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Abstract: The Max-Sum algorithm, an instance of the Generalized Dis-
tributive Law family, is known to solve Distributed Constraint Optimiza-
tion Problems (DCOP) where the summed utility functions of interacting
agents are maximized. However, Max-Sum relies on available communi-
cation channels between all agents that partake in a utility function. We
present a generalization of Max-Sum that solves DCOP exactly in situations
where the communication network layout does not match the agents’ utility
inter-dependencies.

1 Introduction

In Distributed Constraint Optimization (DCOP), a set of agents (each represented

by a variable that represents his action, choosen from a finite domain) coordinates

their actions in order to maximize the summed utility the agents experience. In

this work we built upon the well-known Max-Sum algorithm, a member of the

Generalized Distributive Law (GDL) family of message passing schemes [AM00]

[KFL01]. Max-Sum is widely used for DCOP [PF05] [KV06], however, message-

passing with Max-Sum is only guaranteed to converge to a maximum assignment

if the utility inter-dependencies of the agents form a tree-graph. Here, we present a

generalization of Max-Sum that can infer the exact max-marginals in deterministic

time on DCOP instances where

1. not all (inter-dependent) agents can exchange messages, but the communi-

cation graph is still connected

2. agent inter-dependencies form loops.
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Existing DCOP algorithms can be roughly classified into search based [MSTY05],

local-search based [MTB+04] and inference based [PF05] methods. Our approach

falls into the inference based class of algorithms. It is different from DCOP

in settings where communication is limited/expensive [FRPJ08] [PGCMRA11]

as we constrain the the availability of communication channels and not only the

throughput. It also differs from exact and approximate inference on junction trees

for DCOP [BM10] [VRAC11]. Our method requires no graph triangulation and

grouping of agents into a tree-like hypergraph. Instead, we cut communication

links between interacting agents until the remaining graph forms a tree. The mes-

sages exchanged between agents are adapted, so that local utility information is

propagated within the relevant portions of the graph only. This leads to a very

natural handling of situations where the communication topology ist constrained.

The paper is organized as follows. We give an overview on the original Max-

Sum algorithm in Section 2. In Section 3, we introduce Max-Sum with Remote

Neighbours. The performance of our approach is evaluated on an example scenario

in Section 4. The paper concludes in Section 5 with a discussion of the results and

some pointers for future research.

2 The Max-Sum Algorithm

Let V be a set of variables i ∈ V , each defined on a finite domain Xi. The

goal is to maximize some function f where X =
∏

i∈V Xi, f : X → R−∞.

The codomain R−∞ = R ∪ {−∞} makes complex constraints easier to handle

algorithmically. That is, if x is constrained to lie in some set X̃ ⊂ X , we define

∀x /∈ X̃ , f(x) = −∞ and keep the cartesian product of the variable domains

Xi as the domain of f . This leads to the same maximum solution, provided that

supx∈X̃ f(x) > −∞. The trivial approach to enumerate all possible solutions

x∗ = argmax
x∈X

f(x)

obviously scales exponentially in the number of variables and must fail even for

modest problem sizes. Instead, we exploit the structure of the specific f at hand.

Assume that f is a sum of functions ψα, called factors, each of which depends

only on a subset of the variables α ∈ 2V . The set of all factors is A ⊂ 2V :

f(x) =
∑
α∈A

ψα(xα), xα ∈
∏
i∈α

Xi, ∀i ∈ α, (xα)i = xi
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Figure 2.1: Example factor graph corresponding to f(x1, x2, x3) = ψ1(x1) +
ψ12(x1, x2) + ψ13(x1, x3). By convention, variable nodes are represented as

circles and factor nodes as squares.

This decomposition of f can be represented as a bipartite undirected factor-graph
G = (V,A,E). See [KFL01] and Fig. 2.1 for an example of a factor graph.

Edges (i, α) indicate that the factor ψα depends on the variable i. Even though G
is undirected, let E contain a pair of directed edges e = (e, e) for every factor-

variable relationship to denote directed communication when it occurs. W.l.o.g.,

assume G to be connected. If that is not the case, G is made up of independent

subgraphs Gk = (Vk, Ak, Ek). Since there are no edges (i, α) between subgraphs

with i ∈ Vk, α ∈ Ak′ for k �= k′, optimizing f reduces to solving

x∗
k = argmax

xk∈Xk

∑
α∈Ak

ψα(xα), Xk =
∏
i∈Vk

Xi

independently for each subgraph k, to which the techniques for connected graphs

apply.

The Max-Sum algorithm is an instance of the Generalized Distributive Law (GDL)

family of algorithms used for solving inference problems that can be stated in

terms of a factor graph [KFL01]. GDL is defined on commutative semirings. Max-

Sum, according to the problem statement in the beginning of this section, assumes

the specific ring (+, 0,max,−∞), taking + as the operator for combining fac-
torisations and max as the operator for the marginalisation of variables with their

respective identity element. Other commutative semirings are widely used as well,

e.g. for probabilistic reasoning, but are not discussed here.

Max-Sum relies on communication channels between the variable and factor nodes

over which they exchange message-functions m : Xi → R−∞ where the variable

i is either the sending or the receiving variable node1. Variable nodes i send mes-

sages to the factor nodes in their neighborhoud N(i) = {α : (i, α) ∈ E} and

1Here, they represent a mapping from a discrete domain to a scalar value which can be trivially

encoded as a table for communication.
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factor nodes send messages to the i ∈ α. Further, assume discrete time periods t
in which every node exchanges messages with all of its neighbours. Often times

the messages are initialized to zero in t0. Other initializations may have better

convergence properties, but are not discussed here.

mt0
i→α(xi) = mt0

α→i(xi) = 0

mt
i→α(xi) = κ+

∑
β∈N(i)\{α}

mt−1
β→i(xi)

mt
α→i(xi) = κ+ max

xα\{i}

[
ψα(xα) +

∑
j∈α\{i}

mt−1
j→α(xj)

]
(2.1a)

Maximizing over xα\{i} in (2.1a) should be read as maximizing over xα ∈∏
l∈α Xl, (xα)i = xi where the component of xα related to variable i is fixed

to xi. When summing over j ∈ α \ {i}, we denote the component of xα related

to variable j as xj . The normalisation constant κ is selected for every message so

that the message-function is zero for the first element in the domain of the message.

The normalisation is required for convergence in loopy graphs, even though it does

not guarantee convergence. Otherwise, the values of the exchanged messages can

grow or diminish undefinitely. Note that the normalisation does not change the

assignments selected during maximization since all choices are over- or underesti-

mated by the same amount. Normalisation does however prevent the computation

of the true marginals at the nodes with local information only.

If G is a tree-like factor graph without loops, the exchanged messages converge

after completing a forwards/backwards schedule. This schedule says that nodes

can only send messages to a neighbour if they have received messages from all

other neighbours. Consequently, the schedule starts at the leaf nodes, propagates

throughout the tree and ends when all leaf nodes have received a message them-

selves. Then, the sum of the messages that a variable node i has received is the

max-marginal of i on the original function f (up to normalization hat will not

change the max assignment computed via the max-marginal). For a proof of this,

see Proposition 2 for the proposed Max-Sum with Remote Neighbours, of which,

by Proposition 3, the original Max-Sum algorithm is a special case. In loopy

graphs, a forward/backwards schedule obviously cannot work. Instead, nodes can

send messages asynchronously at any time. For example, every node sends in

every period t a message to every neighbour. Randomized schedules are also com-

monly used in distributed settings. There are no guarantuees for convergence on

loopy graph. But if Max-Sum converges, then its solution is a local minima of the

Bethe free energy [YFW05] and therefore often useful in practice.
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3 Max-Sum with Remote Neighbours

Let G = (V,A,E) be a loopy factor graph. We remove edges until G′ =
(V,A,E′) with E′ ⊂ E forms a tree-graph but is still connected. Now, some

factors in A depend on a variable to which they have no edge in the graph. We

call these the remote neighbours of the factor. The set of both direct and remote

neighbours of a factor node is Ñ(α) and Ñ(i) for a variable node. In settings

where variables represent agents and their utilities, it is natural to have factors

that depend on the choices of several agents, but with a utility that is “local” to

a single agent. In that case, we split the relevant factor α ∈ A into αi, such

that ψα(xα) =
∑

i∈α ψαi(xα). The superscript denotes the variable to which

the split factor has a direct connection in the graph. See Fig. 3.1 for example

transformations.

Recall that there is a pair of directed edges e ∈ E′ for all neighborhood relations

in G′. Since G′ is a tree-graph, removing any edge would divide the tree into two

independent subgraphs. We denote the subgraph that is implicitly “on the side”

of the sending node e as G′
e. Since remote neighbours can only be reached by re-

laying messages over multiple hops, the rules by which variables are marginalized

out in the messages need to be adapted. For this, we introduce extended messages

m̃e = 〈Ṽe, (ce,i, |Ñ(i)|)i∈Ṽe
, m̄e〉 .

The time-index is omitted for extended messages since Max-Sum with Remote

Neighbours is intended only for a forwards/backwards pass schedule on tree-

graphs. Messages are only sent once a message has been received from neighbours

but the target-node in questions (see also Sec. 2). The set Ṽe is the union of (a)

the variables in the subgraph G′
e with a (remote or direct) neighbour not in G′

e and

(b) the variables not in G′
e that are in the domain of a factor in G′

e. We denote

the variable nodes not contained in Ve with Ve = V \ Ve and similarly for factor

nodes.

Ṽ a
e = {i ∈ Ve : Ñ(i) ∩Ae �= ∅}

Ṽ b
e = {i ∈ Ve : Ñ(i) ∩Ae �= ∅}
Ṽe = Ṽ a

e ∪ Ṽ b
e

(3.1)

For messages in the inverse direction, Ṽe→e = Ṽe→e. This follows directly from

(3.1) by replacing the sets Ve and Ae with their complement.

The integer ce,i counts how many nodes related to i (neighbours of i and i itself)

are contained in the sending subgraph G′
e. This value is updated locally before
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Figure 3.1: The loopy factor graph in (a) transforms into the factor tree-graph with

remote neighbours (b) where x1 and ψ14 are their respective remote neighbour.

The transformed factor graph in (c) contains a split factor. The transformed graph

gives results for variable assignments equivalent to the graph in (a) if ψ14(x14) =
ψ141(x14) + ψ144(x14).

sending a message me.

ce,i = �i∈Ñ(e) + �e=i +
∑

k∈N(e)\{e}
ck→e,i (3.2)

Implicitly, ce,i = 0 if it is not defined in the message me. The indicator function

� evaluates to one if the supplied condition is true and zero otherwise. Note that

(3.2) is formulated both for sending variable nodes and sending factor nodes.

Proposition 1 A variable i is contained in Ṽe if and only if 0 < ce,i < |Ñ(i)|+1.

PROOF. Since G′
e is a tree-graph and only factors in Ñ(i) and the variable node i

itself can add to (3.2), ce,i is bounded with ce,i ∈ {0, . . . , |Ñ(i)| + 1}. Firstly, if

ce,i = 0, then neither is i ∈ Ve, nor is there a factor α, such that α ∈ Ae ∩ Ñ(i)
as any of these conditions would have increased ce,i in (3.2). It follows from (3.1)

that i /∈ Ṽe. The inverse argument proceeds analogously. Secondly, assume that

i ∈ Ṽe and ce,i = |Ñ(i)|+ 1. If i ∈ Ṽ a
e , then ce,i < |Ñ(i)|+ 1 since at least one

neighbour factor α ∈ Ñ(i) is not contained in Ae and has not contributed to (3.2).

If i ∈ Ṽ b
e , then ce,i < |Ñ(i)| + 1 with a similar argument. This contradicts the

assumption. Lastly, let ce,i such that 0 < ce,i < |Ñ(i)|+1. If i is contained in Ve,

then Ñ(i) ∩ Ae is nonempty as ce,i would equal |Ñ(i)| + 1 otherwise. If i is not

contained in Ve, then Ñ(i) ∩ Ae is nonempty as ce,i would equal zero otherwise.

It follows from the exhaustion of cases that i ∈ Ṽe ⇔ 0 < ce,i < |Ñ(i)|+ 1. �
Together with the ce,i, the number of i’s (direct and remote) neighbours |Ñ(i)| is

contained in m̃e. Thus, extended messages can be constructed with information
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received via extended messages from neighbour nodes and locally available infor-

mation. The difference to the original Max-Sum is that the domain Xe =
∏

i∈Ṽe
Xi

of the message function m̄e may be comprised of multiple variables. Let the ex-
tended domain of any (factor or variable) node ν be Xν+ =

∏
i∈ν+ Xi, ν

+ = {i :
∃k ∈ N(ν), i ∈ Ṽk→ν}. The value of every m̄e(xe) is computed by taking the

maximum over all y ∈ Xe+ : ∀i ∈ Ṽe, yi = (xe)i by taking the sum of the relevant

messages (from all direct neighbours but the target e) and the local factor ψe on

the variable assignment y. If e is a variable node, of course ψe evaluates to zero.

m̄e(xe) = max
xe+\Ṽe

[
ψe(xe) +

∑
g=(k→e),
k∈N(e)\e

m̄g(xg)
]

(3.3)

Proposition 2 Let G′ be a factor tree-graph with remote neighbours represent-
ing a function f . After completing a forwards/backwards schedule, the extended
messages exchanged on G′ have converged and the max-marginal of the variable
i ∈ V on f can be computed as

f∗
i (xi) = max

y∈X ,
yi=xi

f(y) = max
xi+\{i}

∑
g=(k→i),
k∈N(i)

m̄g(xg) .

PROOF. Messages m̃e on a tree-graph do not depend on any information from

messages sent by the (currently) receiving node e. Therefore, after the for-

wards/backwards schedule has completed, every updated message m̃e according

to (3.3) is identical to the message that has last been sent over e.

Next, we show that the value of a message function m̄e(xe) for a given xe equals

the summed factor-values in the sending subgraph Ve where all variables in Ṽe

are assigned according to xe and the variables in Ve without (remote) neighbours

outside of Ge are assigned to maximize the sum of factors in Ge.

m̄e(xe) = max
x∈XVe∪Ṽe

,

∀i∈Ṽe,xi=(xe)i

∑
α∈Ae

ψα(xα)

Note that Ve ∪ Ṽe =
⋃

α∈Ae
Ñ(α) contains all variables that are the (remote)

neighbour of any factor in Ae. Recall that variables i are max-marginalized out

during the message construction (3.3) only if i ∈ Ve \ Ṽe, i.e. if no factor outside of

Ge is a (remote) neighbour of i. That means the distributive law on the Max-Sum

commutative semiring can be applied [AM00]. For example:

max
x1,x2

[
ψ1(x1) + ψ12(x1, x2)

]
= max

x1

[
ψ(x1) + max

x2

ψ(x1, x2)
]
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The argument is applied recursively until the leaf nodes are reached, for which it

holds trivially.

Now, assume that variable i has received messages m̃α→i from all neighbours α ∈
N(i). For every selected xi ∈ Xi we then have locally available information on

the maximum summed factor-values that can be achieved in the subgraphs behind

all outgoing edges, i.e. the entire graph. �

Proposition 3 On a tree-like factor graph G without remote neighbours, the
message functions m̄ exchanged in Max-Sum with Remote Factors are equal
to the corresponding messages m of the original Max-Sum algorithm up to
normalization.

PROOF. For this, we show that the domain of the extended messages exchanged

between any factor α and variable i is Xi and therefore Ṽi→α = Ṽα→i = {i}. If

the sending node is the variable node i, then Ṽ a
i→α = {i} since no other variable

in Vi→α has a neighbour in Vi→α. Also, Ṽ b
i→α = ∅ since no variable node in

Vi→α has a neighbouring factor in Vi→α. This follows directly from G being a

tree-graph. Similar arguments hold for messages from α to i. Since the domain of

the exchanged messages on G is identical, it is easy to see that (2.1) and (3.3) are

equivalent when κ = 0 (normalization is not required for convergence on trees).

Since the message functions sent from the leaf nodes do not depend on received

messages, they are identical for Max-Sum and Max-Sum with Remote Neighbours

and consequently all m̄e = me. �

4 Evaluation

This section presents the results of a simple scenario that compares the pro-

posed algorithm in comparison with loopy messsage passing. The algorithm

implementation and the scenario example can be accessed online at https:
//github.com/jpfr/pygmalion.

The scenario consists of eight variables, each with a finite, nominal scale of size 5,

and eight factors linking the variables to form two connected circles according to

Fig. 4.1. The factor functions ψα map each element in their domain to a scalar that

was randomly sampled from the uniform distribution on [0, 1] during instantiation.

The goal is then to find the variable assignment that maximizes the sum of all

factors. For Max-Sum with Remote Factors, we removed two edges so that the

transformed graph forms a connected tree as can be seen in Fig. 4.1. The size of

the scenario is such that brute-force search (in 58 possible solutions) can still be

applied to verify the results.

https://github.com/jpfr/pygmalion
https://github.com/jpfr/pygmalion
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Figure 4.1: The factor graph with remote factors in the example scenario. Dashed

edges have been removed for Max-Sum with Remote Factors. The remaining

edges are annotated with the domain of the message-functions m̄e that are passed

over it.
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Figure 4.2: Performance of loopy Max-Sum message passing on 10 instances of

the scenario. The instances that have not converged after 600 messages show a

recurring pattern that is repeated indefinitely.

Figure 4.2 shows the result of Max-Sum on the loopy graph. At every time t
all nodes send message to all of their neighbours if these messages are different

from the preceding ones. The variable assignments after every message exchange

were computed by taking the (running) max-marginal of each variable nodes and

maximizing it locally. It can be seen, that inference with Max-Sum can be quite

irratic and does not converge in all scenario instances.
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By contrast, Max-Sum with Remote Neighbours takes only 30 messages (one

forwards/backwards schedule) to infer the maximum solution for all scenario in-

stances. The average message size increase compared to Max-Sum is less than 5,

i.e. the domain size of the variables that were made remote neighbours. Figure 4.2

also shows the domain of the message-functions m̄e passed over the edges. Note

how the domain-size increase due to a missing edge is loop-local and does not spill

over into the adjacent loop. This is an indicator that Max-Sum with Remote Neigh-

bours will perform well for many important applications. Extensive benchmarks

and comparison with other DCOP approaches are currently being developed.

5 Conclusion

In this paper, we introduced Max-Sum with Remote Neighbours, a method for the

exact inference of maximum utility solutions in distributed constraint optimization

settings. This method generalizes the original Max-Sum, that is widely used for

DCOP applications, and makes it applicable to settings where the agent commu-

nication is constraints and the communication graph does not match the agents

utility inter-dependencies. The only requirement for our method is that the com-

munication graph is still connected. The performance of Max-Sum with Remote

Neighbours was evaluated on an example scenario. We also applied our method on

loopy graphs where some communication links were cut in order to form a tree-

graph. Here, it showed superior performance compared to applying the original

Max-Sum on loopy graphs, as is often done in practice. It is an open question

which links to remove to minimize the inference complexity. Here, we suspect

a rich connection to the large body of work dealing with the decomposition of

graphs into junction trees with a minimized tree-width.
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