager RM:ReservationManager;

\L<<variant>>3’: [isReserved] displayMessage()

<<variant>>
<<Komponent>>
MH:MessageHandler

Figure 37: Collaboration Diagram for the returnitem() Operation

56 Copyright © Fraunhofer IESE 2001

Loan Manager

<<Komponent>> <<variantkomponent>>
IM:ltemManager RM:ReservationManager|

]

1\2: <<variant>> isReserved:=isReserved(item)

1: item:=getltem(selector)?

reloanltem(selector:ltemSelector) 2: loan:=getLoan(item)
— <<subject>> —_— LoanCollect
LM:LoanManager N :LoanCollection

6: insert(loan)

4: [overn 1sions] displayM: ye()

3: ext:=getExtensions()
\L 5': [isReserved] displayMessage()

5: [not overmaxextensions]
<variant> and not isReserved </variant>]
create(today, currentAccount, item, ext+1))

Joan:L <<Komponent>>
oan:Loan MH:MessageHandler
Figure 38: Collaboration Diagram for the reloanitem() Operation
<<Komponent>> <<variantKkomponent>>
IM:ItemManager RM:ReservationManager|

1: item:=get|tem(selector)/]\

2: loanable=isLoanable(item) 1\3: [isLoanable] reserveltem(today,item,currentAccount)

reserveltem(selector:ltemSelector)

<<subject>>
LM:LoanManager

\l/4’: [overmaxextensions] displayMessage()

<<Komponent>>
MH:MessageHandler

Figure 39: Collaboration Diagram for the reserveltem() Operation
printLoanInformation() 1: loaninfo:=getLoanInformation()
<<subject>> —> . "
LM:LoanManager ‘LoanCollection

J/ 2: print(loaninfo)

<<Komponent>>
RW:ReportWriter

Figure 40: Collaboration Diagram for the printLoanInformation() Operation

Copyright © Fraunhofer IESE 2001

Loan Manager

5.2.4 Decision Model

ID Variation

Resolution

Effect

LM-R1| Reservation

yes (default)

yes: LM9.1, LM10.1, LM11.1, LM12.1, LM13.1, LM14.1

no

no: LM9.1, LM10.1, LM11.1, LM12.1, LM13.1, LM14.1

Table 32:

Integrated Decision Model for LoanManager Realization

ID Variation

Resolution

Effect

LM9.1| Reservation

yes (default)

no

remove method LoanManager.reserveltem()
remove komponent ReservationManager
remove class ReservationList

remove association class Reservation

Table 33:

Decision Model for LoanManager Realization Class Diagram(Figure 33)

ID Variation

Resolution

Effect

LM10.1| Reservation

yes (default)

no

remove swimlane ReservationManager
remove activity isReserved
remove activity displayMessage

Table 34:

Decision Model for LoanManager.loanltem() Activity Diagram (Figure 35)

ID Variation

Resolution

Effect

LM11.1| Reservation

yes (default)

no

remove object RM:ReservationManager
remove variant tags and content

Table 35:

Decision Model for LoanManager.loanltem() Collaboration Diagram (Figure 36)

ID Variation

Resolution

Effect

LM12.1| Reservation

yes (default)

no

remove object RM:ReservationManager
remove object MH:MessageHandler

Table 36:

Decision Model for LoanManager.returnitem() Collaboration Diagram (Figure 37)

ID Variation

Resolution

Effect

LM13.1| Reservation

yes (default)

no

remove object RM:ReservationManager
remove method call 5'[isReserved] displayMessage
remove variant tags and content

Table 37:

58

Decision Model for LoanManager.reloanitem() Collaboration Diagram (Figure 38)

Copyright © Fraunhofer IESE 2001

Loan Manager

ID Variation Resolution Effect
LM14.1| Reservation yes (default) —
no exclude collaboration diagram from interaction model
Table 38: Decision Model for LoanManager.reserveltem() Collaboration Diagram (Figure 39)

Copyright © Fraunhofer IESE 2001

59

Loan Manager

60 Copyright © Fraunhofer IESE 2001

6 Reservation Manager

6.1 Specification

6.1.1

Structural Model

6.1.1.1 Class Diagram

Figure 41:

Copyright © Fraunhofer IESE 2001

Reservation Manager

<<subject>>
ReservationManager
reserveltem()
<<Komponent>> isReserved()
. isReservedBy()
MessageHandler <<acquires>> unreserve)
displayMessage() 1 1 fandler()
1
1
ReservationList
1
Reservation
creationDate
1
1
1
1
:
1
Account X | X
id 1 W

Item

isLoanable
bibliographicinfo

ReservationManager Specification Class Diagram

61

Reservation Manager

6.1.1.2 Supplied and Required Interfaces

(ReservationManager
reserveltem()
isReserved() =
isReservedBy() @
unreserve() %
setMessageHandler() g
T
)
>
=
@
Figure 42: Supplied and Required Interfaces of the ReservationManager Komponent
6.1.1.3 Object Diagram
<<subject>>
ReservationManager
<<Komponent>>
MH:MessageHandler
Figure 43: ReservationManager Specification Object Diagram
6.1.2 Functional Model
6.1.2.1 Operation Specifications
isReserved
Name isReserved()
Description Returns true or false depending on whether an item is reserved
Receives item:ltem
Sends Boolean
Rules —
Changes —
Assumes —
Result If item is contained in one the reservations stored by ReservationManager

True has been returned.
Otherwise False is returned.

62 Copyright © Fraunhofer IESE 2001

reserveltem

Reservation Manager

Name

reserveltem()

Description

Reserves an item for an account

Receives

item:ltem
account:Account

Sends

MH.displayMessage()

Rules

Changes

new Reservation

Assumes

Result

If a reservation of item for account already existed, the message displayMes-
sage(”Already Reserved for Account”) has been sent to MH.

Otherwise, a new reservation has been created relating item and account with attribute
value

- reservationDate=today

isReservedBy

Name

isReservedBy()

Description

It is checked whether an item is reserved and for which account

Receives

item:ltem

Sends

account:Account

Rules

Changes

Assumes

Result

If item is contained in one the reservations stored by ReservationManager
the account for which the item is reserved has been returned.

unreserve

Name

unreserve()

Description

Removes the reservation for an item and an account.

Receives

item:ltem
account:Account

Sends

Rules

Changes

destroys reservation

Assumes

There is a reservation for item and account.

Result

The reservation relating account and item has been destroyed.

setMessageHandler

Name

setMessageHandler()

Description

Receives a reference to a MessageHandler Komponent and stores it.

Copyright © Fraunhofer IESE 2001

63

Reservation Manager

6.1.3 Behavioral Model

Receives

MH:MessageHandler

Sends

Rules

Changes

Assumes

Result

MH has been stored.

The ReservationManager Komponent does not have meaningful states. There-

fore, the behavioral mode is empty.

6.1.4 Decision Model

64

The ReservationManager Komponent does not contain variability. Therefore,
there is no decision model.

Copyright © Fraunhofer IESE 2001

Reservation Manager

6.2 Realization

6.2.1 Structural Model

6.2.1.1 Class Diagram

<<subject>>
ReservationManager
reserveltem()
<<Komponent>> isReserved
MessageHandler <<acquires>> ::(Mess:g()eHand\er()
displayMessage() 1 1
7
1
ReservationList
insert()
remove()
isReserved()
isReservedBy()
7
Reservation
creationDate
create()
]
|
i
Account i Item
id L id
isLoanable
bibliographicinfo
Figure 44: ReservationManager Realization Class Diagram

6.2.1.2 Object Diagram

Like the specification object diagram (see Figure 43).

Copyright © Fraunhofer IESE 2001

Reservation Manager

6.2.2 Activity Model

6.2.2.1 Activity Diagrams

ReservationManager ReservationList

.—

isReserved

Figure 45: Activitity Diagram for the isReserved Activity
ReservationManager ReservationList MessageHandler
o

insert

Figure 46: Activitity Diagram for the reserve Activity
ReservationManager ReservationList
o
isReservedBy
Figure 47: Activitity Diagram for the isReservedBy Activity
ReservationManager ReservationList
o ———
Figure 48: Activitity Diagram for

66

Copyright © Fraunhofer IESE 2001

6.2.3 Interaction Model

6.2.3.1 Collaboration Diagrams

1: reservedByAcc:=isReservedBy(item,account)q\

reserveltem(item:Item,account:Account)
—

RL:ReservationList

Reservation Manager

T& [not reservedByAcc] insert(reservation)

2': [reservedByAcc] displayM: je()
—>

<<subject>> <<Komponent>>
RM:ReservationManager| MH:MessageHandler
2: [not reservedByAcc] create(today,item,account)\L
reservation:Reservation|
Figure 49: Collaboration Diagram for reserveltem()
RL:ReservationList
1: isReserved(item)/I\
isReserved(item:ltem) 2: displayM je()
—> <<subject>> —_— <<Komponent>>

RM:ReservationManager|

Figure 50: Collaboration Diagram for isReserved()

1: isReservedBy(item,accountq\

isReservedBy(item:Iltem,account:Account)
—>

MH:MessageHandler

RL:ReservationList

<<subject>>

2: displayMessage()
—> <<Komponent>>

RM:ReservationManager| MH:MessageHandler

Figure 51: Collaboration Diagram for isReservedBy()

Copyright © Fraunhofer IESE 2001

67

Reservation Manager

1: reservedByAcc:=isReservedBy(item,account)T

unreserveltem(item:ltem,account:Account
—>

RL:ReservationList

<<subject>>

TZ [not reservedByAcc] remove(reservation)

2': [reservedByAcc] displayMessage()
—>

<<Komponent>>

RM:ReservationManager|

Figure 52: Collaboration Diagram for isReservedBy()

6.2.4 Decision Model

MH:MessageHandler

The ReservationManager Komponent does not contain variability. Therefore,
there is no decision model.

68

Copyright © Fraunhofer IESE 2001

Part Il Basic Library System

Copyright © Fraunhofer IESE 2001

69

70

Copyright © Fraunhofer IESE 2001

7 Basic Library System

Basic Library System

In this chapter the generic LibrarySystem presented in chapter 4 is instantiated
for a basic library system. The basic library system communicates with an exter-

nal database but does not support suggestion and reservation functionalities.

71 Specification

7.1.1 Structural Model

7.1.1.1 Class Diagram

<<Komponent>>
Printer

Selector
/\

print()

<<acquires>>

<<subject>>
ItemSelector LibrarySystem
identifyAccount()
AccountSelector createNewAccount()
removeAccount()
* 1 identifyltem()
loanltem() current
printA) Accoun A oe [
Displa! * 1 | retumitem() Account
play a
J 0.1
! --- Loan
<<Komponent>> creationDate
turnDat
ExternalDatabase e Extersions
1 *
<<Komponent>> | « 1| <<Komponent>> Item
WebServer |<<acquires> OoPAC | ______| a
search() bibliographicinfo
isLoanable()

Figure 53:

Copyright © Fraunhofer IESE 2001

LibrarySystem Specification Class Diagram

71

Basic Library System

7.1.1.2 Supplied and Required Interfaces

Printer

LibrarySystem

identifyAccount()
createNewAccount()
removeAccount()
identifyltem()

loanltem()
printAccountinformation()
returnitem()

reloanltem()

K <<Komponent>>

ExternalDatabase

)

Figure 54: Supplied and Required Interfaces of the LibrarySystem Komponent

7.1.1.3 Object Diagram

<<Komponent>>
OPAC:OPAC
<<Komponent>> <<subject>> <<Komponent>>
laser1:Printer Library DB:ExternalDatabase

<<Komponent>>

laser2;Printer

Figure 55: LibrarySystem Specification Object Diagram

72

Copyright © Fraunhofer IESE 2001

7.1.2 Functional Model

Basic Library System

7.1.2.1 Operation Specifications

loanltem

Name

loanltem()

Description

The loan of an Item to currentAccount is registered

Receives

selector: ItemSelector

Sends

Message “Already Loaned”

Rules

An item is loanable if it is not an item that must always stay in the library (e.g., antique
books).
An item is currently loanable if it is loanable and not loaned by another user.

Changes

new Loan

Assumes

Subject is in the state accountldentified
Selector selects exactly one Item

Result

item selected by selector has been obtained
if item is currently loanable
a new Loan object, loan, has been created that relates item and currentAccount
and has the attribute values
- creationDate = today
- returnDate = today + 4 weeks and
= noExtensions = 0
and, loan has been stored.
if item is not currently loanable
one of the messages has been displayed to the user
" Already Loaned"

returnitem

Name

returnitem()

Description

Makes an item loanable again

Receives

selector:ltemSelector

Sends

Rules

Changes

destroy loan

Assumes

subject is in the state accountldentified
selector selects exactly one item
item is loaned to currentAccount

Result

item selected by selector has been obtained
the loan for item and currentAccount has been destroyed

Copyright © Fraunhofer IESE 2001

73

Basic Library System

reloanltem
Name reloanltem()
Description An item loaned is reloaned to the currentAccount
Receives selector:ltemSelector
Sends Message “Over Extension”
Rules An item is reloanable if it is loanable and the number of extension is less or equal to 5 .
Changes loan
Assumes Subject is in the state accountldentified

selector selects exactly one item
Item is loaned to currentAccount

Result item selected by selector has been obtained

if item is reloanable
the loan containing item has the attrbibute values
- returnDate = today + 4 weeks
= noExtensions = noExtensions+1

if item is not reloanable
one of the following messages has been sent to MH
displayMessage(” OverExtensions”)

printAccountinformation

Name printAccountinformation()

Description All information concerning the current account is printed.
Receives —

Sends Printer.print(data)

Rules —

Changes —

Assumes subject is in state accountldentified

Result The data capturing customer data, current loans

has been obtained, formatted, and sent to Printer.

createNewAccount
Name createNewAccount()
Description An account is created for a new customer
Receives selector:AccountSelector
Sends —
Rules —
Changes new Account
Assumes selector does not select any existing account
Result A new account:Account has been created according to the attributes of selector.

74 Copyright © Fraunhofer IESE 2001

identifyAccount

Basic Library System

Name

identifyAccount()

Description

An existing account is identified and opened.

Receives

selector:AccountSelector

Sends

Rules

Changes

currentAccount

Assumes

selector selects exactly one Account

Result

account:Account selected by selector has been obtained
Library has been transitioned to state accountldentified with currentAccount=account

removeAccount

Name

removeAccount()

Description

The currently selected account is closed and removed from the library

Receives

Sends

Message “Return all items first”

Rules

Changes

destroy loan

Assumes

subject is in the state accountldentified

Result

If no Loans are related to currentAccount,
currentAccount is destroyed.

7.1.3 Behavioral Model

7.1.3.1 Statechart Tables

In general, the behavioural model of systems of this size (or even bigger) is too
complex for being captured in a useful state diagram. But if we hide the process
support of the library system and focus only when which operations can be
invoked, three main states of the library system can be identified:

e neutral: The system has no state information.

e accountldentified: A particular account has been identified, which will be
supplied to invoked operations (typically services with direct customer inter-
action with the library work via the customer account).

e itemldentifed: A particular item has been identifed, which will be supplied to
invoked operation (typically services in the background to maintain the
library’s stock etc. are item-centric tasks)

Copyright © Fraunhofer IESE 2001

75

Basic Library System

The following statechart table lists for each of these three states the operations
that can be invoked directly (i.e., not within a process execution) from a user.

identifyAccount
identifyltem

No State Information createNewAccount

removeAccount
loanltem
printAccountinformation
returnitem

reloanltem

accountldentified

itemldentified * reportLoss

7.1.3.2 State Diagram

The statechart table can be translated into the form of a UML statechart dia-
gram. Here, the state diagram illustrates the conceptual states of the library sys-
tem.

Figure 56:
State Transition Diagram:

The main states of a library identifyAccount,
createNewAccount
system

neutral identifyltem,

removeAccount, reportLoss,

accountldentified itemldentified

7.1.4 Resolution Model

In the scope definition given in the second chapter of this report, the considered
library systems covered various varying concepts. Remember that in this report,
we focus on variability related to features handling loaning and reserving items
in a library. The generic specification of the komponent LibrarySystem varies in
the following features:

e Reservation: support for reservations

e External Database: support for data ecxhange with an external database
e Suggestion: support for suggestions

76 Copyright © Fraunhofer IESE 2001

Basic Library System

e maxExtensions: the number of extensions a customer can get on a loaned

item (integer value)

e |oanPeriod: the length of a loan period (time value)

ID | Variation Resolution
LS-S1| Reservation no
LS-S2| External Database yes
LS-S3| Suggestion no
LS-S4| loanPeriod 4 weeks
LS-S5| maxExtensions 5
Table 39: Integrated Resolution Model for LibrarySystem Specification
ID | Variation Resolution
LS1.1]| Reservation no
LS1.2| External Database yes
LS1.3| Suggestion no
Table 40: Resolution Model for LibrarySystem Specification Class Diagram(Figure 53)
ID | Variation Resolution
LS2.1| Reservation no
LS2.2| External Database yes
LS2.3| Suggestion no
Table 41: Resolution Model for LibrarySystem Specification Supplied and Required Interfaces (Figure 54)
ID | Variation Resolution
LS3.1| External Database yes
Table 42: Resolution Model for LibrarySystem Specification Object Diagram (Figure 55)
ID | Variation Resolution
LS4.1 | Reservation no
LS4.2 | loanPeriod 4 weeks
Table 43: Resolution Model for LibrarySystem.loanltem() operation schema
ID | Variation Resolution
LS5.1| Reservation no
Table 44: Resolution Model for LibrarySystem.returnitem() operation schema
Copyright © Fraunhofer IESE 2001 77

Basic Library System

ID | Variation Resolution
LS6.1| Reservation no
LS6.2 | loanPeriod 4 weeks
LS6.3| maxExtensions 5
Table 45: Resolution Model for LibrarySystem.reloanltem() operation schema
ID | Variation Resolution
LS7.1| Reservation no
Table 46: Resolution Model for LibrarySystem.reserveltem() operation schema
ID Variation Resolution
LS8.1 | Reservation no
Table 47: Resolution Model for LibrarySystem.printAccountinformation() operation schema
ID Variation Resolution
LS11.1| Reservation no
Table 48: Resolution Model for LibrarySystem.removeAccount() operation schema
ID Variation Resolution
LS12.1| Reservation no
LS12.1| External Database yes (default)
LS12.2| Suggestion no
Table 49: Resolution Model for LibrarySystem Statechart Table
78 Copyright © Fraunhofer IESE 2001

Basic Library System

7.2 Realization

The Realization of LibrarySystem focuses here on services that LibrarySystem
assigns to the subkomponent LoanManager. Functionality that is aquired by
other subcomponents of LibrarySystem from LoanManager is not taken into
account.

7.2.1 Structural Model

7.2.1.1 Class Diagram

<<Komponent>>
Printer
¥

;<Komp(:;1en(t;> <<Komponent>> Account -----
essageriandler ReportWriter 0]
displayMessage() current
) Account *| 0.1
<<Komponent>>
AccountManager
1 createAccount()
identifyAccount()
<<subject>> K>——— removeAccount()
LibrarySystem o 0
identifyAccount()
AccountSelector createNewAccount()
removeAccount() K>— <<acquires>>
identifyltem()
. 1 loanitem())
Form [)
retumitem() <<Komponent>> -
reloanltem()

Display * 1 LoanManager --- Loan
loanitem() creationDate
returnitem() returnDate
reloanitem() noExtensions
setAccount()
closeAccount()

<<Komponent>> 1 printLoaninformation
ExternalDatabase setStockManager()
setMessageHandler() *
setReportWriter()
Item
P id
bibliographicinfo
<<Komponent>> isLoanable()
StockManag
<<Komponent>> | x 1| <<Komponent>> :
WebServer OPAC 1
search()
Figure 57: Library Realization Class Diagram

Copyright © Fraunhofer IESE 2001

Basic Library System

7.2.1.2 Object Diagram

<<Komponent>> <<Komponent>> <<Komponent>>
SM:StockManager OPAC:OPAC DB:ExternalDatabase
<<Komponent>> <<subject>>
AM:AccountManager Library
<<Komponent>> | | <<Komponent>> <<Komponent>>
LM:LoanManager MH:MessageHandler RW:ReportWriter
Figure 58: Library Realization Object Diagram

7.2.2 Activity Model

The simplicity of the activities taken into account in this report (i.e., activities
related to loaning and reserving items) allowed us to realize them without inter-
mediate refinement steps.

7.2.3 Interaction Model

In general, there are three ways for a subkomponent to be involved in the real-
ization of its parent komponent’s services:

e Delegation: a parent komponent does not add anything to the services pro-
vided by a subkomponent

e Synchronization: the state of the parent komponent changes in a way that
requires a state change of the subkomponent to keep the system consistent.

e Usage: the parent komponent integrates numberous services of subkompo-
nents to realize its (more powerful) services

7.2.3.1 Collaboration Diagrams

In our case of the loan and reservation functionality, the LibrarySystem fully del-
egates these services to a subkomponent (i.e., LoanManager)

loanltem(item:ItemSelector) 1:loanltem(item:ItemSelector)

—— > LS:LibrarySystem LM:LoanManager
Figure 59: Collaboration Diagram for the loanltem() Operation

80 Copyright © Fraunhofer IESE 2001

Basic Library System

reloanltem(item:ltemSelector) 1:reloanltem(item:ltemSelector)

——— > LS:LibrarySystem » LM:LoanManager

Figure 60: Collaboration Diagram for the reloanitem() Operation

returnitem(item:ItemSelector) 1:returnitem(item:itemSelector)

—————» LS:LibrarySystem LM:LoanManager

Figure 61: Collaboration Diagram for the returnitem() Operation

The LoanManager is not a stateless component but requires to specify an
account first (currentAccount) which is then subject of subsequent actions. The
AccountManager is responsible for Accounts independent of the LonaManager,
therefore, some usages of AccountManager by the LibrarySystem requires an
explicit state synchronization with the LoanManager komponent.

createNewAccount(customer:CustomerSelector) 2:setAccount(acc:Account)
—» LS:LibrarySystem » LM:LoanManager

l:acc=
createAccount(customer)

A

AM:AccountManager

Figure 62: Collaboration Diagram for the createNewAccount() Operation

identifyAccount(account:AccountSelector) 2isetAccount(acc:Account)

—»| LS:LibrarySystem » LM:LoanManager

Tacc=
identifyAccount(account:AccountSelector)

A

AM:AccountManager

Figure 63: Collaboration Diagram for the identifyAccount() Operation
removeAccount() X 1:closeAccount()
LS:LibrarySystem » LM:LoanManager

2: removeAccount()

A,

AM:AccountManager|

Figure 64: Collaboration Diagram for the removeAccount() Operation

The LibrarySystem allows account information to be printed in a single report.
This information is spread over two of its subkomponents: AccountManager and

Copyright © Fraunhofer IESE 2001 81

Basic Library System

LoanManager. Therefore, to provide the service of printing account information,
LibrarySystem must use and coordinate services of its subkomponents.

RW:ReportWriter
A

1: printAccountinformation()

printAccountinformationt() 3:printLoaninformation()
—_—p >

LS:LibrarySystem

2: printAccountinformation()

A

AM:AccountManager

LM:LoanManager

Figure 65: Collaboration Diagram for the printAccountinformation() Operation

7.2.4 Resolution Model

ID | Variation Resolution
LS-R1 | Reservation no
LS-R2 | External Database yes
LS-R3| Suggestion no
Table 50: Integrated Resolution Model for LibrarySystem Realization
ID |Variation Resolution
LS13.1| Reservation no
LS13.2| External Database yes
LS13.3| Suggestion no
Table 51: Resolution Model for LibrarySystem Realization Class Diagram(Figure 57)
ID Variation Resolution
LS14.1| External Database yes
Table 52: Resolution Model for LibrarySystem Specification Object Dlagram (Figure 58)
ID Variation Resolution
LS15.1| Reservation no
Table 53: Resolution Model for LibrarySystem.reserveltem() Collaboration Diagram
82

Copyright © Fraunhofer IESE 2001

8 Basic Loan Manager

Basic Loan Manager

In this chapter the Loan Manager Komponent for the basic library system is pre-
sented. According to the Basic Library System Komponent, it does not support

reservations.

8.1 Specification

8.1.1 Structural Model

8.1.1.1 Class Diagram

AN

<<Komponent>>
ReportWriter <<acquires>>

ItemSelector

print() 1 1

<<Komponent>>
MessageHandler <<acquires>>

displayMessage() 1 1

<<acquires>>

<<Komponent>>

ItemManager ! !

getitem()

1

0..1]currentAccount

Account

Item

id

isLoanable
* | bibliographicinfo

Figure 66: LoanManager Specification Class Diagram

Copyright © Fraunhofer IESE 2001

83

Basic Loan Manager

8.1.1.2 Supplied and Required Interfaces

ltemManager

LoanManager

setReportWriter
setltemManager
setMessageHandler
loanltem
printLoanInformation
reloanitem
returnitem
setAccount
closeAccount

\

Figure 67: Supplied and Required Interfaces of the LoanManager Komponent

8.1.1.3 Object Diagram

MessageHandler

<<subject>>
LoanManager

Jajpoday

<<Komponent>>
IM:ltemManager

<<Komponent>>

MH:MessageHandler

<<Komponent>>

RW:ReportWriter

Figure 68: LoanManager Specification Object Diagram

84

Copyright © Fraunhofer IESE 2001

8.1.2 Functional Model

Basic Loan Manager

8.1.2.1 Operation Specifications

setAccount

Name

setAccount()

Description

Receives a reference to an Account and stores it as currentAccount

Receives

currentAccount:Account

Sends

Rules

Changes

Assumes

Result

currentAccount has been stored and subject is in state accountldentified

closeAccount

Name

closeAccount()

Description

The current account is closed.

Receives

Sends

Rules

Changes

Assumes

Result

currentAccount is empty and subject is in state noAccountldentified

Copyright © Fraunhofer IESE 2001

85

Basic Loan Manager

loanltem

Name

loanltem()

Description

The loan of an Item to currentAccount is registered

Receives

selector: ItemSelector

Sends

MH.displayMessage()
[tem item = IM.getltem(filter)

Rules

An item is loanable if it is not when it is not not an item that must always stay in the
library (e.g., antique books).
An item is currently loanable if it is loanable and not loaned.

Changes

new Loan

Assumes

Subject is in the state accountldentified
Selector selects exactly one Item

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(filter)
if item is currently loanable
a new Loan object, loan, has been created that relates item and account, and has the
attribute values
- creationDate = today
- returnDate = today + 4 weeks and
= noExtensions = 0
and, loan has been stored.
if item is not currently loanable
one of the messages has been sent to MH
- displayMessage(" Already Loaned")

returnitem

Name

returnltem()

Description

Makes an item loanable again.

Receives

selector:ltemSelector

Sends

MH.displayMessage()
item Item = IM.getltem(selector)

Rules

Changes

destroy loan

Assumes

subject is in the state accountldentified
item is loaned to currentAccount

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(selector)
the loan for item and currentAccount has been destroyed.

86

Copyright © Fraunhofer IESE 2001

reloanltem

Basic Loan Manager

Name

reloanitem()

Description

An item loaned is reloaned to the currentAccount

Receives

selector:ltemSelector

Sends

MH.displayMessage()
Item item = IM.getltem(selector)

Rules

An item is reloanable if it is loanable and the number of extension is less or equal to 5.

Changes

loan

Assumes

Subject is in the state accountldentified
[tem is loaned to currentAccount

Result

item selected by selector has been obtained from the ltemManager IM by sending the
message getltem(selector)
if item is reloanable
the loan containing item has the attrbibute values
= returnDate = today + 4 weeks
= noExtensions = noExtensions+1
if item is not reloanable
one of the following messages has been sent to MH
- displayMessage(” OverExtensions”)

printLoaninformation

Name

printLoanInformation()

Description

All information concerning loans of currentAccount is printed.

Receives

Sends

RW.printLoaninfo(currentAccount)

Rules

Changes

Assumes

subject is in state accountldentified

Result

A message printLoaninfo(currentAccount) has been sent to RW.

setltemManager

Name

setltemManager()

Description

Receives a reference to an ltemManager komponent and stores it.

Receives

IM:ltemManager

Sends

Rules

Changes

Assumes

Result

IM has been stored

Copyright © Fraunhofer IESE 2001

87

Basic Loan Manager

setMessageHandler

setReportWriter

Name

setMessageHandler()

Description

Receives a reference to a MessageHandler komponent and stores it.

Receives

MH:MessageHandler

Sends

Rules

Changes

Assumes

Result

MH has been stored

Name

setReportWriter()

Description

Receives a reference to a reportWriter komponent and stores it.

Receives

RW:ReportWriter

Sends

Rules

Changes

Assumes

Result

RW has been stored

8.1.3 Behavioral Model

8.1.3.1 Statechart Diagram

Figure 69:

88

setAccount

!

neutral

closeAccount

l accountldentified l

printLoanInformation/
loanltem/

reloanltem/
returnltem/

LoanManager Statechart Diagram

Copyright © Fraunhofer IESE 2001

8.1.3.2 Statechart Tables

Copyright © Fraunhofer IESE 2001

Basic Loan Manager

Source State

UML Transition String

Target State

neutral

setAccount()

accountldentified

accountldentified

closeAccount()

neutral

accountldentified

printLoanInformation()
loanltem()
reloanitem()
returnitem()

accountldentified

89

Basic Loan Manager

8.1.4 Decision Model

The loan managers covered in this generic komponent vary in the following fea-

tures:

Reservation: support for reservations

item (integer value)

maxExtensions: the number of extensions a customer can get on a loaned

loanPeriod: the length of a loan period (time value)

ID | Variation Resolution Effect
LM-S1| Reservation no no: LM1.1, LM2.1, LM3.1, LM4.1, LM5.1, LM6.1, LM7.1,
LM8.1, LM-R1
LM-S2| loanPeriod 4 weeks replace loanPeriod by actual value: LM3.2, LM5.2
LM-S3| maxExtensions 5 replace maxExtensions by actual value: LM5.3
Table 54: Integrated Decision Model for LoanManager Specification
ID | Variation Resolution Effect
LM1.1| Reservation no remove method LoanManager.reserveltem()
remove class ReservationList
remove association class Reservation
Table 55: Decision Model for LoanManager Specification Class Diagram(Figure 66)
ID | Variation Resolution Effect
LM2.1| Reservation no remove method reserveltem()
Table 56: Decision Model for LoanManager Specification Supplied and Required Interfaces (Figure 67)
ID | Variation Resolution Effect
LM3.1| Reservation no remove variant tags and content
LM3.2| loanPeriod 4 weeks replace loanPeriod by actual value
Table 57: Decision Model for LoanManager.loanltem() operation schema
ID |Variation Resolution Effect
LM4.1| Reservation no remove variant tags and content
Table 58: Decision Model for LoanManager.returnitem() operation schema
ID |Variation Resolution Effect
LM5.1| Reservation no remove variant tags and content
Table 59: Decision Model for LoanManager.reloanltem() operation schema
90 Copyright © Fraunhofer IESE 2001

Basic Loan Manager

ID | Variation Resolution Effect

LM5.2| loanPeriod 4 weeks replace loanPeriod by actual value
LM5.3| maxExtensions 5 replace maxExtensions by actual value
Table 59: Decision Model for LoanManager.reloanltem() operation schema

ID | Variation Resolution Effect

LM®6.1| Reservation no exclude operation specification from functional model
Table 60: Decision Model for LoanManager.reserveltem() operation schema

ID | Variation Resolution Effect

LM7.1| Reservation no remove event reserveltem
Table 61: Decision Model for LoanManager Statechart Diagram (Figure 69)

ID | Variation Resolution Effect

LM8.1| Reservation no
Table 62: Decision Model for LoanManager Statechart Table

Copyright © Fraunhofer IESE 2001

91

Basic Loan Manager

8.2 Realization
8.2.1 Structural Model

8.2.1.1 Class Diagram

AN
IltemSelector

<<Komponent>> *
ReportWriter <<acquires>> 1
) 1 1 <<subject>>
LoanManager
M geHandler <<acquires>> esount)
1 [Gepastiassaset 1 1 | Soeonccouno
printLoanlnformation
setStockManager()
. setMessageHandler()
<<Komponent>> 1<<a(;qu|res>> - setReportWriter()
ItemManager 1 1
getltem()
7
0..1 |currentAccount
Account Item
r P
0.1 * | vibliographicinfo
1
LoanStore 1 . Loan
loaned ceatonDats
insert returnDate
remove noOfExtensions
getExtensions()
Figure 70: LoanManager Realization Class Diagram
8.2.1.2 Object Diagram
<<subject>>
LoanManager
<<Komponent>> <<Komponent>> <<Komponent>> <<Komponent>>
RM:ReservationManager| IM:itemManager MH:MessageHandler RW:ReportWriter
Figure 71: LoanManager Realization Object Diagram

92 Copyright © Fraunhofer IESE 2001

8.2.2 Activity Model

8.2.2.1 Activity Diagram

Basic Loan Manager

IltemManager

getltem

MessageHandler

displayMessage

LoanManager LoanStore
[
isLoaned
[No] [Yes]
create
insert
Figure 72: Activity Diagram for the loanltem Activity

Copyright © Fraunhofer IESE 2001

93

Basic Loan Manager

8.2.3 Interaction Model

8.2.3.1 Collaboration Diagrams

<<Komponent>>
IM:itemManager

1: item:=getltem(selector)¢

loanltem(selector:ltemSelector) 3: loaned:=isLoaned(item)
—> <<subject>>

LM:LoanManager —

5: insert(loan)

:LoanCollection

4: [not loaned]
create(today, currentAccount, item)) \L“'i [loaned] displayMessage()

<<Komponent>>

loan:Loan MH:MessageHandler

Figure 73: Collaboration Diagram for the loanltem() Operation

<<Komponent>>) ’
IM:ltemManager ‘LoanCollection

]

TZ remove(item)

1: item:=get|tem(selector)q\

returnltem(selector:ltemSelector)

<<subject>>
LM:LoanManager

Figure 74: Collaboration Diagram for the returnitem() Operation

94 Copyright © Fraunhofer IESE 2001

1: item:=get|tem(selector)/r

reloanltem(selector:ltemSelector]
—>

3: ext:=getExtensions()

5: [not overmaxextensions]

create(today, currentAccount, item, ext+1))

Figure 75:

<<Komponent>>
IM:ltemManager

Basic Loan Manager

2: loan:=getLoan(item)

<<subject>>
LM:LoanManager

—

6: insert(loan)

loan:Loan

<<Komponent>>
MH:MessageHandler

Collaboration Diagram for the reloanitem() Operation

printLoanInformation()
—>

<<subject>>

1: loanInfo:=getLoanInformation()

—>

:LoanCollection

J/ J/4’: [overmaxextensions] displayMessage()

LM:LoanManager

<<Komponent>>
RW:ReportWriter

Figure 76:

Copyright © Fraunhofer IESE 2001

i/ 2: print(loaninfo)

Collaboration Diagram for the printLoanIinformation() Operation

:LoanCollection

95

Basic Lo

8.2.4 Decision Model

an Manager

ID | Variation Resolution Effect
LM-R1| Reservation no no: LM9.1, LM10.1, LM11.1, LM12.1, LM13.1, LM14.1
Table 63: Integrated Decision Model for LoanManager Realization
ID | Variation Resolution Effect
LM9.1| Reservation no remove method LoanManager.reserveltem()
remove komponent ReservationManager
remove class ReservationList
remove association class Reservation
Table 64: Decision Model for LoanManager Realization Class Diagram(Figure 70)
ID Variation Resolution Effect
LM10.1| Reservation no remove swimlane ReservationManager
remove activity isReserved
remove activity displayMessage
Table 65: Decision Model for LoanManager.loanltem() Activity Diagram (Figure 72)
ID Variation Resolution Effect
LM11.1| Reservation no remove object RM:ReservationManager
remove variant tags and content
Table 66: Decision Model for LoanManager.loanltem() Collaboration Diagram (Figure 73)
ID Variation Resolution Effect
LM12.1| Reservation no remove object RM:ReservationManager
remove object MH:MessageHandler
Table 67: Decision Model for LoanManager.returnitem() Collaboration Diagram (Figure 74)
ID Variation Resolution Effect
LM13.1| Reservation no remove object RM:ReservationManager
remove method call 5'[isReserved] displayMessage
remove variant tags and content
Table 68: Decision Model for LoanManager.reloanitem() Collaboration Diagram (Figure 75)
ID Variation Resolution Effect
LM14.1| Reservation no exclude collaboration diagram from interaction model

Table 69

96

Decision Model for LoanManager.reserveltem() Collaboration Diagram

Copyright © Fraunhofer IESE 2001

References

[ABB+01] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties,
Oliver Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech, Jur-
gen Wst, and Jorg Zettel, Component-based Product Line Engi-
neering with UML, Addison-Wesley, 2001.

[AW99] Marc Ardis and David Weiss, Defining Families: The Commonality
Analysis. Proceedings of the Nineteenth International Conference
on Software Engineering, pp. 649-650, [EEE Computer Society
Press, May 1997.

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk
Muthig, Klaus Schmid, Tanya Widen, and Jean-Marc Debaud,
PULSE: A Methodology to Develop Software Product Lines, In Pro-
ceedings of the Symposium on Software Reusability 99 (SSR '99),
Los Angeles, May 1999

[FODA98] Software Engineering Institute, Model-Based Software Engineering,
http://www.sei.cmu.edu/technology/mbse/is.html, April 25, 1998.

[Hac92] Rupert Hacker. Bibliothekarisches Grundwissen - 6., véllig neu
bearb. Aufl. - Minchen [u.a.] : Saur, 1992

[PCM96] Meg Paul, Sandra Crabtree, Evelin Morgenstern, (Dt. Ubers. u.
Bearb.): Strategien fur Spezialbibliotheken. Berlin : Deutsches Biblio-
theksinstitut (DBI), 1996

[SPC93] Software Productivity Consortium. Reuse-Driven Software Processes

Guidebook, Version 02.00.03. Technical Report SPC-92019-CMC,
Software Productivity Consortium, November 1993.

Copyright © Fraunhofer IESE 2001 97

98

Copyright © Fraunhofer IESE 2001

Document Information

Title:

Date:
Report:
Status:

Distribution:

The Library System Pro-
duct Line -
A KobrA Case Study

November 22, 2001
|[ESE-024.01/E

Final

Public

Copyright 2001, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial

purposes.

