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1 Introduction 
The electronics and MEMS packaging industries are following the trend of continuous 
miniaturization combined with concurrent functional integration. The impact of this 
trend is an increasing number of components and their functions integrated into a single 
package. The importance of advanced packaging solutions such as system on chip 
(SoC) and system in package (SiP) is continuously increasing. In order to reach higher 
packaging densities, multi-chip and three-dimensional packaging solutions are 
increasingly pursued by companies and research laboratories (Yole 2016; Ghaffarian et 
al. 2014; IRDS 2016). 

Advanced packaging technologies, such as SoC and SiP, are, at present, applied 
predominantly in high-volume applications. Due to their high cost, these technologies 
are reserved for a small number of large enterprises. To render advanced packaging 
attractive for applications with lower volumes, and for prototyping purposes, more 
efficient processes for the assembly of electronic and MEMS packages are required, 
with associated reductions in investment costs (Beica 2015; Frost & Sullivan 2017). 

Fresh challenges appear as the components, and their interfaces, become ever-smaller 
and evermore complex. As a result, the number of interconnects and the requirements 
for positioning precision continue to increase. At the same time, the reliability of 
electronic assemblies must comply with increasingly demanding standards, while the 
production costs must be steadily controlled and minimized (Ghaffarian et al. 2014; 
Pizzagalli et al. 2014; IRDS 2016). 

Continuous development and improvement of the applied manufacturing processes is 
therefore required. These improvements include optimization of performance, quality 
and cost, but also the robustness of the applied processes (Kada 2015; Mahajan et al. 
2017). 

1.1 Problem statement 

The application of adhesives for electronic and MEMS packaging applications provides 
a high degree of flexibility (Zhang 2011). Adhesives can be dispensed according to 
application-specific protocols and do not require masks or other expensive tooling (Lu 
et al. 2009). Dispensing systems are therefore particularly suitable for production in 
lower volumes and fields of application where a high degree of flexibility is needed 
(Tummala et al. 1997; Blackwell 2002). 
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A significant drawback of adhesive bonding is the duration of the curing processes. A 
typical assembly process of an electronic package (e.g. a flip-chip process) requires 
numerous heating cycles to cure the adhesive and encapsulant materials (Harper 2004). 
These heating cycles typically take between several minutes and several hours and 
represent a clear bottleneck in the production of microelectronic assemblies (Morris et 
al. 2009). 

Numerous approaches for the reduction of curing cycle times exist. Microwave heating, 
in particular, has a high potential for dramatically increasing the curing rates of the 
adhesives applied in electronic packaging (Wei et al. 2000; Tilford et al. 2008d). 

The bonding process in electronics packaging is typically implemented by a number of 
separate stations (Lee et al. 2012), where each station carries out one part of the process 
chain. While this approach is efficient for a batch production, a number of drawbacks 
become apparent for production at lower volumes (Lau 2010; Lee et al. 2012; Lotter 
2013). 

- Space is required for each of the stations, typically in a cleanroom. 
- Investment in multiple, dedicated machines is required. 
- Multiple machines need to be operated and maintained. 
- The total efficiency of the process chain is significantly impaired by a number of 

manual handling steps. 

In order to benefit from the full potential that adhesives provide in electronic packaging, 
particularly in advanced packaging solutions, these aforementioned drawbacks need to 
be addressed. A novel method for the assembly of electronic packages and MEMS is 
required, one that improves the overall performance and efficiency of the assembly 
process. 

1.2 Aim and structure of this work 

The aim of this work is to develop a novel method for the assembly of electronic 
packages and MEMS, specifically designed to improve the performance and efficiency 
of the assembly process for low- to medium-volume applications. 

First, the initial situation is described and the problem is narrowed from electronic 
packaging in general down to the assembly process (Chapter 2). Next, the boundary 
conditions for the assembly process are analysed and a set of requirements is derived 
(Chapter 3). Then, based on the requirements, a review is made to determine whether 
the existing state-of-the-art technologies can meet these requirements (Chapter 4). A 
novel solution is then conceptually designed, with its different subdomains (Chapter 5). 
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Based on this concept, the prototype system is developed, realized and described in 
detail (Chapter 6). The proposed method is then experimentally validated in Chapter 7 
before a summary and future outlook is provided in Chapter 8. 

Figure 1 – Structure of this work 

Chapter 2 Initial Situation

Chapter 3 Analysis and Derivation of Requirements

Chapter 4 State-of-the-Art

Chapter 5 Conception of the Solution Approach

Chapter 6 Design and Set-up of Prototype System

Chapter 7 Experimental Validation

Aim: Novel method for the assembly of electronic
packages and MEMS with increased performance and
efficiency for low to medium volumes

Chapter 1 Introduction



4 

2 

2.

2.

El
for
ma
cir
of 
ma

Th
op
Be
ph
the
de
(B

Th
Th
ch
pa

.1 

1.1

ect
rm 
ani
rcu
f el
anu

he i
ptim
esid
hysi
erm

evel
Blac

he d
he e
hip 
acka

I

T

1 E

tron
el

fol
uitry
lect
ufac

issu
miza
des
ical

mal 
lop
ckw

disc
elec
or 

age

In

Te

Ele

nic 
lect
d, 
y, th
tric
ctur

ues
atio

th
l o

an
pme
well

cipl
ctro

m
es, 

iti

rm

ect

pa
tron
pri
he 
cal 
rab

s ce
on o
he 
opti
nd 
ent,
l 20

line
oni

mult
wh

al

min

tron

ack
nic 
nci
dis
po

ble 

entr
of p
ma

imi
ele

, as
002

Fi

e o
ic p
ti-c
hich

 S

no

nic

kagi
sy

ipal
ssip
owe
and

ral 
pac
anu
zat
ectr
s w
2; U

igu

f el
pack
chip
h a

Situ

log

c p

ing 
yste
lly 

pati
er. 
d se

to 
cka
ufac
tion
rica
ell 

Ulri

ure 2

lect
kag
p m
are 

ua

gy

ac

pr
ems

co
on 
Fu

erv

ele
age 
ctur
n o
al 
as 

ich 

2 –

tron
ging
mod

ty

ati

y 

ka

rov
s. T

omp
of 

urth
ice

ectr
and

ring
of t
ana
a m
et 

– El

nic
g b
dule
ypic

on

gin

vide
The
pris
hea

herm
eabl

ron
d in
g o
the 
alys
mul
al. 

lect

 pa
begi
es. 
call

n 

ng 

es h
e f
sing
at, 
mo
le (

nic 
nter
of t

pa
sis 
ltitu
20

tron

acka
ins

Th
ly 

hou
func
g th
the

ore, 
(Tu

pac
rco
the
ack

an
ude
06;

nic 

agi
 wi
hes
PC

usin
ctio
he 
e di

th
umm

cka
onn
e p
kage
nd 
e of
; Li

pa

ing 
ith 
se 

CBs

ng 
ons
phy

istri
he 
mal

agin
nect

ack
es 
op
f di
iu 2

acka

ext
the
mo

s o

an
s th
ysi
ibu
ele

la e

ng
tion
kag
are

ptim
iffe
201

agin

ten
e w
odu
r c

nd i
hat 
cal

utio
ectr
et al

ass
n re
ges 
e c

miza
eren
12).

ng

nds 
wafe
ules
card

inte
ele

l su
on o
ron
l. 1

sem
elia

th
carr
atio
nt t
. 

hie

ov
fer, 
s ar
ds. 

erco
ectr
upp
of e
nic 

99

mbli
abili
hem
ried
on 
test

erar

er s
wh
re 
Se

onn
ron

port
elec

pa
7; H

ies 
ity,

msel
d o
of 

ting

rch

sev
hich
the

eco

nec
nic 
t an
ctric
acka
Har

an
, pe
lves

out. 
de

g pr

hy (

vera
h is
en 
ond

ctio
pa

nd 
cal 
agi
rpe

nd t
erfo
s, 

Th
esig
roto

Lau

al le
s th
mo

d-lev

on o
acka
pro
sig
ng 

er 2

thei
orm
ext
his
gns
oco

u e

eve
hen
oun
vel

of 
agi
otec
gna

m
2004

ir m
man
tens
 co

s, m
ols 

t al

els, 
n bu
nted
l pa

int
ing
ctio

als a
must

4).

man
nce,
siv
om
mat
and

l. 2

as 
uilt 
d o
ack

tegr
m

on 
and
t b

nuf
, co
e a

mpri
teri
d d

003

sho
up

on 
kag

rate
must

of 
d th
be 

fact
ost 
acti
ses
ial 
desi

3)

ow
p to

to 
ges 

ed 
t p
the

he d
app

turi
and
ivit
s m
an

ign 

wn in
o ei

se
ca

cir
prov
e e
dist
pro

ing
d th
ties

mec
naly

gu

n F
ithe
econ
an 

rcui
vide
lec
trib
opri

g ar
he y
s in
chan
ysis
uide

Figu
er s
nd-
the

its 
e a
tric
utio
iate

re t
yiel
n t
nic
s an
elin

ure 
sing
-lev
en 

to 
are 
cal 
on 
ely 

the 
ld. 
the 
al, 
nd 

nes 

2. 
gle 
vel 
be 



5 

integrated into superordinate assemblies, which are often referred to as motherboards 
(Blackwell 2002; Lau et al. 2003). 

2.1.2 Micro assembly 

According to VDI Guideline 2860 (VDI 2860), assembly is a subfunction of 
manufacturing. The starting point of assembly is parts, which are manufactured in 
different locations with different manufacturing processes. The task of assembly is to 
create a product based on these parts that is of higher complexity with a defined 
function in a set time frame. Sub-operations of assembly processes include joining, 
handling, inspection, adjustment and special operations (VDI 2860). 

Micro assembly differs from conventional assembly in the dimensions of the handled 
parts and the requirements regarding the precision of the assembly process. Greitmann 
proposes a classification and specifies part dimensions of less than 2 mm with assembly 
accuracy of less than 25 µm for micro-precision assembly (Greitmann 1998). Van 
Brussel et al. refer to part dimensions of less than 1 mm (van Brussel et al. 2000). Popa 
and Stephanou define micro assembly as having part dimensions of less than 1 mm and 
assembly accuracy of less than 25 µm (Popa et al. 2004). They additionally propose the 
term meso assembly, situated between micro and macro assembly, which roughly 
corresponds to the classification by Greitmann (Popa et al. 2004). 

2.1.3 Surface-mount technology 

Surface-mount technology (SMT) is a method for the production of electronic circuits. 
The technology is based on a standardized component design of surface-mount devices 
(Prasad 2013). It provides similar dimensions or pitches thereof, that are independent of 
the function of the component (Prasad 2013). The attachment, using solder or 
conductive adhesive, typically also provides the electrical interconnect between the 
component and the circuit board (Lotter 2013). 

The introduction of SMT led to significantly increased packaging densities and allowed 
a higher degree of automation in the assembly process, with less parasitic inductance 
and capacitance. Additionally, the cost and size of electronic assemblies were 
drastically reduced. The main drawbacks of SMT are poor manual solderability 
(compared to through-hole technology) and complicated rework and reliability issues 
due to mechanical and thermal stresses (Tummala et al. 1997; Blackwell 2002). 
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2.2 Trends in electronic packaging 

2.2.1 Miniaturization and functional integration 

In recent decades, an ongoing trend towards miniaturization with concurrent functional 
integration has been observed (Hesselbach et al. 2002; Raatz et al. 2012). This trend has 
affected different domains and fields of application, such as optics, medical technology, 
biotechnology, communication technology and aerospace technology (Dohda et al. 
2004). As all these branches use electronic components extensively, there is a 
permanent drive to create smaller electronics with increased functionality. 

The approach taken to achieve smaller, more-integrated electronic components has 
changed dramatically over the past few decades (Szendiuch 2011). Previously, 
integrated circuit (IC) design was performed separately from the package design. The 
IC was designed first and then a suitable (standard) package was selected (Szendiuch 
2011). As the degree of integration increased and miniaturization progressed, the 
requirements evolved. The number of interconnects on a package increased 
dramatically, alongside the performance requirements. This led to the development of 
individual packages for complex ICs. This complexity also led to a concurrent design of 
IC and package. The packages became more complex and more diversified towards 
their application (Karnezos 2004; Miettinen et al. 2004; Lim 2005). 

In the early years of ICs, development was mainly characterized by a reduction in 
feature sizes on the IC itself. A doubling of the functions per chip could be achieved 
every two years, as predicted by Moore, mainly through the miniaturization of 
structures on silicon. When the doubling of functions per chip could not be kept up by 
structuring methods, alternative ways were sought to keep up with the predictions 
(Peercy 2000; IRDS 2016). Consequently, novel advanced packaging methods were 
introduced. Figure 3 shows an overview of these ongoing trends. 

Microprocessors, memories and different logic devices can be produced with CMOS 
technologies. To achieve higher packaging densities, these functions can be combined 
on one die. This approach is generally referred to as system on chip (SoC). An 
alternative is the combination of several chips and other electrical components with 
different functions into one package. This approach is referred to as system in package 
(SiP). A combination of both approaches is also possible, which is called heterogeneous 
integration (Wolter 2012). 

The main driver for SoC solutions is to overcome limitations imposed by the baseline of 
CMOS processes and to achieve higher packaging densities at the board level. This can 
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elements on top of each other and utilizes vertical interconnects between the elements 
(Beyne 2006; Xie et al. 2010; Wolter 2012). 

By application of 3D integration technologies, the size of electronic systems can be 
significantly reduced and higher volumetric packaging densities can be achieved. In a 
3D assembly, the interconnects are potentially much shorter than in a 2D configuration, 
allowing for a higher operating speed and lower power consumption. This eventually 
enables the development of microelectronic systems that are smaller, require less power 
and provide a higher performance in comparison to conventional microelectronic 
packaging technologies (Beyne 2006). 

According to Wolter, numerous technologies for 3D integration are in use to build up 
electronic systems with higher functionality per unit volume, reduced total package 
volume, lower electrical parasitics of interconnects, higher density of interchip 
interconnects and lower high-volume production costs (Wolter 2012). There are several 
3D packaging technologies in use: package on package technologies; 3D packaging; 
and wafer-level 3D integration. Schematic illustrations of the three different packaging 
concepts are shown in Figure 4 (Beica et al. 2014). 

Figure 4 – 3D packaging and package on package technologies (Wolter 2012) 

Package on package technologies (Figure 4 left) make use of specially designed 
packages, typically ball grid arrays (BGAs), which are mounted on top of each other. 
These stacks are then mounted on a printed circuit board (Dreiza et al. 2007). 

3D packaging is a package-level method of 3D integration (Figure 4 centre). Bare dies 
are stacked and interconnected using wire bonding and flip-chip connections within a 
single package (Szendiuch 2011). Package-level integration is used for the integration 
of different types of dies into one package, i.e. heterogeneous integration. 

3D integration at the wafer level (Figure 4 right) is done by aligning and subsequently 
bonding two or more wafers. These stacks are then singulated into 3D ICs. The vertical 
interconnection is realized by through-silicon vias. Wafer-to-wafer integration is 
primarily used for homogeneous integration, e.g. for memory die stacks. 

IC Substrate
IC SubstrateIC Stack

3D Packaging Package on Package Wafer-Level 3D Integration

Substrate
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The packaging of MEMS shall, as for the packaging of microelectronics, provide 
mechanical support, protection from the environment and an electrical connection to 
other system components. As MEMS attach additional functionality to electrical 
functions, additional requirements are imposed on the packaging of the micro system. 
For example, a MEMS chip may need to have fluidic connections, or to have open 
cavities for sensors or actuators to exert their functions. These additional requirements 
are subsequently imposed onto the packaging processes. 

The microscopic structures on MEMS comprise different moving or non-moving 
features, which are susceptible to external influences. MEMS are therefore sensitive to 
shock, vibration and temperature. The stresses induced by external influences quickly 
lead to microscopic damage, which in turn leads to an impaired function or to total 
malfunction of the component. The microscopic dimensions of the structures increase 
the susceptibility to damage dramatically. In turn, potentially detrimental influences 
imposed onto MEMS must be controlled, reduced or ideally eliminated during the 
handling and joining of the component (Cohn et al. 1998; Bajenescu et al. 2012; Huang 
et al. 2012; Hu et al. 2014). 

2.2.4 Mass to individual low-volume production 

Currently, the advanced packaging market is dominated by computer and consumer 
electronics applications (Figure 6). These are high-volume applications, as the products 
are manufactured in numbers of millions of pieces per year. More specialized 
applications, which are produced in significantly lower volumes, include automotive 
and medical applications (Beica 2015). 
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Correspondingly, potential areas for the economization of electronics packaging 
equipment regarding investment cost and process efficiency for lower volumes need to 
be identified. Technical solutions are required in order to exploit this potential. 

2.3 Technologies for advanced packaging 

2.3.1 Flip chip 

Wire bonding requires the interconnects to be placed in the area around the die. This 
limits the packaging density significantly as a considerable area around the die is used 
for the interconnects. Additionally, the wire density is limited and the necessary 
minimum spacing between wires must be respected. 

Flip chip is based on the idea of using the whole area under the chip – not just around 
the chip. To achieve this, the active side of the die is “flipped” to have a direct path 
between the substrate, a PCB or a package. Compared to wire bonding, the electrical 
path between die and substrate is reduced significantly and a much higher number of 
interconnects per unit area can be realized. 

The flip-chip mode of die attach is a combined way of realizing an electrical and a 
mechanical interconnection between a semiconductor die and a carrier substrate (Ulrich 
et al. 2006). In principle, this involves connecting metallic contacts on the die to a 
corresponding set of pads on the substrate using an array of solder balls (also called 
solder bumps, or simply, bumps) or dots of electrically conductive adhesive (ECA). The 
chip is placed face down on a carrier that has a corresponding set of metallized pads. 
Heat is then applied, causing the solder to reflow onto the substrate pads or the ECA to 
cure. A schematic illustration of a flip-chip assembly is shown in Figure 7. 

 

Figure 7 – Flip-chip assembly 

Compared with wire bonding, flip-chip assemblies require substantially less space. 
Additionally, flip chip has lower interconnect dimensions, which gives them better 
electrical performance, reproducible electrical connection characteristics and less 

Printed Circuit Board
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is significantly impaired. A calculation for the example of a flip-chip-on-board process 
is presented in Appendix I. 

This problem is typically circumvented by the massive parallelization and curing of 
large batches. However, these possibilities are only available if the produced volumes 
are high and a processing of large batches is possible. 

For production scenarios with lower volumes and a higher flexibility, parallelization 
and large batches are not necessarily possible. In these cases, the throughput is 
massively impaired by the curing processes. 

Curing processes are the main bottleneck of the flip-chip assembly process and often 
prevent the production from being implemented as an in-line process. More efficient 
assembly processes with higher performance are required; they must address the 
bottleneck of curing cycle times. 

The next step to realize the research aim is to analyse the domain of electronic 
packaging and to derive detailed requirements to address the identified shortcomings. 
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3 Analysis and Derivation of Requirements 

3.1 Surface-mount devices 

According to Harper, there are four fundamental packaging technologies: moulded 
plastic technology; pressed ceramic (glass-sealed refractory) technology; co-fired 
laminated ceramic technology; and laminated plastic technology (Harper 2004). 

Moulded plastic technology uses a lead frame – the support paddle – to mount the chip. 
The lead frame also provides the electrical fan-out path from the fingers to the outside 
leads. In post-moulded plastic technology, thermosetting epoxy resin is moulded around 
the lead frame chip sub-assembly after the chip has been wire bonded to the lead frame. 
In pre-moulded plastic technology, the epoxy resin is moulded around the lead frame 
before the chip is mounted (Parker et al. 1979; Blackwell 2002; Harper 2004). 

Pressed ceramic technology packages are used mainly for economically encapsulating 
ICs requiring hermetic sealing. Glass is an effective material for achieving a hermetic 
seal for high-reliability applications. Typically, a lead frame carrying the chip is 
packaged using a ceramic base and a ceramic cap (Ghosal et al. 2001; Harper 2004; 
Bechtold 2009). 

Co-fired laminated ceramic technology is the most reliable packaging technology 
available. Several ceramic sheets are sintered together in order to obtain a monolithic 
sintered body. The chip is then mounted onto this body. Wires are then bonded, before 
the chip is encapsulated and sealed (Gongora-Rubio et al. 2001; Imanaka 2005). 

In laminated plastic technology, bare chips are mounted directly onto an organic 
substrate. After wire bonding, the chip is encapsulated and code-marked. If applicable, 
the package is then mounted onto the superior-level circuit board (Harper 2004; 
Bechtold 2009). 

3.1.1 Chip-to-package interconnection 

There are four chip-to-package interconnection options in use today (Blackwell 2002; 
Harper 2004): wire bond; flip chip; beam lead; and tape automated bonding. 

For wire-bonded packages, the chip interconnection process generally consists of two 
steps. In the first step, the back of the chip is mechanically attached to an appropriate 
mounting surface, for example, the lead-frame paddle or the die-attach area of a 
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laminated ceramic or plastic substrate. This attachment sometimes enables electrical 
connections to be made to the backside of the chip. Three types of chip attachments are 
in use today: metal alloy bonding (AuSi eutectic, AuSn eutectic, and soft solders); 
organic adhesives (epoxies and polyimides); and inorganic adhesives (silver-filled 
glasses). In the second step, the bond pads on the circuit side of the chip are electrically 
interconnected to the package by wire bonding (Blackwell 2002; Harper 2004; Harman 
2010). 

The other interconnection options generally are done as one-step processes, where 
mechanical and electrical connections are provided by the same feature. The most 
popular interconnection process in general use is thermosonic ball-wedge bonding, a 
wire-bonding process (Blackwell 2002; Harper 2004). 

3.1.2 Chip attachment 

A comprehensive description of chip attachment has been provided by Harper (Harper 
2004). 

The major options for a die-attach process include metal alloys, organic adhesives 
(epoxies), and inorganic adhesives (silver-filled glasses). The eutectic die-attach process 
for ceramic packages is essentially contamination-free, has excellent shear strength, has 
high thermal conductivity across interfaces, and assures low moisture in package 
cavities. The major disadvantages are that the preforms are difficult to handle for high-
speed automation when compared to epoxy die attach. Additionally, due to the high 
process temperatures, the assembly is exposed to significant thermal stresses, which in 
turn may affect the package reliability.  

The organic die-attach process uses an epoxy, which may be electrically and thermally 
conductive or non-conductive. The epoxy has an advantage of being less expensive, 
more flexible, easy to automate, and it can be cured at low temperatures, which 
minimizes thermal stresses in large chips. As a result, epoxy chip-bond adhesives are 
preferred for attaching large chips in both ceramic and plastic packages. 

Silver-filled die-attach epoxy adhesives use silver fillers, typically flakes, to make the 
epoxy between the chip and the substrate electrically conductive. They are also 
thermally conductive, providing a good thermal path between the chip and the rest of 
the package. 

The epoxy die-attach process can be highly automated and accurate, since the epoxy can 
be applied at very high rates to the die-attach area by transfer printing, epoxy writing, or 
syringe dispensing. The chip can also be placed with high-speed pick-and-place tools. 
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Accurate chip placement affects automatic wire bonding by yielding greater consistency 
of wire lengths and improved looping characteristics. In addition, accurate chip 
placement also enhances the pattern-recognition performance and efficiency of the wire 
bonder. 

In general, epoxy chip bonds are as good as or better than their metal counterparts, 
except in the most demanding applications where high temperatures, high current 
through the chip bond, and critical thermal performance are required. 

3.2 Flip-chip assembly 

As depicted in Figure 7, in flip-chip assembly a die is mounted on a substrate. In the 
following two subsections, typical properties of dies and substrates are discussed. 

3.2.1 Die 

Semiconductor components and silicon-based MEMS are typically produced by a series 
of deposition, patterning and etching processes, before the individual dies are separated 
(Menz et al. 2008). If necessary, the wafer is ground to a certain thickness before the 
individual dies are singulated either by sawing or laser cutting. Depending on the 
assembly method, solder bumps may be applied before die preparation (DeHaven et al. 
1994). 

The dimensions of a single die typically range between several hundred micrometres 
and several millimetres. A die has a number of contact pads, which represent its 
electrical interface. Very simple dies, such as diodes, may have just two contact pads 
while complex dies, like processors, often have several hundred contacts, which are 
arranged according to a pre-defined pitch. Typical pitches for modern chips range 
between 35 µm and 90 µm (ASE Group 2012). The contact pads have dimensions 
ranging between roughly 30 µm and 75 µm (ASE Group 2012). 

3.2.2 Substrate 

The substrate provides the necessary conductive paths in order to mount the die and to 
operate it accordingly. Typical substrates for flip-chip assembly are circuit boards or 
packages. 

The assembly on a circuit board is referred to as chip-on-board (COB). This method 
allows the realization of higher packaging densities on the board (Lau 1994). Direct 
attachment without a package has electrical and thermal advantages, as well as 
economic benefits for high production volumes (Lau 1994). 
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There are numerous packages in different variants and designs that apply flip-chip 
assembly, such as ball grid arrays or pin grid arrays. There are also complex packages 
with numerous dies such as system on chip packages that apply flip-chip bonding. The 
packages provide a protective function, but also facilitate the handling and assembly of 
integrated circuits and MEMS (Blackwell 2002). 

The substrate must provide the contact pad arrangement analogue to the applied die. 
The size, construction and uniformity of the contact pads are key to forming consistent, 
reliable and reworkable interconnections, with the required electrical and mechanical 
properties (DeHaven et al. 1994). The substrate must – like all components of the 
assembly – withstand the thermal processes during the assembly and, of course, during 
operation of the assembly (Tummala et al. 1997). 

Electrical circuits around the board need to be designed and manufactured according to 
several design rules. These include limits for the width of electrical circuits, minimum 
distances between conductors and electrical properties of the materials. Comprehensive 
guidelines for the design and realization of reliable electronic packages can be found in 
the literature (Blackwell 2002; Harper 2004; Ulrich et al. 2006; ASE Group 2012). 
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3.3.2 Contacting 

The contacts in flip-chip assemblies combine two separate functions: an electrical 
contact between the die and substrate is established; and a mechanical junction between 
the die and substrate is provided. 

The electrical interconnection needs to fulfil several requirements. It needs to provide 
the specified electrical properties reliably and in a reproducible manner, and in needs to 
reduce possible parasitic effects. The resistance of the contacts must, therefore, be 
minimized. Loop inductance effects are also to be reduced. Both are significantly 
influenced by the dimensions and the material properties of the interconnection 
(Tummala et al. 1997). The probability of short circuits, and electromagnetic radiation 
effects needs to be minimized as well (DeHaven et al. 1994). These effects are mainly 
influenced by the distances between the interconnections, which are to be maximized. In 
addition, capacitances may exhibit unwanted effects and should therefore be minimized 
(Tummala et al. 1997). 

The interconnection also performs the function of mechanically connecting the die with 
the substrate. This mechanical connection needs to provide the required strength to 
withstand different stresses induced by temperatures, forces, pressure, vibration and 
shock (Powell et al. 1993; Tummala et al. 1997; Blackwell 2002). It needs to withstand 
these influences during assembly and during the operation of the functional assembly. 

The die, the mechanical junction and the substrate materials have different thermal 
expansion coefficients. Therefore, when the assembly is heated up, the unbalanced 
expansion of the materials leads to stresses within the assembly (Powell et al. 1993). 
These effects are to be reduced by choice of appropriate materials with balanced 
thermal coefficients and by adjusting the dimensions and materials of the junction so 
that it can withstand the thermal stresses. 

To summarize, a contacting method providing reliable electrical and mechanical 
interconnection between die and substrate is required. Potential detrimental effects are 
to be reduced or, if possible, eliminated intrinsically by the method. 

3.3.3 Placement 

In the placement process, the die is picked up from a supply position and placed onto 
the substrate. The placement is performed in a way that accurately places all contact 
pads on the die over their counterparts on the substrate. 

The required placement accuracy mainly depends on the size of the bond pads, the 
distance between each bond pad (i.e. the pitch) and the interconnection method applied. 
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The smaller the dimensions of the relevant structures, the higher the requirements on the 
placement system. 

A guideline stated by Blackwell says that a deviation of ¼ of the bond pad diameter, 
paired with a maximum rotation of the die of 1°, is acceptable (Blackwell 2002). Thus, 
for a bond pad with a diameter of 80 µm, a deviation of 20 µm would be acceptable. 
However, this relates specifically to solder processes, which show, for large pad sizes, 
self-alignment characteristics of the die when the solder is melted (DeHaven et al. 
1994). For methods which do not exploit self-alignment effects, the requirements on 
placement accuracy increase significantly (Folmar 2000). However, the exact accuracy 
requirements have to be set individually for each application, taking the dimensions and 
joining method into account. Eventually a trade-off between the precision (and thereby 
quality), the throughput, and economic aspects must be found for each individual case 
(Negrea 2011). 

3.3.4 Underfill 

The combined electrical and mechanical connection using the die contacts provides a 
much smaller contact area compared to conventional die-attach processes; the resilience 
of the mechanical connection is, therefore, significantly lower (Lau et al. 1997). The 
reduced contact area also leads to thermal management problems, as the heat flow 
capacity is significantly lower through the contact pads (Lau 1996). 

In order to improve the mechanical stability and to increase the heat flow capacity, a 
supporting material is typically applied between substrate and die. The material is 
generally referred to as underfill. Underfill materials are typically two phase 
composites, consisting of a thermoset polymer and some filling materials (Qu et al. 
1998). While the thermosetting polymer establishes an adhesive bond, the filling 
materials are used to reduce the thermal expansion coefficient (CTE) of the underfill 
material and to improve the material flow (Gilleo 1998; Blackwell 2002). The thermal 
expansion of the underfill should be as close as possible to the thermal expansion 
characteristics of the solder or conductive adhesive joint (Gilleo 1998). 

By application of underfill, the long-term reliability of flip-chip assemblies can be 
shown to be significantly improved, for both solder bumps (Palaniappan et al. 1999) and 
isotropically conductive adhesive bumps (Rösner et al. 1996). When using 
anisotropically conductive adhesives, the material provides electrical contact as well as 
sufficient mechanical stability (Liu et al. 1999). 

There are several requirements imposed on the material and on the application process 
(Gopalakrishnan et al. 1998). The underfill material must be sufficiently viscous and 
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hydrophilic so as to fully fill the volume between chip and substrate. Voids would 
impair the reliability of the chip and must therefore be avoided. The dispensed volume 
is crucial in order to obtain a reliable assembly and must therefore be determined to 
form an ideal fillet. Excessive or deficient fillets lead to a decrease in reliability (Huang 
1996). The properties of the filler particles, particularly their dimensions, have a strong 
influence on the flow characteristics and must therefore be taken into account. The CTE 
of the underfill should be close to that of the contact material. 

3.3.5 Encapsulant 

Adverse environments, contaminants, handling processes, storage, and assembly 
processes may have detrimental effects on the function of the semiconductor assembly. 
Encapsulants are used to protect the assembly with its fragile surfaces and features. The 
encapsulation processes must be tailored to the specific configuration and so the 
material properties must be chosen to provide a viscosity that is matched to the 
application. Voids are to be obviated, as these might affect the reliability. The material 
properties, such as elastic modulus, thermal properties, and electrical (insulating) 
properties are to be taken into account when an encapsulation material is selected 
(Tummala et al. 1997; Blackwell 2002; Harper 2004). 

There are two typical ways to apply encapsulants: transfer moulding and dispensing 
methods. In the transfer moulding process, a preform of a resin material is preheated 
and then pressed under application of heat into a form. The resin melts and surrounds 
the semiconductor assemblies in the form. When the resin cools down and solidifies, the 
semiconductor assemblies are encapsulated (Harper 2004). 

There are three typical dispensing methods: glob top; dam and fill; and cavity fill. 
Illustrations of the three methods are shown in Figure 11. Glob-top dispensing is a 
comparably simple process, in which a glob of encapsulant is dispensed on the chip and 
its interconnections. The material then flows over and around the device. The dam-and-
fill method is performed by first dispensing a defining dam around the assembly. The 
cavity inside the dam is then filled with encapsulant material. This method is typically 
used where the height of the encapsulation is critical. For the cavity method, the 
assembly is performed within a pre-manufactured cavity, which is filled with a portion 
of encapsulant. This method is often used for pre-produced packages, particularly BGA 
packages (Tummala et al. 1997; Blackwell 2002; Harper 2004). 
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is established by the filler particles (Liu et al. 1998; Morris 2011). Due to this 
conducting mechanism provided by distributed metallic content, the specific 
conductivity is generally lower than that of a solid metal conductor (Kim et al. 1993). 
The presence of the polymer material affects the contact resistance as it partially isolates 
the particles from the contact area (Liu et al. 1998). However, by application of pressure 
onto the joint before curing, the contact resistance can be significantly decreased (Li et 
al. 1997). Typical applications for ICAs are die attach, solder replacement for the 
attachment of surface-mount device (SMD) components, flip-chip interconnections, the 
filling of vias on PCB boards and through-silicon-via applications (Harper 2004; 
Gomatam et al. 2008; Morris 2011). 

Anisotropic conductive adhesives (ACAs) are also polymer materials filled with 
metallic particles. However, the ratio of the filler content to polymer material ranges 
only between 5% and 10% (Morris et al. 2007). The filling content is therefore below 
the percolation threshold and the material is not electrically conductive. To achieve a 
local electrical conduction in a flip-chip assembly, a film of ACA is applied onto a 
substrate, covering the bond pads. Next, the die is positioned over the bond pads and 
pressed against the substrate. In this way, conducting particles are trapped in an 
increased concentration between the bond pads of the substrate and the die, providing a 
local electrical interconnection. The rest of the ACA remains non-conductive. In this 
state, heat is applied, using, for example, a thermode, in order to cure the adhesive. The 
key to obtaining a good electrical contact is achieving sufficient deformation of the 
particles in the joint (without damaging any of the components) (Fu et al. 2000). In this 
way, good electrical and mechanical performance can be achieved. In flip-chip 
assemblies, ACA joints can achieve comparable electrical properties to solder joints, 
especially for fine-pitch applications. In addition, the assembly process becomes 
simpler, as ACA enables the combined functions of electrical contact material and 
underfill. ACAs are typically used for the assembly of LCD screens and for fine-pitch 
flip-chip assemblies (Kristiansen et al. 1998; Liu et al. 1998; Liu et al. 1999). 

3.3.7 Curing 

The curing of thermosetting polymers is a complex process involving the interaction of 
chemical kinetics and changing physical properties (Enns et al. 1983). During the curing 
process, two main phenomena can be observed: gelation; and vitrification (Enns et al. 
1983; Karkanas et al. 2000). While gelation corresponds to the incipient formation of a 
network of cross-linked polymer molecules, vitrification is the transformation from a 
liquid or rubbery state into a glassy state as a result of increased molecular weight (Enns 
et al. 1983). The relationship between time, temperature and material transformation is 



 

of
U

A
th
vi
rh
ex
al
a 

ften
Urba

A ge
herm
itrif
heo
xpl
l. 1
pro

n d
ania

ene
mo
fica

olog
oite
994
ofil

desc
ak 

eral
sett
atio
gy, 
ed 
4). 
le o

crib
et a

F

lize
ting
on 
rea
dur
Pra

of te

bed
al. 2

igu

ed i
g 
con

acti
ring
acti
emp

d us
200

ure 

isot
sys
ntro
ion 
g cu
ical
per

sing
07)

13 

the
stem
ol 
rat
ure
lly 
ratu

g a
. 

– G

erm
m 
pra
te, 
e to
all 

ure 

a tim

Gen

mal 
is 

acti
den

o op
pro
ov

me–

ner

tim
sh

ical
nsit
ptim
ope
er t

–te

raliz

me–
how
lly 
ty, 
miz
erti
tim

mp

zed

–tem
wn 

all
dim

ze th
ies 

me.

pera

d TT

mpe
in

l p
men
he 
can

atur

TT

erat
F

prop
nsio
pro

n be

re–

 cu

tur
igu
pert
ona
oce
e co

–tra

ure 

e–t
ure 
ties

al st
essin
ont

ansf

dia

tran
13

s o
tab
ng 
trol

form

agra

nsfo
3. 

of a
bilit

and
lled

mat

am 

orm
Th

a th
ty, 
d fi

d w

tion

(U

mati
he 
her
and

fina
with

n d

Urba

ion
ph

rmo
d in
al m
in a

diag

ania

n (T
heno
ose
nter
mate
a ce

gram

ak 

TTT
om
ttin
rna
eria
erta

m (

et a

T) 
mena
ng 
al st
al p
ain 

(Sim

al. 2

cur
a o
ma

tres
prop

pro

mo

 

200

re d
of 
ater
sses
per
oce

on e

07)

dia
ge

rial
s; th
rties
ess 

et a

 

agra
elat
l, in
hes
s (S
win

al. 

am 
tion
ncl
se c
Sim
ndo

199

fo
n a
ludi
can 
mon
ow 

25

94;

r a
and
ing
be

n et
by

5 

; 

a 
d 
g 
e 
t 
y 



 

26

Th
po
rep
tra
the
co
pro
ho
en
mi
po
(G
the
de

6 

he 
olym
pre
ansi
ere

omp
oce

owe
ndot
igh

olym
Gab
e p

ecom

num
mer
esen
itio
for

plet
ess,
eve
the

ht l
mer
bot
oly
mp

me
r. T
ntat
on t
re a
tely
, h
r, r

erm
lead
rs, 
tt 2
yme
posi

erou
The
tive
tem
able
y, c
eat
req

mic r
d t
as 

200
er w
itio

us 
e he
e D

mpe
e to
crys
t is
quir
rea

to a
the
8). 
will
n (

Fig

inv
eat 
DSC
eratu
o st
stal
s di
res 
acti
an 
ey h
Th

l di
Ga

gur

volv
flo

C c
ure
tore
lliz
issi
ad
on.
in

hap
here
issi
abbo

re 1

ved
ow c
curv
e Tg

e m
e w
ipat

ddit
. A
cre
ppe
efo
ipat
ott 

14 –

d p
can
ve 
g, th
mor
with
ted
ion

A ph
ease
en, 
re, 
te f
20

– T

proc
n be
of 
he 
re h
hin 

d, a
nal 
has
ed 
for
he

furt
08)

Tran

ces
e m
an
hea
hea

a 
as i
en
e c
he

r ex
at i
ther
). 

nsit

ses
mea
n ep
at c
at (G
cur
it i

nerg
chan
at 

xam
is d
r he

tion

s al
asur
pox
cap
Gib
ring
is a
gy t
nge
flo

mple
diss
eat 

ns in

lso
red 
xy p
aci
bbs
g c
an 
to 
e o
ow
e, i
sipa
du

n a

 ha
by

pol
ity 
s et
ycl
exo
rea
f th
(B

in e
ated
urin

a DS

ave
y di
lym
of 
t al
le (
oth
aliz
he 

Blun
epo
d du

ng th

SC

e a
iffe

mer
the
l. 1
(Oz
herm
ze t
hea
nde
oxy
duri
he 

 cu

an i
eren

is 
e po
958

zaw
mic
the 
ated
ell 
y co
ng 
exo

urve

imp
ntia

sh
olym
8). 

wa 
c re

ph
d m
19

omp
cur
oth

e (T

pac
al sc
how
me
Po

197
eac
has
mat
87)
pou
ring

herm

Tho

ct o
can

wn 
er in
olym
71)
ction
e c
eria
). C
und
g o
mic

oma

ont
nnin
in 
ncr
mer
. D
n (
cha
al o
Cro

ds, a
of e
c pr

as 2

o t
ng 
Fig
eas
rs m

Duri
(Oz

ange
or o
oss-
are
pox

roce

 

200

the
cal
gur
ses 
ma
ing
zaw
e a
one
-lin

e ex
xie
ess

05)

 he
lori
re 1
and

ay a
g th
wa 
and 
e o
nkin
xoth
s. I
es 

eat 
ime
14. 
d th
also
he c
197
is 

f it
ng 
her
If h
of o

fl
etry

At
he 
o p
crys
71)
th

ts c
pr

rmic
heat
oxi

ow
y (D
t th
pol

part
stal
). M
here
com
roce
c re
ted 
idat

w o
DSC
he 
lym
iall
lliz
Me
efor
mpo
esse
eac
fur

tion

f t
C). 
gla

mer
ly, 
zatio
ltin
re 
oun
es 
ctio
rthe
n an

the 
A 

ass 
r is 
or 
on 

ng, 
an 

nds 
in 

ons 
er, 
nd 



 

Fi
po
(E

Th
he
te
ep
so

H
lo
te
as
T

W
W
m

igu
oly
Enn

he 
eati
emp
pox
oak

Heat
ow 
emp
sym
ilfo

Whe
With
max

ure 
yme
ns e

po
ing
pera
xy a
k or

ting
ra

pera
mpt
ord 

en t
h pr
imu

15
er a
et a

olym
g, w
atu
adh
r de

g of
ate, 
atu
totic
et 

the 
rog
um

5 sh
adh
al. 1

mer
with
ure 
hesi
efin

f th
co

ure. 
cal
al. 

tem
gres

m vi

how
hesi
198

r m
h r
is 
ive

ned 

he p
orre

W
ly a
20

mp
ssin
sco

F

ws 
ive.
3; L

mat
ram
hel
s. F
co

pol
esp

Whe
app

011)

pera
ng s
osit

Fig

a 
. T
Loo

teri
mp 
ld f
Fur
olin

ym
pon
en 
pro
). 

atur
soli
ty η

gure

qua
Thes
os e

ial 
rat
for 
rthe
ng 

mer 
din
th

ach

re i
idif
ηmax

e 15

alit
se 
et a

is 
te 

tim
er p
of 

exp
ng 
he 
hes 

is r
fica
x (H

5 –

tativ
cur
al. 

ex
Φ,
me 
poss
the

ped
to 
ma
a f

ram
atio
Hsiu

– Cu

ve 
rve
198

xpo
un
pe

sib
e po

dite
th

ajor
full

mpe
on, 
ung

urin

ov
s h
83; 

sed
ntil 
erio
le t
olym

es it
he 
rity
l cu

d u
its 

g et

ng b

verv
hav

Ti

d to
th

od 
tem
me

ts c
low

y o
ure 

up, 
vis

t al

beh

view
ve b
lfor

o a
he 
thold

mpe
er af

curi
w t
of 

of 

the
sco
. 19

hav

w o
bee
rd e

a d
set 
d =

erat
fter

ing
tem
the

f 10

e v
osity
997

viou

of 
n d
et a

defi
po

= t2

ture
r cu

g pr
mpe
e p
00%

visc
y in
7).

ur o

dif
der
al. 2

ined
oin
2 – 
e sp
ure

roce
erat
poly

% (T

osi
ncr

of a

ffer
ive
200

d t
nt o
t1.

pec
. 

ess
ture
ym
Tilf

ity 
reas

a po

rent
ed f
08c

tem
of t
Th
ific

. T
e. T

mer 
ford

η o
ses 

olym

t v
from
c; M

mpe
tem

his 
cati

The 
The
is 

d e

of t
rap

mer

vari
m 

Mor

erat
mpe

is 
ion

cur
e c

c
t al

the 
pid

r ad

abl
dat
rris 

ture
erat
a t
s in

ring
cur
ure
l. 2

po
dly b

dhe

les 
ta f
et 

e p
ture
typi
nclu

g r
ring
ed, 
200

olym
bef

esiv

du
fou
al. 

prof
e T
ica
ude

reac
g r

th
8c;

me
fore

ve 

urin
und 

20

file
T1 i
al c
e a 

ctio
rate
he 
; M

r in
e ap

ng 
in

009)

 co
is 
ure
pre

on s
e in

de
Morr

ncr
ppr

the
n th
). 

om
rea

e sc
e-cu

star
ncr
gre
ris 

eas
rox

e cu
he l

mpri
ache
che
ure

rts a
reas
ee 
et a

ses 
ima

ure
lite

sin
ed.
edu
e th

at a
ses 
of 

al. 

sli
atin

e of
ratu

ng t
 T

ule 
herm

a ve
w

f cu
200

ght
ng t

27

f a
ure

the
This

for
mal

ery
with

ure
09;

tly.
the

7 

 

a 
e 

e 
s 
r 
l 

y 
h 
e 
; 

. 
e 



 

28

W
Be
pro
bu
res
as
Ti

No
los

To
wi
sh
rel
ma
the
Ta
fro
the
pro

8 

With
efor
oce

uild
sidu
sem
lfo

ot d
se b

o il
ind

how
lati
ain
e a
awe
om 
e r
oce

 so
re 
esse
d up
ual

mbl
rd 

dep
betw

F

llus
dow
wn i
ive 

nly 
adh
eep
bo

estr
ess 

olid
sol
es e
p ra
l st
ly. 
et a

pict
we

Figu

stra
ws, 
in F
to 
def
esiv

plen
ond
rict
wi

dific
lidi
exp
apid
tres
Co
al. 2

ed,
en 

ure 

ate 
Hs

Figu
a s
fine
ve 

ngsa
ded 
tion
ndo

cat
ific
ped
dly 
sses
onse
201

 bu
5%

16

the
iun
ure
tart
ed b
bo

ang
co

ns 
ow

tion
atio

dite 
be

s a
equ
11)

ut s
% an

6 – P

e d
ng a
e 16
ting
by 

ond
gsu
mp
imp
, ap

n o
on, 
ge

efor
affe
uen
. 

till
nd 

Pro

diff
and
6, it
g ti
mi
, an

uke 
pon
pos
ppl

f th
th

elat
re th
ect 
tly,

 rel
25%

oce

fere
d P
t al
ime
inim
nd 
et a

nent
sed
ica

he 
hese
ion
hey
the

, th

lev
% o

ssin

ent 
ear
llow
e t0 
mum

de
al. 
ts, m

d by
able

ma
e a
n an
y as
e r

he r

vant
of i

ng 

pr
rson
ws 
for

m a
egra
200
ma
y th
e tem

ater
are 
nd 
sym
reli
resi

t to
its m

dia

roce
n p
the
r a 
and
ada
00)

ay f
he 
mp

rial
pri
vitr

mpt
abi
idua

o th
ma

agra

ess
prop
e de
cer

d m
atio
). F
furt
dif

pera

l, s
ima
rifi
toti
ility
al s

e p
ss d

am 

 va
pos
eter
rtai

max
n e

Furt
ther
ffer
atur

stre
aril
icat
ical
y o
stre

proc
dur

for

aria
se a
rmi
in p
imu
effe
ther
r re
ren
re p

ess 
y t
tion
lly 
of t
esse

cess
ring

r po

able
a pr
ina
poly
um
ects
r re
edu

nt p
pro

in 
ther
n pr
app
the
es a

s is
g a 

oly

es 
roc
tion
ym

m de
s in
equ
uce 
proc
file

th
rm
roc
pro

e ad
are 

s th
cur

yme

an
cess
n o

mer m
egr
nclu

uire
the

ces
es m

e p
ally

cess
oxim
dhe
to 

he m
re c

er a

nd t
sing
of a
ma
ee 
udi
me
e p
s v
may

poly
y in
ses,
mat
esiv
be 

mas
cyc

adhe

to 
g d

appl
teri
of 
ing 
ents
oss

vari
y b

ym
ndu
, re
te th
ve 
mi

ss lo
cle (

esiv

aid
diag
lica
ial.
cur
m

s, su
sibl
iabl
e d

mer 
uce
esid
he 
joi
inim

oss
(Lo

ves

d fi
gram
able
 Th
re, 

mass
uch
le p
les 

deriv

ma
ed. 
dua
ma

int 
miz

s. A
oos

s (H

find
m (
e ti
he a
vis

s lo
h as
pro

an
ved

ater
W

al st
axim

an
zed

An e
 et 

Hsiu

ding
(Hs
ime
actu
sco
oss 
s te
ces

nd t
d. 

rial
hen
tres
mu

nd 
d (T

epo
al. 

ung

g a
siun
e–te
ual
sity
(H

emp
ss w
the

l ca
n th
sses

um s
als

Tilfo

oxy
19

g et

appr
ng 
emp
l pr
y, r

Hsiu
pera
win
e re

an 
he 
s in
stre
o o

ford

y co
983

 

t al

rop
et 
per

roce
resi
ung
atur
ndow
esul

be 
cro

n th
ess 
of 
d et

omp
). 

. 19

pria
al. 

ratu
ess 
idua
g et
re r
ws
ltin

e ob
oss
he m
σm

the
t al

pou

997

ate 
19

ure 
wi
al s
t a
rest
. B

ng p

bse
s-lin
ma

max. 
e w
. 20

und

7) 

pro
997
pro

indo
stre
l. 1
tric

Base
pos

erve
nkin
ateri

Hig
who
008

d m

oce
). A
ofil
ow
ess 
199
ctio
ed o
ssib

ed. 
ng 
ial 
gh 
ole 
8c; 

may 

ess 
As 
les 

w is 
in 

97; 
ons 
on 
ble 



 

A
ty
ha
re
co
cu

Th
of
re
co
re
m
te

Pr
se
D
ba
   
1 H

An o
ypic
ave
eflo
omp
ure 

F

he 
f th
equ
omp
egar

minu
emp

rec
eco

Disp
atch
    

Hen

ove
cal 
e b
ow 
pile
cy

Fig

con
he c
uire
pet
rdin
utes
pera

cisio
onds
pen
h p
     

nkel

ervi
ele
een
sol
ed. 

ycle

gure

nsi
cur
s b
te w
ng 
s to
atu

on 
s, w
sin
pro
    

l Ele

iew
ectr
n c
lder

A 
e. T

e 17

der
ring
etw

with
th

o 2
ures

dis
wh

ng a
oces
     
ectr

w of
ron
cons
r m
po

The 

7 –

red 
g cy
wee
h re
he t
2 ho
s of

spe
hile 
and 
ss. 
    
onic

f th
nic p
sid

mate
oint

po

– Pe

IC
ycl

en 5
eflo
tem
our
f 13

ensi
cu
pic
Th
     
c Pa

e p
pac
ere
eria
t in 
oint

eak

CAs
les 
5 an
ow 
mpe
s a

30–

ing
urin
ck-
he 
    

acka

peak
cka
ed: 
als. 

the
s o

k tem

s ar
ran
nd 
sol

erat
at te
–165

g an
ng 
-and
low
     
agin

k te
agin

IC
Re

e g
f di

mp

re c
nge
8 m
lder
ture
emp
5 °C

nd 
pro
d-p
w t
    

ng M

emp
ng m

CAs
eco
grap
iffe

pera

cure
e be
min
r in
e l
per
C a

pi
oce
plac
thro
     

Mate

per
ma
s; u
mm

ph s
eren

atur

ed 
etw
nute
n te
oad
ratu
and

ck-
esse
ce p
oug
 

eria

ratu
ateri
und
men
sho
nt m

res 

at 
ween
es a

erm
d. 
ures
d re

-and
es r
proc
ghp

als 

ures
ials

derf
nde
ows
mat

and

tem
n 3
at a

ms o
Un
s o
qui

d-p
req
ces

put 

s an
s is
fill 
ed c
s th
teri

d cy
pa

mpe
3 an
a te
of p
nder
f 1
ire 

plac
quir
sses

fo

nd t
s sh

ma
cure
he p
ial c

ycl
ack

erat
nd 
emp
roc
rfil
00–
bet

ce 
re b
s ar

or c

the
how
ater
e cy
pea
cla

le d
agi

ture
30 

pera
cess
ll m
–18
twe

pro
betw
re s
curi

e du
wn 
rial
ycl

ak t
sse

dura
ing

es b
m

atu
s du
mat
85 
een

oce
we

seri
ing

urat
in 
ls;
les 
tem
es a

atio
1 

bet
minu
ure 
ura
teri
°C.
 20

esse
en 
al p

g p

tion
Fig
en
for

mper
are m

on o

twe
utes
of 2

atio
ial 
. E

0 m

es c
a 

pro
roc

n of
gure
ncap
r a t
ratu
ma

of p

een 
s. A
240
n a
cu

nca
minu

can
few

oces
cess

f cu
e 1
psu
tota
ure

arke

pas

10
A ty
0–2
and 
urin
aps
utes

n b
w m
sse
ses 

urin
7. 

ulan
al o

es a
ed i

stes

00 a
ypi
260
ha

ng 
sula
s an

be r
min
s, w

is

ng 
Fou

nt m
of 3
and 
in d

s ap

and
ical
0 °C
ave 
dur

ant 
nd 4

rea
nut
whi
s o

cyc
ur 
mat
39 m
the

diff

ppli

d 16
l re
C. I
sig
rati
ma

4 h

aliz
tes 
ile 
ften

cles
cla
teri
ma
e to
fere

ied 

65 
eflo
ICA
gnif
ion
ater

hour

ed 
an
cur
n c

s fo
asse
ials
ateri
otal
ent 

in 

°C.
ow 
As c
fica

n ra
rial
rs t

in 
nd s
ring
circ

or a
es o
s; a
ials
l le
col

 

ele

. Th
cur
can
ant 
ang
ls a
to c

th
sev
g is
cum

a nu
of m
and
s ha
eng
lou

ectr

he 
ring

n, th
adv

ges 
are 
cure

he 
vera
s ty
mve

umb
mat
d Pb
ave
th o

urs.

roni

du
g p
her
van
fr

cur
e. 

ord
al h
ypic
ente

ber
teri
b-fr
e be
of t

ic 

rati
prof
refo
ntag
om
red

der 
hou
call
ed 

29

r of
ials
free
een
the

ion
file
ore,
ges

m 3
d at

of
urs.
y a
by

9 

f 
s 
e 
n 
e 

n 
e 
, 
s 
 

t 

f 
. 
a 
y 



 

30 

performing a significant number of serial assembly operations before curing the 
processed parts all together in a batch. In all cases, there is a significant mismatch 
between the cycle times of assembly and curing operations, which affects the 
effectiveness of the assembly machines. Any reduction in curing cycle times would 
have a positive effect on the productivity and the cost-effectiveness of the whole 
process (Dong et al. 2009). 

Pizzagalli et al. describe the cost-effective realization of 3D packaging for lower 
volumes as one of the main challenges in the electronics industry (Pizzagalli et al. 
2014). In this context, one of the key challenges is the development of highly integrated 
machinery with significantly increased throughput at lower volumes (Pizzagalli et al. 
2014). This would significantly reduce the fabrication cost, rendering 3D technologies 
more attractive to the industry (Chen et al. 2010; Beica et al. 2014). 

As curing processes represent the main bottleneck in the process chain, a reduction of 
curing cycle times is identified as a key goal. A typical and standardized process in the 
backend of electronic packaging processes is the reflow process. The duration of reflow 
processes is, on average, significantly lower than typical adhesive curing processes – 
particularly regarding underfill and encapsulant curing processes. If the duration of 
curing processes can be reduced to the duration of reflow processes, then they no longer 
represent a bottleneck. Therefore, a working hypothesis is to reduce curing cycle times 
down to the duration of typical reflow processes according to J-STD-020E (JEDEC 
2015). Reflow processes for lead-free solder, according to J-STD-020E, have an 
average duration of approximately 420 s (JEDEC 2015). Based on this target, a 
requirement can be described: 

Requirement 1 – Reduction of curing cycle times down to the duration of reflow 
processes according to J-STD-020E. 

Curing of thermosetting polymer adhesives is a complex process that affects a number 
of important aspects of processing and the resultant material properties. To ensure that 
the adhesive provides the desired properties, the processing is to be performed within a 
material- and application-specific process window. The process must, therefore, be 
performed according to a defined time–temperature profile, comprising ramp rate for 
curing and, optionally, hold times for pre-cure thermal soak, as well as hold times at 
specific temperatures for curing. While heating up the material, the heat flux is affected 
by exothermic and endothermic reactions. To compensate for these disturbances, control 
of the temperature is required. 
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2005; Pymento et al. 2008). The components may suffer from immediate or accelerated 
mechanical damage, such as popcorning, delamination or cracking (Eveloy et al. 2005). 
Also, the function of the component may be affected partly or completely. For example, 
LEDs are very temperature sensitive and may suffer from optical property degradation 
when exposed to heat (Eveloy et al. 2005). 

In practice, temperature-sensitive components are assembled in a separate step at lower 
temperatures. The assembly of these components is often performed manually, which 
affects yield and the product quality. 

Temperature-sensitive components can, in principle, be spared by not exposing them to 
detrimental temperatures; this can be achieved by cure profiles with sufficiently low 
peak temperatures or by selective heating of the area of interest. As only few materials 
can be cured at lower temperatures, and then often with significant drawbacks, selective 
heating should be further pursued. 

3.3.9 Selective heating 

A flip-chip-on-board assembly is typically performed separately and after conventional 
SMT processes, due to the increased accuracy requirements. In this case, the assembly 
is often exposed to a heating profile for the SMT assembly, and then to several further 
heating profiles for the flip-chip assembly. Each heating process induces thermal 
stresses and accelerates the ageing of the assembly and its components. Therefore, to 
prevent the whole assembly, and specifically process-sensitive components, from 
thermal damage, the thermal load on the assembly must be reduced. 

One approach to thermal load reduction is selective heating. This refers to local and 
confined application of heat to a defined volume. The relevant volumes are heated to 
their processing temperatures, while the surrounding volume is spared. 

Selective heating methods based on laser and infrared processing can effectively reduce 
the thermal load during assembly. This has been demonstrated for electronic packaging 
applications (Moon et al. 2004b; Anguiano et al. 2011; Felix et al. 2012; Ogochukwu 
2014). 

Within Section 3.3.7, a maximum temperature of 260 °C was derived (see Table 1). 
This temperature is detrimental for the previously described temperature-sensitive 
components, and for the assembly in general. Selective heating is therefore indicated as 
a potential solution. 

When selective heating is applied, the heated component itself must be heated according 
to the previously defined temperature profile, as stated in Requirement 1 and 
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The definition of temperature–distance target for selective heating is illustrated in 
Figure 20. Ttarget is the target temperature. Minimum and maximum distances from the 
edge of the processed component are described by dmin and dmax, respectively. Based on 
this target definition, a requirement can be described: 

Requirement 3 – Selective heating with reduction to target temperature within 
clearance area. 

3.3.10 Reliability 

A product can be very sophisticated regarding its design and manufacturing, but 
becomes useless if it fails to provide the designed performance during its expected 
lifetime (Hsu 2006). Reliability can also be described as the probability that a piece of 
equipment operating under specified conditions shall perform satisfactorily for a given 
period of time. Especially for electronic packages or MEMS, reliability is a critical 
requirement. The failure of a single electronic package or MEMS may cause the failure 
of the whole assembly. The failure of an electronic package can be basically rooted to 
three basic failure modes: an electrical short; an electrical open; or an intermittent 
failure that includes an unacceptable change in a given parameter (Singh et al. 2012). 
These failures are triggered or provoked by stress of different kinds, which can occur in 
isolation or in combination. 

In electronic equipment, the most prominent stresses are temperature, voltage, vibration, 
and temperature rise due to current (Singh et al. 2012). These stresses affect all 
components of the package, comprising the die, the interconnections and the substrate. 
Additionally, unforeseen events such as thermal or mechanical shock may lead to an 
immediate failure of the component or may reduce its lifetime significantly. 

The design and manufacturing processes of a microelectronic component must therefore 
also include reliability considerations. To obtain a higher reliability, more development 
effort is necessary. A trade-off between time, cost and quality (reliability) needs to be 
found. The key to (and also the art of) a cost-effective product is to set the reliability 
requirements adequately for the application. 

Temperature cycling tests are conducted to determine the ability of components and 
solder interconnects to withstand mechanical stresses induced by alternating high- and 
low-temperature extremes (JEDEC 2015). Permanent changes in electrical and/or 
physical characteristics can result from these mechanical stresses (JEDEC 2015). 
Among the many environmental accelerated testing methodologies for assessing 
reliability of electronic systems, thermal cycling is the most commonly used test for the 
characterization of devices as well as interconnections (Ghaffarian 2000). 
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A common and widely used standard for temperature cycling tests is JEDEC JESD22-
A104 (JEDEC 2015). However, a variety of further standards for temperature cycling 
exist. Test specifications are often adapted for a specific field of application. For 
example, IPC® and IEC offer a number of standards for commercial components  
(IEC-60749-25, IPC-9701). Specific standards, with significantly higher requirements, 
are available for military applications (Mil-STD-883), as well as standards for space 
applications (e.g. NASA-STD-8739.3, IEC J-12). Temperature cycling tests are usually 
carried out using temperature cycle chambers, which allow temperature control 
according to the set profiles, including ramp rates. 

The impact of a novel manufacturing technology on the reliability of the product, or 
specifically the package in this case, is an important factor for industry acceptance. 
Therefore, packages manufactured with the novel method must provide at least the same 
reliability as established technologies. Based on these findings, a further requirement 
can be derived: 

Requirement 4 – Packages manufactured with the novel process must provide at least 
the same reliability as conventional technologies. 

3.3.11 Process analysis 

Key challenges of equipment manufacturers for advanced packaging lie in the reduction 
of costs and improvement of the process efficiency (Beica et al. 2014). Pizzagalli et al. 
identified the assembly processes and related equipment as important subjects for 
optimization (Pizzagalli et al. 2014). 

A characteristic of economic assembly is the avoidance of any unnecessary movement 
of assembly parts, of persons and of the used appliances (Lotter et al. 2006). The 
concept of primary–secondary analysis is a simple and effective method to assess the 
economic effectiveness of an assembly system and to reveal potentials for optimization 
and rationalization (Lotter 1982; Lotter 1985; Lotter et al. 2006; Lotter 2013). 

Primary processes are all expenditures of time, energy, information, and parts for the 
completion of the assembly, which add value during the assembly process (Lotter 
2013). Secondary processes, on the other hand, are all necessary expenditures of time, 
energy and information, which occur due to the chosen assembly principle and do not 
cause an added value to the product (Lotter 2013). 

A graphic interpretation of primary and secondary effort is possible by drawing the 
efforts as vectors (Lotter 2013). The portions of primary and secondary effort are 
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pointed arrow. This corresponds to an integration of all processes into a single machine. 
With the assumptions made in this case, the efficiency would only be impaired by the 
insertion to the machine, calibration processes and the extraction from the machine. The 
overall process efficiency would be substantially improved if all processes were 
integrated into one single machine (and the efficiency of the value-adding processes is 
not decreased). 

Three different materials are dispensed during the flip-chip assembly process. Each of 
the materials is cured, typically in a thermal process. In most cases, the assembly is 
transferred into a convection oven where it is exposed to a defined temperature profile. 
This means that during the flip-chip assembly process, three handling steps into similar 
or identical equipment are necessary. The integration of a curing device could therefore 
serve for three processes within the process chain and significantly reduce the handling 
effort. In this way, the overall efficiency of the process chain could be improved. 

A further requirement can therefore be derived: 

Requirement 5 – Integration of all process components into a single machine – 
particularly the curing equipment – in order to minimize the product-handling effort 
between the individual processes. 

3.4 Conclusions on requirement analysis 

Analysis of the aforementioned research problem has been performed. The field of 
electronic packaging in general has been analysed, with an emphasis on surface-mount 
devices. The underlying assembly processes were then explored in detail, focussing on 
the materials and their curing behaviour. In the course of the analysis, relevant 
requirements that are central to the research problem have been derived. 

These requirements are additionally compiled and presented in Table 2. 
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Table 2 – List of requirements 

Requirement Description 

1 
Reduction of curing cycle times down to the duration of reflow processes 
according to J-STD-020E 

2 
Controlled heating of the polymer adhesive according to a defined 
temperature profile within an industrially relevant range of process 
parameters 

3 Selective heating with reduction to target temperature within clearance area 

4 
Packages manufactured with the novel process must provide at least the 
same reliability as conventional technologies 

5 
Integration of all process components into a single machine – particularly the 
curing equipment – in order to minimize the product-handling effort 
between the individual processes 
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4 State of the Art 

4.1 Review of curing methods 

While convection heating is the most-used method to expedite and perform adhesive 
curing processes, alternative methods exist and offer distinct advantages. The different 
curing methods and equipment thereof are described in this section. 

4.1.1 Convection heating 

In applied convection heating, the polymer material is surrounded by a gas within an 
oven. This gas is heated to a set temperature and typically circulated within the oven. 
Heat energy is transferred into the bulk of polymer material through thermal 
conduction. The rate of energy absorption is typically described by Newton’s law of 
cooling given by Equation (1) (O’Sullivan 1990): 

ܣ1 ∙ ݐ݀ܳ݀  = ℎ(ܶ − ௔ܶ) (1) 

where  

A heat transfer surface area [m²];  

Q thermal energy [J];  

h heat transfer coefficient [ ୛୫²୏];  

T temperature of the object [K];  

Ta temperature of the fluid surrounding the body [K].  

The rate of energy absorption is therefore proportional to the temperature difference 
between the bulk of the polymer material and the temperature of the surrounding fluid. 
Thus, the temperature curve of the heated material tends asymptotically towards the 
oven temperature. 

The hot gas does not penetrate into the polymer. Therefore, the surface of the material is 
heated primarily, while the bulk of the material is heated gradually by conduction. The 
curing process of thermosetting polymer materials typically takes between several 
minutes and several hours, depending on the material. 
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4.1.2 Infrared heating 

Infrared radiation is a form of electromagnetic energy, which is transmitted in wave 
form, with wavelengths of between 0.78 µm and 1 mm, lying between visible light and 
microwaves (Tipler et al. 2007). Such radiation is provided by an infrared heater or heat 
lamp whose body, with a higher temperature, transfers energy to a body with a lower 
temperature through electromagnetic radiation (Deshmukh 2005). The wavelength at 
which a maximum of radiation occurs, also called the peak wavelength, is determined 
by the temperature of the heater (Tipler et al. 2007). This relationship is described by 
basic laws for black-body radiation (Sakai et al. 1994; Tipler et al. 2007). 

When the infrared radiation hits the surface of the polymer material, a part of it is 
absorbed by the molecules on the surface and is transformed into heat (Serway et al. 
2013). The rest of the polymer volume is then heated by convection from the surface to 
the inside of the material. The penetration depth is strongly dependent on the 
combination of wavelength and material. According to Kirchhoff’s law (Tipler et al. 
2007), the sum of the transmittance t, absorptance a and reflectance r is 1, irrespective 
of wavelength λ as indicated in Equation (2). 

ܽ(λ) + (λ)ݐ + (λ)ݎ = 1 (2) 

Therefore, the penetration depth can be significantly influenced by choosing an 
appropriate combination of infrared wavelength and thermosetting polymer material, 
characterized by a high transmittance relative to absorptance and reflectance. 

The infrared light can be focussed by masks or optics to enable selective heating. 
However, infrared heating is not suitable to directly heat a covered material. For 
example, infrared heating is not suitable to heat the conductive adhesive under the die in 
flip-chip bonding. 

Although strongly dependent on the applied material and the infrared wavelength 
spectrum, in many cases the curing of thermosetting polymer materials can be realized 
significantly faster than with a convection oven. 

Infrared ovens are, as with their convection counterparts, available as batch ovens and 
in-line ovens. Additionally, spot-heating devices are available. These devices allow the 
selective heating of a defined area. The devices are relatively small and light, and can be 
integrated into existing machines. 
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If temperature control is implemented, then the temperature is usually measured directly 
on the surface of the product. This allows heating according to defined temperature 
profiles. 

4.1.3 Ultraviolet light curing 

Ultraviolet (UV) radiation is also a form of electromagnetic energy, which is 
transmitted in a wave form (Tipler et al. 2007). The wavelength is classified above X-
rays and below visible light, with a spectrum lying between 100 nm and 400 nm (Tipler 
et al. 2007). 

For industrial purposes, ultraviolet light is typically generated by special gas UV lamps, 
UV LEDs, UV lasers or Excimer flash lamps. The ultraviolet light is used to cure 
special UV-setting polymer materials. These materials contain resin and photosensitive 
components. 

When exposed to UV light, a polymerization process is initiated and the adhesive is 
cured. This process may just require a single flash or irradiation for up to several 
minutes. The materials are typically transparent or white. They are often used in 
microelectronics packaging for the encapsulation of optical components, such as LEDs, 
and for dental applications. 

UV light curing is a chemical cross-linking process and not a thermosetting process; 
adhesive bonds or encapsulations can therefore be realized without significant heat. As 
a photosensitive component is required, UV curing is a selective process. The process is 
fast, especially compared to convection ovens. The equipment is small and can be easily 
integrated. 

The availability of materials is, however, quite limited, with mostly acrylate-based 
materials for optical purposes available, along with a number of encapsulant materials. 
However, there are only a few UV-curable conductive adhesives available. This 
significantly limits the application for electronics packaging. Furthermore, the polymer 
needs to be optically accessible for the UV light to initiate the curing. Thus, the 
application for flip-chip bonding would be severely restricted. 

Ultraviolet light curing is not to be mistaken with photonic curing (also: photonic 
sintering). In photonic curing, a high-energy flash of UV light is emitted onto an ink 
containing silver nanoparticles. Due to the special properties of the silver nanoparticles, 
the ink is rapidly sintered without thermally stressing the substrate material. 

UV-curing equipment is available for the irradiation of larger areas and for spot 
lighting. While gas-discharge lamps are used for the irradiation of larger areas, smaller 
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packaging, the power can be focussed onto a certain region of a PCB in order to cure a 
polymer material while sparing the rest of the board from the heat stress. 

The electromagnetic fields penetrate a ‘lossy’ non-conductive material typically several 
millimetres and exert dielectric heating throughout the volume of the material. 
Therefore, in contrast to other thermal curing mechanisms, the polymer material is 
heated from the inside, and the dependence on thermal conduction inside the material is 
significantly reduced. This heating mode is also referred to as volumetric heating. 

Polymers cured by microwave heating typically cure significantly faster than 
conventionally cured polymers (Davis et al. 2002; Tilford et al. 2007). This can be 
attributed to the volumetric cure and the increased heating efficiency compared to 
convection heating processes. 

Microwave heating has been applied for curing of practically all types of polymers used 
in microelectronics packaging and has been extensively reported in the literature. 
Microwave heating has been shown to cure ECAs (Hubbard et al. 2010; Hubbard et al. 
2011), underfill materials (Mead et al. 2003; Diop et al. 2015) and encapsulant materials 
(Wei et al. 2000; Hubbard et al. 2006) successfully. 

A microwave batch curing system specifically for microelectronic packaging 
applications has been developed and is already industrially applied (Bible et al. 1992; 
Wei et al. 2000) (Figure 24 left). In order to prevent the assembly from damage by 
arcing and sparking, and to achieve a more uniform heating pattern, the microwave 
source continuously sweeps through a frequency band (Bible et al. 1992). The system 
has been applied for several wafer-level packaging applications, such as curing of 
polyimide coatings (Famsworth et al. 2001; Hubbard et al. 2004), polymer dielectric 
materials (Tanikella et al. 2002; Tanikella et al. 2006; Davis et al. 2007; Davis et al. 
2008b; Raeis-Zadeh et al. 2012), lead-free soldering (Moon et al. 2004b; Moon et al. 
2004a), underfill materials (Mead et al. 2003; Diop et al. 2015) and glob-top 
encapsulants (Wei et al. 2000). Due to the electromagnetic fields, temperature sensor 
signals may be disturbed and so measurement close to or on the substrate is not 
implemented. To overcome the interference problems, an acoustic temperature sensor 
has been proposed (Davis et al. 2002; Davis et al. 2008a; Davis et al. 2008b). 
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heating device, such as an infrared spot heater or a focussed hot airstream (Tummala et 
al. 1997; Harper 2004). 

Another common application of indirect heating is heated stamps. These are used to 
heat up the die and thereby indirectly heat the solder underneath it during die bonding or 
flip-chip assembly operations. Also, packages with solder attachment, such as land grid 
arrays (LGA) or ball grid arrays (BGA) are assembled this way (Tummala et al. 1997; 
Harper 2004; Ulrich et al. 2006). 

While indirect heating is applicable for solder processes, the application for adhesive 
processes is considerably restricted. As the temperature distribution within the material 
is typically non-uniform, a reliable curing process without considerable internal stresses 
is hard to achieve. Additionally, the imbalance between the time required for an 
assembly operation and the curing process is a significant drawback. 

4.1.6 Laser heating 

Laser sources provide a beam of coherent, monochromic light. By focussing these 
beams using optics, energy densities sufficient for material heating, ablation or cutting 
processes can be achieved (Tipler et al. 2007). 

Lasers can be used as selective heating devices. The lasers typically have a wavelength 
in the infrared spectrum. Typical sources for laser heating are CO2 lasers or diode lasers. 
Such lasers may be used for selective melting of solders or for die-attach applications. 
Diode lasers are already available as optional features in die-bonding machines (Smolka 
et al. 2004; Seelert et al. 2012; Chryssolouris 2013; Ogochukwu 2014). 

Lasers require, like UV-curing devices, an optical path to deliver their energy optimally 
(Smolka et al. 2004; Ogochukwu 2014). They can therefore be effectively used for 
optically accessible solder joints. The application for the joining of dies and packages is 
considerably more complex and requires auxiliary tools, but has been demonstrated 
(Teutsch et al. 2004). Laser curing of adhesives has mostly been performed on light-
curing adhesives, but also pre-cure of underfills has been presented (Teutsch et al. 
2004). The performance of full curing cycles of thermosetting polymers has yet to be 
demonstrated. 

4.1.7 Further curing methods 

Induction heating can be used for rapid curing of adhesives, but requires ferromagnetic 
components inside the adhesive to obtain a significant heating rate. Such adhesives are 
currently not commercially available. 
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4.2.2 Semi-automatic assembly machines 

Semi-automatic assembly machines require an operator to load and unload the machine. 
The assembly process can be carried out by either remote control of the machine or by 
executing previously entered assembly programs (Tresky 2016; Finetech 2016). 

As far as productivity is concerned, semi-automatic machines can be classified between 
manual systems and fully automated high-performance systems. The precision, and 
particularly the variance, are superior to manual systems and the throughput is 
significantly higher, though still not economically viable for mass-production processes. 

Curing equipment is typically not integrated into semi-automatic machines; the 
processes are usually performed in separate machines. An example of a semi-automatic 
assembly machine is presented in Figure 26 (left). 

4.2.3 SMT placement machines 

Pick-and-place machines perform serial placement operations of components onto a 
substrate. The components are fed from magazines or reels before being placed onto the 
substrate. The performance of pick-and-place machines ranges between several hundred 
and several thousand placement operations per hour. The achievable accuracy ranges 
between 20 µm and 50 µm (4σ confidence interval, with σ describing the standard 
deviation) (Siemens AG 1999; Höhn 2001; Jacob 2002). 

Chip-shooting machines are high-performance placement machines that are optimized 
for placement performance. Through parallelization of pickup processes and the 
integration of revolver heads, up to 50,000 units per hour can be achieved. The 
increased performance slightly affects the accuracy, which ranges between 50 µm and 
90 µm with a confidence interval of 4σ (Siemens AG 1999; Höhn 2001). 

Soldering and curing processes are not integrated into SMT placement machines. 
Usually the assembly is transported by a conveyor belt to the next machine, e.g. a 
reflow oven. 

SMT placement machines require considerable investment. Due to their high 
performance, these machines are suitable for mass-production processes, i.e. serial 
processing assemblies with a high number of components. 

A picture of an example SMT placement machine is shown in Figure 26 (centre). 
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Regarding microelectronics packaging processes, these systems are particularly well-
suited for glob-top encapsulation. 

For applications with higher requirements on accuracy, robotic dispensing systems are 
used. Here, the dispensing system is positioned by a robot. As the properties of many 
adhesive materials change during pot time, and influences such as temperature, 
humidity and vibration can change the material’s viscosity, numerous measures need to 
be undertaken in order to achieve a precise and repeatable dispensing result. 

Dispensing equipment can be directly integrated into low-volume die-bonding 
machines. This is particularly used for the dispensing of die-attach materials, such as 
ECAs or solder paste. Underfill materials and encapsulants are typically dispensed in 
separate machines. 

4.3 Assessment of the state of the art technologies 

As the review of the existing state-of-the-art technologies shows, there are several 
heating and curing principles in use. There are also numerous types of assembly 
machines, which are designed for different production scenarios. An assessment of 
state-of-the-art assembly equipment is presented in Table 3. 

Rework machines and SMT placement machines are targeted onto second-level 
packaging. Manual, semi-automated and automated assembly machines are, in 
principle, suitable for first- and second-level packaging, including flip chip on board. 
The throughput of rework stations is very low. Medium volumes can be achieved with 
manual and semi-automated machines. Automated machines achieve a high throughput. 
SMT placement machines are optimized for maximum throughput and very high 
volumes. 

All of the reviewed machines provide pick-and-place processes supported by machine 
vision systems. Reflow and SMT machines do not integrate dispensing processes. 
Manual, semi-automated and automated machines can all, in principle, allow the 
implementation of all dispensing processes necessary for the flip-chip process described 
in Section 2.3.1. 

Regarding the curing processes, the situation is different. Reflow soldering is available 
for all reviewed types of machines, except for SMT placement machines. Adhesive 
curing processes are not available, which prevents the implementation of the flip-chip 
process in a single machine. A review of the heating and curing equipment integrated in 
a state-of-the-art assembly system is presented in Table 4. 
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Integration of heating functionality into assembly equipment is typically performed with 
hot plates or heated stamps. Also typical are plane infrared heaters and spot heaters. A 
combination between a hot plate from the bottom and hot-air flow is often used in 
rework stations. Rare, but available, is the heating of the complete process space by 
convection heating. UV heating and laser heating are available as optional features if 
required. Microwave heating is yet to be integrated into microelectronics assembly 
equipment. 
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Table 3 – Process integration in microelectronics assembly equipment 

Machine Type

 

 

Properties Re
w

or
k 

M
ac

hi
ne

 

M
an

ua
l A

ss
em

bl
y 

M
ac

hi
ne

 

Se
m

i-A
ut

om
at

ed
 

As
se

m
bl

y 
M

ac
hi

ne
 

Au
to

m
at

ed
 D

ie
-

Bo
nd

in
g 

M
ac

hi
ne

 

SM
T 

Pl
ac

em
en

t 

M
ac

hi
ne

 

Level of Electronic Packaging    o  
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Second-level packaging (board level)    o  

Flip chip on board      

Throughput (Thoben 1999) Low Medium Medium High High 

Low (10–250 units/day)      

Medium (250–500 units/day)      

High (> 500 units/day)      

Pick & Place Integration      

Pick & place process      

Machine vision      

Dispensing Process Integration      

Solder paste      

Conductive adhesive      

Underfill  Option Option Option  

Encapsulant  Option Option Option  

Cure Process Integration      

Reflow  Option Option   

Conductive adhesive      

Underfill      

Encapsulant      

 – Fulfilled, o – Partly fulfilled,  – Not fulfilled, Option – Optionally available 
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Table 4 – Heating and curing integration in microelectronics assembly equipment 

Curing Equipment 
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Manual Workstations - o     - - o - 

Rework Stations -      - - o - 

Semi-Automated Machines - o     - - o - 

SMT Placement Machines - - - - - - - - - - 

Automated Die-Bonding  
Machines 

o o   o o - - o o 

 – Typical solution, o – Optionally available, - – Not available 

Conv. – Convection, MW – Microwave 

 

4.4 Conclusions on state-of-the-art technology 

Convection heating is still the prevalent method for the curing of polymer adhesives in 
microelectronics packaging. Closed or in-line ovens are typically used for the heating of 
polymer adhesives, although other technologies exist and are commercially available. 
The reviewed alternative technologies provide distinct advantages such as faster curing 
or selective heating. However, the benefits do not outweigh the increase in cost, 
particularly for low-cost applications. Furthermore, there is no solution that combines 
all of the required properties. 

- All regarded thermal curing methods allow the curing to a defined temperature 
profile. The control should be based on the actual part temperature and not the 
temperature of the surrounding gas. 

- By direct infrared heating, microwave, and UV, the curing cycle times can be 
reduced significantly compared to convection heating. 
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- UV and microwave curing offer material-selective curing, while infrared curing 
and convection curing allow focussing of the heat flow to a certain area. 

- All studied curing methods can be applied, as long as the part is functional after 
the assembly process and it provides the necessary reliability according to 
relevant testing standards for the relevant field of application. 

- Therefore, with respect to Requirements 1–4, promising approaches are 
available. In particular, microwave heating has notable beneficial properties. 

In the field of placement machines, all processes required for the implementation of the 
full flip-chip process are available within one machine, except for the adhesive curing 
capability. Intermediate handling steps are therefore necessary for all the systems 
considered. 

- For low- to medium-volume production, equipment with a higher degree of 
integration is available. 

- A positioning accuracy of at least ±5 µm is required. 
- Manual and semi-automated equipment in particular provide dispensing steps 

combined with pick-and-place capabilities. 
- For high-volume production, specialized high-performance equipment is used 

and just one or two functions per machine are carried out. 
- An integration of heating equipment is found in specialized low-volume 

machines, specifically in rework stations, but is currently not suitable for 
adhesive curing processes. 

- The prevalent set-up for both low- and high-volume production is separate pick-
and-place and dispensing equipment with the necessary intermediate handling 
steps. 

A system fulfilling all previously described requirements in a satisfactory way is not 
currently available, as the integrated adhesive curing capabilities are lacking. An 
integration of conventional heating processes would result in very low-performing 
machines, due to the long curing cycle times. A fast curing process integrated into an 
assembly system would provide distinct advantages in this regard and would help to 
overcome the previously identified limitations. 

Therefore, a novel method for the rapid curing of adhesives in microelectronic assembly 
is required, which can be directly integrated into a precision placement machine. 
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5 Conception of a Potential Solution 

5.1 Assessment and selection of curing method 

As described in Section 4.1, different curing methods are already in industrial use and 
several others are potentially applicable, having distinct advantages. Requirement 1 
calls for the reduction of curing times. A comparison of curing cycle times of three 
typical materials applied in electronic packaging is shown in Table 5. 

Table 5 – Cycle duration with different curing methods  
(Garard et al. 2002; Berga et al. 2011) 

Curing Methods 

 

Materials Co
nv

ec
tio

n 

In
di
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V 
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t 

M
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ro
w
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e 

Epotek 353ND (at 120 °C) 300 s 300 s 30 s - 45 s 

Epotek H74 (at 120 °C) 90 min 90 min - - 3 min 

Epotek OG142 (UV cure) - - - 60 s - 

Claimed Reduction of Curing 
Cycle Duration 

0% 0% 90% - 95% 

 

As can be seen in Table 5, infrared, UV light and microwave curing allow drastic 
reductions of curing cycle times, while indirect and convection heating do not provide 
substantial reductions. 

An assessment of selective heating, material penetration and the applicability for flip-
chip packaging is presented in Table 6. 

Selective curing is possible with all the considered processes, except for convection 
heating, which is difficult to confine to a specific area. Microwave curing is a material-
selective process, as different materials have different loss characteristics. UV curing is 
also a material-selective process, which leaves the surrounding material largely 
unaffected. Infrared curing can be confined to a specific area, but is not material 
selective. 
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The material penetration of convection and indirect heating is minimal and relies on the 
heat transfer inside the material (Deshmukh 2005). Infrared curing can be tuned to 
achieve increased material penetration by adjustment of the wavelength spectrum 
(Berga et al. 2011). Depending on the material, the radiation can then achieve depths 
between a few µm up to being transparent (Naganuma et al. 1999). UV-curable 
adhesives are typically transparent. The UV radiation is therefore well transmitted 
through the material and initiates the polymerization processes throughout the radiated 
volume. The microwaves almost fully saturate unfilled epoxy resins. A typical value for 
the penetration depth of epoxies is 300 mm (Mijović et al. 1990). 

Table 6 – Assessment of relevant curing methods 

Curing Method

Properties Co
nv

ec
tio

n 

In
di

re
ct

 

In
fr
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ed

 

U
V 

Li
gh

t 

M
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Selective Heating  o o   

Material selective      

Focussed heating       

Material Penetration      

Optical transmission      

Electromagnetic      

Use Cases in Flip-Chip Assembly      

ECA    -  

Underfill    -  

Encapsulant      

 – Fulfilled, o – Partly fulfilled,  – Not fulfilled 

 

Thermosetting polymers can be cured by convection, infrared and microwave curing. 
As this type of material dominates in microelectronics packaging, these three processes 
are applicable for the bulk of available materials. UV-curable materials are rather 
prevalent in dental and optical applications. Since conductive materials are not 
available, the applicability of UV-curable materials for microelectronics packaging is 
limited. 
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Based on the considered criteria, convection, indirect heating and UV curing all show 
significant drawbacks. Infrared and microwave heating offer, in comparison to the other 
considered methods, distinct advantages and are applicable, at least in principle, to all 
three curing use cases within the flip-chip process chain. Both infrared heating and 
microwave heating provide potentially drastic reductions in curing cycle duration. 
However, infrared heating requires an optical path in order to fully exploit its potential. 
Therefore, the potential field of applications is constrained. In contrast, microwave 
curing has been shown to be applicable to a broader range of applications, with distinct 
performance benefits. 

Therefore, and with particular respect to Requirement 1 and Requirement 3, microwave 
heating is selected for application in the novel heating and curing system. 

Metallic objects exposed to microwave radiation may cause arcing and sparking 
(Metaxas et al. 1983). These arcs and sparks may exert potentially hazardous and 
destructive effects on the exposed objects and their environment (Whittaker et al. 2000). 
The occurrence of arcing and sparking is depending on numerous factors such as the 
physical properties of the exposed materials and their geometry. The properties of the 
RF fields, including the frequency and the power, have significant impact on the arcing 
and sparking behaviour (Whittaker et al. 2000). With respect to Requirement 4, the 
yield and the reliability of the processed components may not be significantly affected 
by the curing process. Therefore, the proposed method must also provide measures to 
prevent the occurrence of arcing and sparking. 

5.2 Conception of heating system 

5.2.1 Microwave source 

Microwave magnetrons are the most common microwave sources and are applied in 
hundreds of millions of microwave ovens all over the world. Magnetrons are high-
power vacuum tubes that modify an electron beam by a magnetic field (Okress et al. 
1957). They are very cheap and have very high efficiencies (over 80%). As the 
frequency is determined by the geometry, magnetrons have a single frequency, with 
some noisy adjacent bands (Neculaes et al. 2004). 

Klystrons are also linear beam vacuum tubes. In a Klystron, microwaves are amplified 
by modulating the density within the electron beam by a number of resonant cavities 
(Adam et al. 1969). There are Klystrons available with very high gain and are therefore 
often used for high-power applications. Klystrons are not bound to a certain frequency, 
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but can operate in a defined, relatively small frequency range. They require regular 
maintenance. 

In contrast to the Klystron, travelling wave tube (TWT) amplifiers do not use resonant 
cavities, but directly interact between the non-resonant transmission line and the 
electron beam (Adam et al. 1969). TWT amplifiers offer a wider bandwidth than 
Klystrons. They require regular maintenance, but provide high signal quality with low 
noise. 

Solid-state power amplifiers (SSPAs) amplify RF signals with high-power transistor 
circuits (Adam et al. 1969). SSPAs were traditionally used for low-power applications, 
but with the improvement of transistor technology, SSPAs for high-power applications 
are now available (Boshnakov et al. 2012). They have a high reliability and need only a 
minimum of maintenance (Sechi et al. 2006). In contrast to TWTs, SSPAs can typically 
be pulsed rapidly. The cost is comparable to TWTs, while SSPAs occupy a smaller 
footprint than TWTs. 

An assessment of different types of microwave amplifiers is shown in Table 7. The 
assessment is performed in the form of a weighted decision matrix (Bugdahl 1990; 
Haberfellner et al. 2012). Each criterion is weighted by a coefficient g. The fulfilment of 
each criterion is assessed on a scale from 1 to 10, with 1 representing lowest fulfilment 
and 10 the highest. The result is calculated by adding the weighed fulfilment points and 
ranking the options in ascending order. While magnetrons are cheap and solid, they 
provide just a single frequency. Klystrons and TWT amplifiers are suitable for high-
power applications, but require maintenance and are relatively large. SSPAs are 
compact, reliable, can be pulsed and are available at a moderate cost. 

Following the assessment, SSPAs are selected for further consideration in this thesis. 
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Table 7 – Assessment of microwave amplifiers 

Criterion Weight SSPA Magnetron TWT Klystron 

 g n n·g n n·g n n·g n n·g 
Reliability 5 9 45 8 40 3 15 3 15 

Pulsing 5 10 50 3 15 4 20 4 20 

Efficiency 4 8 32 8 32 5 20 3 12 

Size 4 8 32 5 20 2 8 3 12 

Frequency range 3 8 24 1 3 10 30 6 18 

Signal quality 2 10 20 3 6 6 12 4 8 

Maintenance 2 10 20 10 20 3 6 4 8 

Cost 2 6 12 10 20 6 12 5 10 ∑ ࢔ ∙  103 123 156 235   ࢍ

Rank  1 2 3 4 

 

5.2.2 Microwave applicator 

The dominating application for microwave heating is domestic heating of food. These 
microwave ovens are closed and isolated cavities. Handling is typically performed 
through a door. Such closed-cavity microwave ovens are also used in industrial 
applications, typically with higher performance regarding power and workspace. Bible 
et al. have proposed a closed-cavity microwave oven with variable frequency (Bible et 
al. 1992). The technology has been applied for a number of different electronics 
packaging applications, such as encapsulation (Wei et al. 2000; Mead et al. 2003; Diop 
et al. 2015), underfill (Mead et al. 2003; Diop et al. 2015) and soldering (Moon et al. 
2004a; Moon et al. 2004b). However, there are alternative methods available to apply 
microwave radiation. 

Antennas are typically used for communication purposes, but they can also be used to 
apply microwave energy for heating applications. A flat antenna has been shown to 
effectively heat up wet textiles in order to dry them (Vrba et al. 2011). Another 
application of antennas is hyperthermia treatment for medical purposes (Vrba 2005; 
Sangster et al. 2006). Typical antenna configurations for unfocussed emission are flat or 
beamformed antennas, focussed emission can be achieved with parabolic or 
beamformed antennas. 
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Waveguides are used to transfer electromagnetic power efficiently from one point in 
space to another, by restricting expansion to one or two dimensions (Orfanidis 2003). 
Typical types of waveguides are coaxial lines, two-wire lines, microstrip lines or hollow 
waveguides (Orfanidis 2003). The important factors for selection and choice of a 
structure are the amount of power to be transferred and the amount of transmission 
losses to be tolerated (Orfanidis 2003). However, waveguides can also be applied as 
applicators. Vrba et al. have proposed a waveguide applicator for textile drying (Vrba et 
al. 2011). Sangster proposed a waveguide cavity for hyperthermia treatment (Sangster et 
al. 2006) and Sinclair et al. proposed a microwave applicator based on an open-ended 
cavity for electronic packaging applications (Sinclair 2009). 

A number of requirements must be fulfilled by the applicator: 

- The heat energy provided by the applicator must be focussed onto the area of 
interest and spare the surrounding volume. Otherwise, the surrounding 
components are stressed unnecessarily, which may have a negative influence on 
their reliability (derived from Requirement 3). 

- Since one of the main motivations of the integrated system is to reduce or 
eliminate handling steps, the applicator must reduce the need for intermediate 
handling steps (derived from Requirement 5). 

- Microwave radiation is potentially harmful, especially when significant amounts 
of power are applied. The applicator should inherently shield as much power as 
possible and minimize any collateral radiation or other potentially harmful 
effects. 

- The curing system is going to be integrated into a machine. To facilitate the 
integration, a minimum of adaptations on the machine shall be necessary. 
Ideally, the applicator can be integrated in the same manner as typical micro-
assembly tools are already integrated (derived from Requirement 5). 

- The design of the applicator has many implications on the subsequent 
dimensioning of the microwave source, amplifier and further components. If the 
applicator heats efficiently, then the requirements on the other components are 
reduced and the whole curing system can be made simpler and cheaper. 

- The proposed curing system is designed to be applied in the field of electronics 
packaging. However, the spectrum of potential applications is very broad. 
Although many packaging applications are already highly standardized and very 
similar, the curing system may need to be adapted to a different type of 
application. 
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- As the system is planned to be applied in a production environment, economic 
aspects need to be taken into account. The hardware cost of the applicator should 
therefore be assessed. 

Table 8 – Assessment of microwave applicators 

Criterion Weight Waveguide Antenna Oven 

 g n n·g n n·g n n·g 
Selective Heating 5 3 15 8 40 8 40 

Part Handling 5 2 10 10 50 7 35 

Safety 5 10 50 2 10 6 30 

Integration 4 3 12 7 28 6 24 

Efficiency 3 4 12 6 18 9 27 

Adaptation 3 3 9 7 21 8 24 

Cost 2 4 8 5 10 7 14 ∑ ࢔ ∙  116 177 194   ࢍ

Rank  1 2 3 

 

An assessment of the three potential applicators is shown in Table 8. The same method 
as in Section 5.2.1 was used for the assessment. Antennas and waveguide resonators can 
provide selective heating, by focussing the microwave radiation onto a defined area. 
With closed-oven cavities, selective heating may be achieved by selecting materials 
with high loss tangents, although polymer components such as FR4-PCBs would be 
heated anyway. A closed-oven cavity requires intermediate handling steps, which 
negatively affect the assembly efficiency. These steps can be avoided when using 
alternative applicators such as antennas or waveguides. The oven, being an enclosed 
unit, is the safest of the three options, while the antenna requires additional safety 
measures. The waveguide resonator can be implemented as a safe applicator (Sinclair 
2009), but still requires indirect safety measures. Integration of the oven is possible, but 
requires fundamental adaptation of the machine. Antennas and waveguide resonators 
can both be integrated as tools. The oven is the least-efficient option. With antennas, 
losses are also to be expected. The waveguide resonator is regarded as the most efficient 
applicator. While the adaptation of the oven is complicated, an exchange of the antenna 
or the waveguide resonator is, in principle, possible. However, the engineering and 
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Load materials, such as thermosetting polymers, placed within the load section are 
exposed to these evanescent electromagnetic fields, inducing heating at a rate dependent 
upon the field strength, the material properties of the load and the frequency of 
excitation (Pavuluri et al. 2010a). Heating patterns generated in the load are therefore 
dependent upon the electric field distribution, which, in turn, depends on the operating 
frequency. The system can be operated at a large number of discrete harmonic resonant 
frequencies, each resulting in a differing modal structure within the dielectric. The 
heating pattern within the load can therefore be controlled through the choice of 
operating frequency. Through the integration of an optimized dielectric material, the 
field in the heating chamber can be enhanced significantly (Sinclair et al. 2008c). 

The presented waveguide resonator is regarded to be suitable with respect to the 
requirements of selective heating and the integration into a precision assembly system. 
The dimensions of the open-ended microwave applicator are suitable for the processing 
of individual components. An adaptation to larger dimensions (e.g. for the processing of 
whole wafers) requires engineering effort, but is possible. Since the primary 
requirements for the envisaged task are met, this is therefore selected as the preferred 
applicator for further consideration. 

5.3 Control concept 

The operating frequency in the applicator determines the mode of operation and thereby 
the field distribution in the load section. This has a direct influence on the power 
distribution and therefore the heating pattern. The heating behaviour and curing cycle 
times are directly influenced by the frequency. In consequence, and with respect to 
Requirement 2, the frequency of the source is to be controlled. 

Heating according to a defined temperature profile, as demanded by Requirement 1, 
requires information about the actual temperature of the heated product. This can, for 
example, be based on a model or on feedback from a sensor. 

Arcing and sparking were identified as potentially detrimental effects. To reduce or 
eliminate the occurrence of arcs and sparks, different measures within the control 
system can be envisioned. With respect to Requirement 4, different methods to reduce 
these detrimental effects are considered. 
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its ideal counterpart. Additionally, the real applicator contains the assembly to be 
processed, which in turn influences the dielectric properties of the oven. 

It cannot, therefore, be assumed that the calculated resonant frequencies match the 
resonant frequencies of a real oven. Tools like network analysers allow the 
measurement of the real resonant frequencies. However, the resonant frequencies shift 
according to the cure material and its degree of cure. Therefore, a set of measurements 
is needed to determine the resonant frequencies as a function of the material, 
temperature and degree of cure. This is impractical, as it would be time-consuming and 
would have to be done for every material and every oven. The resonant frequency 
should therefore rather be determined during the process. This can be performed by 
several methods. In the following paragraphs, two potential methods are discussed. 
Both methods rely on the approximate knowledge of the theoretical (or unloaded) 
resonant frequency. 

The theoretical resonant frequencies for an oven with dimensions of 18 × 18 × 80 mm³ 
were calculated according to Equation (3) and are presented in Table 10. 

In the first method, the reflected power is measured while sweeping through a frequency 
band. Based on the measurements, the local minima next to the calculated resonant 
frequencies are determined. While this method has the advantage that the resonant 
frequencies can be found with a high likelihood, the sweep through the frequency band 
requires a considerable amount of time. Additionally, the procedure has to be carried 
out periodically to track changes during processing. 

The time required for a frequency sweep can be calculated by: 

ௌܶ௪௘௘௣ = ெܶ௘௔௦௨௥௘ ∆݂ௌ݂௔௠௣௟௘ (4) 

Sweep Total time required for the frequency sweep [s]  

TMeasure Time required to measure the current MW power [s]  

Δf Frequency band for the sweep [MHz]  

fStep Step size for the sampling of the sweep [MHz]  

With this formula, representative calculations of the sweep time can be performed. 
Three such calculations are shown in Table 9. The curing system by Sinclair et al. has a 
sampling rate of 50 Hz, which equates to TMeasure = 20 ms (Sinclair 2009). The step size 
of the sampling was assumed to be fStep = 1 MHz for Cases 1 and 2. For Case 3, a step 
size of fStep = 2 MHz was assumed. As can be seen, the time required for a frequency 
sweep TSweep, ranges between 0.5 s and 8 s. It is assumed that the heating is significantly 
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impaired during the sweep. The heating system may not therefore be able to provide the 
required energy output in this period. Additionally, the sweeping would have to be 
performed cyclically, e.g. every 10 s, and this would impair heating according to a 
defined temperature profile. However, this could be potentially tolerated, as, for 
example, Case 2 would only require a second sweep time. 

Table 9 – Representative durations of frequency sweeps 

 Case No. TMeasure Δf fStep TSweep 

1 20 ms 400 MHz 1 MHz 8 s 

2 20 ms 50 MHz 1 MHz 1 s 

3 20 ms 50 MHz 2 MHz 0.5 s 

 

Table 10 – Resonant frequencies of unloaded open-ended microwave applicator 

m n p Resonant Frequency fres [GHz] 

1 1 ଵଶ 8.2817 

1 1 ଷଶ 8.4875 

1 1 ହଶ 8.8847 

1 1 ଻ଶ 9.4493 

εr = 2.035, dimensions a × b × d = 18 × 18 × 80 mm³ 

 

A second method is illustrated in Figure 29. In this method, the frequency is set close to 
a known resonant frequency. The reflected power is then measured. The frequency is 
then increased by a defined step and the reflected power is measured again. The two 
measurements are compared and it is determined if the last step was moving towards the 
local minimum or away from it. If the reflected power increases, then the direction of 
the sweeping was wrong and a step in the alternate direction is made. If the reflected 
power decreases, then the direction was correct and another step in the same direction is 
made. 
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which potentially interferes with the temperature control. If a sweep of 1 s is performed, 
then the surface temperature of a typical glob-top encapsulant would drop by 
approximately 0.7 °C to 0.9 °C in this period (Pavuluri et al. 2010a). If the sweep is 
performed during a ramp-up of the temperature, then the defined temperature ramp in 
this period would add up to the deviation. Thus, for a ramp rate of 1 °C/s, the total 
deviation would be between approximately 1.7 °C and 1.9 °C, which is quite significant. 

In the second method, the frequency is changed gradually and requires just two 
consecutive RF power measurements and one change of frequency. With an assumed 
acquisition time of 20 ms, the frequency can, theoretically, be changed after 40 ms and 
then every 20 ms. The temperature control is almost entirely unimpaired in this period. 
The frequency set point remains close to the current resonant frequency during the 
whole process and the heating is therefore not impaired. 

As the second method requires less time, allows the continuous tracking of the resonant 
frequency, and does not interfere with the temperature control it is selected for further 
consideration. 

5.3.2 Temperature control 

This section addresses the temperature control and the problems associated with it. In 
this context, an appropriate method for controlling the temperature is presented. Firstly, 
the relation between the microwave power that is fed into the oven and the change in 
temperature of the cure material is described. Secondly, two examples of heating 
experiments are used to discuss different options to control the temperature. 

The main heating mechanism of the target material is dielectric heating (Pavuluri et al. 
2012). For an ideal system, the load (cure material) would absorb the complete 
microwave power fed into the oven. If no load is present, an ideal oven would reflect all 
power. 

In reality, neither the oven nor the load can be considered as ideal. Not all the power 
emitted by the source is absorbed by the polymer material; a fraction of the power is 
dissipated by the microwave components, such as cables and connectors, and another 
fraction is absorbed by the dielectric insert that fills the oven. The microwave 
components also account for a certain amount of reflected power. Figure 30 gives an 
overview of the energy balance of the oven. 

The surrounding atmosphere also influences the target material by convective heat 
transfer. If the surrounding gas in the atmosphere has a lower temperature than the 
target material, it cools the target. 
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The heat applied to the target accelerates polymerization processes, which may be 
endothermal or exothermal; thermal energy is consumed or released by the target 
material (see Section 3.3.7 for details). The curing of epoxy compounds is typically 
dominated by exothermic reactions, which release a considerable amount of thermal 
energy (Morris et al. 2009). 

Equation (5) provides an estimation of the temperature change based on absorbed 
electromagnetic energy PAbsorb, the amount of energy released into the oven, the 
energies released or consumed by the cure process as described by the enthalpies HExo 

and HEndo, respectively, and the convective heat transfer QConv. 
ݐ݀݀  ௉ܶ௢௟௬ = ஺ܲ௕௦௢௥௕ ݐ݀݀ + ா௫௢ܪ + ݐ݀݀ ா௡ௗ௢ܪ + ݐ݀݀ ܳ஼௢௡௩݉௉௢௟௬ܥ௉௢௟௬  (5) 

௉ܶ௢௟௬ temperature of the polymer [K];  ݀݀ݐ ݐ݀݀  ;change of internal energy due to the cure reaction [W] ݋ݔܧܪ   ;rate of the convective heat transfer [W] ݒ݊݋ܥܳ

] ௉௢௟௬ specific heat capacityܥ ୎୥ ∙୏];  

݉௉௢௟௬ mass of the polymer [g].  

The load (polymer) is able to absorb only a certain fraction of microwave power per 
unit volume, as indicated by Equation (5). The remaining (not absorbed) energy is 
reflected. By taking losses due to mismatch and insertion losses into account, the power 
that is converted into heat can be determined. The heating rate does, however, not solely 
depend on the absorbed microwave power; it also depends on the convective heat 
transfer and the enthalpy of the cure process. Due to the number of influences and 
possible fluctuations, an estimate of these dynamic factors would be inaccurate and 
unreliable. Therefore, the current temperature of the material cannot currently be 
reliably estimated based on these thermodynamic considerations alone. An in-process 
measurement of the target temperature is needed. 

A control of the temperature can be achieved by simply switching the microwave source 
on and off. If the switching is performed with a sufficient frequency, e.g. by pulse width 
modulation, then the average output power can be regulated. 
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temperature, then the reaction rate is high and a high amount of uncured material starts 
to cure (crosslink). This results in a high release of thermal energy, which increases the 
temperature and speeds up the cure process. With increasing duration of the reaction, 
the degree of cure increases and therefore the reaction rate decreases. In turn, less 
thermal energy is dissipated and the temperature is reduced. If the ramp rate is low, then 
the reaction rate is also lower in turn, which results in lower exothermal energy 
dissipation. The latter case is easier to predict and to control. 

As both experiments show, a two-point controller is, in principle, suitable for 
temperature control of microwave heating processes. Heating expedites the cure 
reaction, which may cause significant disturbances to the temperature control and thus 
exceed the control capabilities of the heating system. Preliminary experimental data 
suggests that this may be prevented by taking the complex chemistry and physics of the 
processed pastes into account and using temperature profiles which account for the cure 
reactions. Numerical models, such as the numerical multi-physics model by Tilford et 
al. (Tilford et al. 2008b), may be helpful in developing suitable temperature profiles. 

5.4 Heating control 

As pointed out before, microwave heating may cause arcing or sparking on conductive 
components. As microelectronic devices always have conductive elements, the potential 
for arcing or sparking needs to be prevented. 

Three different heating methods have been considered with different frequency regimes 
and cure time durations. Two methods use variable-frequency microwave curing (Wei et 
al. 2000) and one uses a constant frequency. The overall cure time will be several 
minutes, depending on the process and heating method used. Based on experience from 
existing laboratory systems, maximum heating rates are expected to be around 5 °C/s 
(Pavuluri et al. 2010a). Comparable results to convection oven curing are expected by 
controlling the temperature to ± 2.5 °C (Pavuluri et al. 2011; Pavuluri et al. 2012). 

5.4.1 Constant frequency 

A signal with a starting frequency f0 is used for heating. The starting frequency is close 
to a resonant frequency and cyclically adapted in order to track the continuously 
changing resonant frequency according to the algorithm presented in Chapter 5.3.1. The 
resulting frequency band is indicated as Δfmax. 

To control the power output and to prevent arcing or sparking, the signal is pulsed with 
the frequency ௉݂ௐெ =  భ೅ುೈಾ. By adjustment of the pulse width, the power can be 
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these changes or to allow the necessary adaptations. This may be applied from 
hardware, as a different microwave amplifier or a different temperature sensor may 
need to be installed, or alternatively, the adaptations need to be easily possible within 
the software. 

For the first implementation of the system and for possible adaptations the available 
interfaces are very important. The control system must communicate with different 
superordinate control systems, most likely the pick and place or similar machines. 
Furthermore, over time, different sensors or sources may be integrated. The control 
system must therefore feature a wide spectrum of different interfaces and ideally allow 
the addition of further interfaces if necessary. 

Another important requirement is acceptance by the end users. Typical direct end users 
of the curing system are machine-builders for the microelectronics packaging machines 
and indirectly, of course, companies applying microelectronics packaging processes. It 
should be taken into account that a potential user of the system will be more likely to 
integrate the system into a machine or into a production process if the system works 
with a control system that is already widely used in this industry. 

Some control systems, particularly PC-based control systems, require regular 
maintenance, just like normal PCs. Dedicated control systems do not usually need to be 
maintained. The required maintenance effort should be low, especially considering that 
the system will be a subsystem of a larger machine. 

The curing system is targeted towards industrial exploitation in the domain of 
electronics packaging. As in every industrial domain, economic aspects are to be 
considered; the hardware cost of the control systems must be taken into account. 

The assessment is performed based on a decision matrix, analogous to the method used 
in Section 5.1. The result is presented in Table 11. 

The four considered options are to use a microcontroller (µ-Contr.), an industrial PC  
(IPC) running a real-time operating system (RTOS), a programmable logic controller 
(PLC) or an IPC running a software PLC (Soft-PLC). 

Microcontrollers are small computer systems and typically contain a processor core, 
RAM, program memory and IO interfaces within a single IC. A microcontroller can be 
considered a self-contained system and can be used as an embedded system (Heath 
2002). Microcontrollers and kernels for real-time closed-loop applications are 
commercially available and are widely industrially exploited. 

An alternative to microcontrollers are full-blown PCs. Such personal computers for 
industrial purposes are commonly referred to as industrial personal computers (IPC). 
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These systems typically run Microsoft Windows or Linux distributions. These operating 
systems are not real-time capable. To provide these capabilities on an industrial PC, a 
special RTOS can be applied, together with real-time capable programming languages. 
For example RTLinux, an extension to the Linux kernel, provides hard real-time and 
multiple threads, enabling it to control complex machinery (Yodaiken 1999; Ji et al. 
2008). 

According to Bolton, a PLC is a special form of microprocessor-based controller that 
uses programmable memory to store instructions and to implement functions such as 
logic, sequencing, timing, counting, and arithmetic in order to control machines and 
processes (Bolton 2015). PLCs are very common in automation technology, especially 
for motion and process control due to their real-time capabilities. PLCs have a high 
degree of standardization, particularly regarding the programming languages and 
interfaces. 

Table 11 – Assessment of control systems 

Criterion Weight Soft-PLC PLC IPC µ-Contr. 

 g n n·g n n·g n n·g n n·g
Flexibility of SW 5 10 50 7 35 10 50 6 30 

Flexibility of HW 5 10 50 8 40 7 35 2 10 

Maintenance Eff. 2 8 16 10 20 7 14 4 8 

Real-time Capa. 4 8 32 8 32 8 32 10 40 

Available 3 9 27 7 21 6 18 5 15 

Hardware Cost 2 4 8 3 6 4 8 10 20 

End User Accept. 3 7 21 9 27 6 18 7 21 ∑ ࢔ ∙  144 175 181 204   ࢍ

Rank  1 2 3 4 

 

Soft-PLC systems consist of a host PC, mostly embedded or industrial PCs, the PLC 
control software as well as PLC hardware components, which are connected to the PC 
via a field bus. The control software is embedded in a host operating system (e.g. 
Windows) and extends its kernel to include real-time capabilities. Soft-PLC systems 
like Codesys or TwinCAT apply the same standardized programming languages as 
conventional PLC systems. Soft-PLC systems offer a higher flexibility than 
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conventional PLC systems; however, as they are bound to their (unsafe) host system, 
they cannot be applied for safety-critical applications such as in aeroplanes or nuclear 
plants. 

The decision matrix is shown in Table 11. A microcontroller is by far the cheapest 
solution; however, the main drawback is the lack of flexibility. An IPC with an RTOS 
has a high flexibility regarding software, but is deficient in interfaces and end-user 
acceptance. A pure PLC solution has high hardware costs and drawbacks in flexibility. 
Soft-PLC systems are relatively expensive, but offer a high flexibility regarding 
software and hardware, provide a wide range of interfaces and are still well accepted in 
the industry. According to this assessment, the appropriate control system is a Soft-PLC 
control, which is selected for further consideration. 

5.4.5 Temperature sensor 

A requirement imposed on the curing system is the control of the temperature profile 
(Requirement 1). Section 5.3.2 further underpinned the necessity of temperature control. 
Closed-loop control of the defined temperature profile requires a cyclic measurement of 
temperature. 

Table 12 – Assessment of temperature measurement methods 

Criterion Weight Non-contact Optical Electrical 

 g n n·g n n·g n n·g 
Temperature Range 5 10 50 8 40 6 30 

Delay 5 10 50 5 25 4 20 

Microwave Influence 5 8 40 10 50 2 10 

Integration 3 7 21 7 21 10 30 

Calibration 3 3 9 7 21 7 21 

Resolution 2 6 12 10 20 8 16 

Cost 2 4 8 3 6 10 20 ∑ ࢔ ∙  147 183 190 25  ࢍ

Rank  1 2 3 

 

Three classes of temperature sensors are considered: electrical; optical; and non-contact 
sensors. Electrical sensors include, for example, thermocouples and are contact-type 
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sensors. Optical sensors measure the optical parameters changing with temperature and 
include Fiber–Bragg sensors. They are also contact-type sensors. The non-contact 
sensors considered here are pyrometers and thermal imaging cameras. 

An assessment of the different temperature measurement methods is shown in Table 12. 
Electric temperature sensors are very easy to integrate and very cheap, but also highly 
sensitive to electromagnetic fields. The sensor needs contact at or very close to the 
heated object. Optical sensors would need contact as well, but are not disturbed by 
electromagnetic fields. Non-contact measurements can measure from a distance and do 
not require a thermal equilibrium with the sensor. Their main drawback is the required 
calibration and the relatively high cost. Based on this assessment, non-contact 
temperature measurement is considered the most suitable solution. 

5.4.6 Curing system concept overview and discussion 

In Chapter 3, based on an analysis of electronic packaging, market needs, and the 
underlying processes, a first set of requirements for a novel method was formulated. 
The method should address the problem of intermediate handling processes in 
microelectronics packaging and improve the overall efficiency of microelectronic 
packaging processes. 

By reviewing the state of the art, it was concluded that the imposed requirements are to 
be fulfilled by a novel curing system that was capable of integrated implementation. 

The basic heating process has been discussed, assessed and microwave heating has been 
selected. The main components for the system have been identified. Viable options for 
these components have been assessed and individual selections have been carried out. 
Based on the components of the heating system, a control concept was developed, 
comprising frequency, temperature, and power control. 

An overview of the features of the curing system concept is compiled in Table 13. 
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Table 13 – Curing system concept overview 

Feature Approach Section 

Curing Principle Microwave curing 5.1 

Microwave Source Solid-state power amplifier (SSPA) 5.2.1 

Microwave Applicator Open-ended waveguide resonator 5.2.2 

Control System Soft-PLC 5.4.4 

Temperature Sensor Non-contact temperature sensor (pyrometer) 5.4.5 

Control Methods Frequency, temperature and heating control 5.3 

Frequency control Maximum power point tracking (MPP) 5.3.1 

Temperature control Two-point controller 5.3.2 

Heating control Three methods: constant frequency, linear sweep 
and frequency hopping 

5.4 

 

With the components known and the control concept described, the next step is the 
creation of a prototype curing system. 

5.5 Concept of an assembly machine with microwave curing 
system 

A concept for a microwave curing system has been proposed in the previous chapter. 
This system is targeted to microelectronics packaging processes. Now, based on the 
concept of the previously described curing system, a concept for a machine that 
integrates this curing system is developed. 

The domain of microelectronic packaging has been analysed and a range of relevant 
products have been derived. With the products known, the key processes have been 
described and a set of relevant processes was derived. 

With the principal products and processes known, numerous parameters of the machine 
are assessed and finally selected. Based on the choice of the individual components, a 
comprehensive concept is compiled and presented. 
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5.5.1 Machine requirements 

The purpose of the machine is to develop a microelectronics assembly process with an 
integrated microwave curing process. This comprises the integration of all relevant 
components into one machine. Once the system is set up, validation and testing of the 
process under different conditions will be carried out on the machine. 

Characterization of the developed process will provide knowledge to enable assessment 
of potential applications and to dimension further machines accordingly. For a 
reasonable machine layout, a production volume of 100 pieces per day is assumed, as a 
working hypothesis. This corresponds to a typical use case for assembly of complex 
products with high variance (Adamietz et al. 2010; Scholz et al. 2016). 

Since the main purpose of the machine is for process research and development it 
should not be constricted to just one product or product variant. It should rather be 
designed to cover a range of products and process variants. Specifically, the machine 
should not be limited to a certain chip package with certain dimensions, but rather be 
suitable for a range of different products. The same applies for the processes, which 
should also provide a range of different process variants. If the provided flexibility is 
not sufficient, then at some point it should be possible to adapt the system with 
moderate effort. 

The particular machine developed in the course of this thesis is not meant to be used in 
an industrial environment. Useful life, degree of utilization and amortization time are 
therefore not currently regarded as relevant requirements and are not defined at this 
point. 

5.5.2 Product analysis 

The reference for the product analysis is the flip-chip process described in Chapter 3. 

Flip-chip processes are industrially implemented with both solder and conductive 
adhesive technologies. 

Electrically conductive adhesives (ECAs) have advantages when compared to solder 
materials. ECAs are processed with significantly lower temperatures than solder 
materials, enabling them to be used with heat sensitive or non-solderable materials (Jagt 
et al. 1995). ECAs can be used for finer pitches than solder, as the materials have 
smaller particle sizes than solder pastes (Liu et al. 1998). The materials are also more 
flexible than solder materials, making them less sensitive to thermomechanical stresses 
(Jagt et al. 1995). 
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Solder materials have a significantly higher and steadier conductivity than ECA 
materials, especially regarding high-frequency applications (Coughlan et al. 2006). The 
curing times are significantly shorter (Jagt et al. 1995). 

The processing of ECAs is relatively simple, as the materials can be dispensed quite 
easily. The high viscosity of solder pastes makes them very hard to dispense; in 
particular, achieving a precise application for fine pitches is complicated. Therefore, 
screen printing or solder balling is preferred for solder processing, which requires 
significantly more complicated and expensive equipment. 

With respect to the method of microwave curing, both solder and adhesive materials are 
applicable. However, microwave heating of adhesive materials is more efficient, due to 
dielectric groups being present in the organic material. 

With respect to machine and process flexibility, the achievable precision and the 
reliability properties, ECAs are preferred for the purposes of this thesis. 

Dies are typically provided in a waffle pack tray for low-volume production, but can 
also be supplied from a blue tape with die ejector or from reel-to-reel feeding from foils 
or films (Reichl 1998). For the present conceptual design, waffle pack trays will be 
regarded as the preferred option, but the option of retrofitting to a different option will 
be taken into account as well. 

The substrate can be a package such as a BGA, or a more complex SoC package. In this 
case the package will be typically provided on a tray. However, for higher throughputs, 
other feeding methods such as conveyor feeders, Auer boats or reel-to-reel feeders may 
be considered. The substrate may also be a board. In this case, it is either manually 
inserted or provided by a conveyor system. As the expected volumes are low, a manual 
insertion is appropriate for both the package and the board case. However, an optional 
tray system for packages will be considered, as well as an adaptation to a different 
feeding method. 

Requirements on precision and reliability have been described previously: a precision 
assembly process with a precision of at least 20 µm and at least the same reliability as a 
comparable, industrially applied technology is required. 

5.5.3 Assembly process 

Approaches to micro assembly can be divided into serial and parallel assembly methods 
(Nelson et al. 1998; Lotter et al. 2006). The wafer-based production of MEMS applies 
mostly to batch processes. Parallel assembly strategies promise economic advantages, 
as with parallel assembly strategies, high throughputs can be achieved at the cost of a 
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significantly reduced flexibility. Serial micro-assembly methods perform the assembly 
one by one (Nelson et al. 1998; Lotter et al. 2006). This provides process flexibility and 
allows easy processing of different product variants. The proposed curing system 
concept is primarily designed for the processing of single components and selective 
processing of components on larger assemblies. Therefore, a serial micro-assembly 
strategy is considered to be suitable and will be further pursued. 

SMD pick-and-place machines without sensor guidance achieve assembly accuracies of 
35–40 µm under highest efforts (Fatikow 2000). Significantly higher accuracies are 
achieved by integration of sensor-guided positioning strategies (Fatikow 2000; Höhn 
2001; Jacob 2002; Dittrich et al. 2004; Lotter et al. 2006). Two principles of sensor-
guided positioning strategies are distinguished: relative; and absolute positioning (Höhn 
et al. 2001; Jacob 2002). 

In relative positioning the position of the part and the assembly position on the substrate 
are measured at the same time with one measurement system (Raatz et al. 2012). This 
allows the direct determination of the relative pose difference, which can then be 
directly compensated by the positioning system (Höhn 2001). A challenge of relative 
positioning is the simultaneous measurement of features under the part and on the 
substrate, which prevents its application in electronic packaging, particularly flip-chip 
packaging. 

Absolute positioning strategies measure the part and the assembly position on the 
substrate independently from spatially separate positions, which implies that two 
sensors are usually required (Raatz et al. 2012). The measurements of the individual 
sensors are both transferred into the joint base coordinate system, which allows a 
calculation of the pose difference. This difference can then be compensated by the 
positioning system. The measurement with two sensors has a negative impact on the 
precision of the assembly process, since the errors of the two sensor measurements are 
added. Due to the limitations of relative strategies, absolute positioning strategies are 
almost exclusively applied for surface-mount devices and for chip assembly (Höhn 
2001). 

Absolute positioning strategies require a higher material and integration effort and are 
less precise than relative strategies. However, the limitations described in this section 
impede an application for flip-chip packaging. Therefore, absolute positioning strategies 
are selected for further consideration. 
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5.5.4 Dispensing 

Over the years, numerous methods for the precise dispensing of media have been 
developed. In Table 14 an assessment of prevalent micro-dispensing systems is 
presented. 

Dispensing systems can be classified into contact and non-contact systems. Modern 
non-contact systems have a very good repeatability and very high throughput 
performance. However, these systems have limitations regarding the dispensing of high 
viscosity and filled materials. 

Auger, time–pressure, piston and peristaltic dispensers are contact systems. These 
systems generally have a lower throughput, but are suitable for a wide range of 
materials, including filled materials. 

While the performance of time–pressure dispensing systems is slightly below that of 
more sophisticated systems, they are cheap, easy to maintain, suitable for a wide range 
of materials and they still allow high-precision processes. Time–pressure systems are 
particularly suitable for low-volume production and are therefore further pursued for the 
dispensing processes in this conceptual design. 
  



 

87 

Table 14 – Assessment and selection of dispensing systems (Othman 2005; 
Wiedenhöfer 2009) 

Principles 
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Non-Contact No No No No Yes Yes 

Repeatability High Medium High Medium High High 

Low-Viscosity 
Materials Good Good Good Good Good Good 

High-Viscosity
Materials Good Good Good Good Limited Limited 

Filled 
Materials Limited Yes Yes Yes Limited No 

Feeding  
(Cartridge / 
Continuous) 

x / x x / - x / - x / x x / x x / x 

Throughput Low Low Low Low High High 

Maintenance High Low Medium High Medium High 

Cost High Low Medium Medium High High 

Process  
Development Elaborate Medium Elaborate Medium Elaborate Elaborate 

 

5.5.5 Pick and place 

The pick-and-place process deals with the problems of picking a part up, how it is 
positioned and how it can be released (van Brussel et al. 2000). Grippers are the 
interface between the handling or positioning system and the part and therefore have an 
important role during the handling process. 

Macroscopic gripping processes deal mostly with mass-dependent forces, 
predominantly gravitational and inertial forces. In microscopic gripping processes, the 
relation changes towards electrostatic, van-der-Waals and surface tension forces, with 
smaller part dimensions (Fearing 1995). Picking up and holding the part are supported, 
but the part release is often more problematic, as the parts often strongly stick to the 
gripper. Therefore, for microscopic gripping problems, specialized grippers and release 
strategies are required (Bark et al. 1998). 



 

88 

Different gripping principles have been proposed and researched for microscopic parts. 
These comprise adhesive grippers (Westkämper et al. 1996; Grutzeck et al. 2002), 
electrostatic grippers (Oh 1998; Hesselbach et al. 2007), fluidic grippers (Nienhaus 
1999) and miniaturized mechanical grippers with different actuation principles, such as 
piezo-actuation, shape-memory alloys or electromagnetic alloys (Höhn 2001). These 
systems have been experimentally tested and validated, but only a few of these systems 
are industrially established. 

Vacuum grippers are the prevailing type of gripper in microelectronics packaging and 
SMT. It is a simple device, which consists of a thin tube connected to a vacuum (van 
Brussel et al. 2000). Its simplicity and low cost allow it to be exchanged frequently. To 
avoid stick effects on microscopic parts, the gripper should be designed to have a 
minimal contact area. Furthermore, the gripper should be made out of an antistatic or 
conductive material to minimize electrostatic adhesion effects. In microelectronics 
packaging processes, the part is typically placed onto adhesive or solder paste. The 
adhesion between paste and part supports the release from the gripper. In contrast to 
mechanical grippers, vacuum grippers are generally gentle to the parts, especially when 
rubber or other polymeric compounds are used as gripper materials. 

As vacuum grippers are an industrially common technology that is cheap and flexible, 
vacuum grippers have been selection for use in this conceptual design. 

5.5.6 Process analysis 

In Chapter 5.5.3, a serial assembly process with an absolute positioning strategy has 
been selected. This assembly process relies on sensor feedback to measure part and 
substrate feature positions in a base coordinate system. 

Three primary processes: dispensing; pick and place; and curing impose different 
requirements regarding positioning and orientation and auxiliary sensor feedback. An 
overview of these requirements is presented in Table 15. 

Each of the processes requires translational positioning with three degrees of freedom 
(DoF). The pick-and-place process requires, in addition, a rotation of the gripped part to 
adjust its orientation. 

The centre of the needle tip is the dominating feature of the dispensing process and has 
to be determined in the course of the process. For the gripper, the centre of gravity of 
the gripper geometry has to be determined. The pose of a gripped part may need to be 
determined in the course of the pick-and-place process. Relevant feature positions on 
the substrate are to be determined for both the dispensing and the pick-and-place 
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processes. These are primarily bond pad positions, but the pose of the assembled chip 
may also be helpful for the dispensing of underfill and encapsulant. A minimal distance 
between the needle tip and the substrate is needed for a reliable dispensing process. The 
vertical position of the substrate must therefore be determined. The curing process does 
not require position feedback, as the positioning accuracy of the applicator is only of 
secondary concern. 

Table 15 – Requirements of the main processes 
Process 

Properties Dispensing Pick and Place Curing 

Translation  3 DoF 3 DoF 3 DoF 

Rotation - 1 DoF - 

TCP-Measurement Needle tip 
Gripper 

Part on gripper 
- 

Measurement of 
Substrate Features 

Bond pads 

Chip position 
Bond pads - 

Other 
Distance  

needle to substrate 
  

 

5.5.7 Sensor assessment and selection 

The measurement of feature positions in the scale of micrometres for automated micro 
assembly is typically performed using machine vision systems (Höhn et al. 2001; Jacob 
2002), as these instantly provide a planar image in contrast to a punctual measurement. 
Vision systems can be used in a versatile manner since a wide range of tasks can be 
covered through the variables of camera, optics and lighting. On the other hand, a vision 
system needs to be engineered to a specific task. Relevant factors in the engineering of 
vision systems are resolution, field of view, light intensity and cost. The quality of the 
optics has a significant impact on the image quality and thereby also on the 
measurement accuracy. Another factor is the image processing software. The image 
processing algorithms employed have a strong influence on the measurement accuracy 
(Davies 2004). 

Cameras provide a two-dimensional image without depth information. If the exact focal 
distance of the camera is known, it can be used to determine depth information of the 
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feature. However, depending on the optical configuration employed, the focus tolerance 
might be between 10 µm and 100 µm, which is insufficient for the distance regulation 
of the dispenser needle and the pick-and-place processes. Stereo camera systems are 
another possibility to obtain additional 3D information, albeit of inferior quality 
regarding the accuracy compared to most dedicated sensors. Optical coherence 
tomography is available in the form of compact sensors. However, the high cost and the 
lack of software are currently impeding a broad industrial application. 

A high-resolution 3D image of the surface would be advantageous, but is not 
compulsory. Punctual depth information is typically considered sufficient for 
microelectronics assembly processes. A dedicated distance sensor can be applied for the 
determination of the depth information. 

An overview of distance measurement principles is shown in Table 16.  

Table 16 – Distance measurement principles (µEpsilon 2016; Häusler et al. 1999; Blais 
2003; Hocken et al. 2011) 

Principles 
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Resolution + + + o + + o 

Accuracy + + + - + + o 

Measurement Time + + + o + + - 

Measurement Range + o + + + + - 

Materials + + + + - + + 

Distance to Object o o + o o - - 

Spot Size + + + - o o o 

Cost o - o + o o + 

 

Ultrasonic, inductive, capacitive and tactile sensors have significant drawbacks, which 
prevent their application in micro-assembly processes. Confocal, interferometric and 
laser triangulation are techniques that satisfy the requirement profile well. 
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the subsequent description of coordinate transformations. A position vector ࢘ሬԦ ࢑  is  ࢒
defined, with k indicating the used coordinate system and l indicating the associated 
function, e.g. ‘D’ for dispenser or ‘G’ for gripper. ۷  ۸܂  and ࢘ሬԦ ࢑  are shown in Equation  ࢒
(6). The microwave applicator and its coordinate system are represented by ‘C’ for 
‘curing’. 

௃ܶ = ൮ܿݏ݋ ூ௃ߙ ݊݅ݏ− ݊݅ݏூ௃ߙ ூ௃ߙ ݏ݋ܿ ூ௃ߙ 0 ூ௃,௫0ݐ ூ௃,௬0ݐ  00  0 1 ூ௃,௭0ݐ 1 ൲ ூ Ԧ ௞ݎ , ௟ = ቌݎ௞௟,௫ݎ௞௟,௬ݎ௞௟,௭1 ቍ (6) 

A coordinate transformation from coordinate system CI to CJ of position vector ࢘ሬԦ ࢑  can  ࢒
be described by Equation (7). ݎԦ ௃ ௟ =  ௃ܶ ∙ Ԧூݎ ௟ூ  (7) 

With the prerequisites defined, the assembly strategy can be described. 

Initially, feature position ࢘ሬԦ ࢂ૚  ி are determined by Camera 1 inߙ and orientation  ࡲ
coordinate system CV1. To measure the z position, the calibrated laser sensor is moved 
over the previously determined planar position with a known height, which allows the 
determination of the z position with the accuracy of the sensor.2 Once the exact feature 
position is determined, it is transformed into the tool coordinate system CT: ݎԦ ் ி =  ்ܶ ∙ Ԧ ௏ଵݎ  ி ௏ଵ , with ߙூ௃ = 0° (8) 

With knowledge of the tool centre point ࢘ሬԦ ࢀ  the relative vector between tool and , ࡼ࡯ࢀ
feature position ࢘ሬԦ ࢀ  can be calculated and used to position the tool onto the feature  ࢤ
position: ݎԦ ் ௱ = ் Ԧݎ  ி − Ԧ்ݎ ்஼௉ (9) 

This method can be applied for the positioning of the dispenser over the feature. An 
exact determination of the position is required for the dispensing of ECA on bond pads, 
e.g. for the flip-chip process. This method may also be applied for the laser sensor, the 
oven and for the pickup of a part with a gripper. During the pickup of a part, the part 
may be significantly dislocated on the gripper, impairing the precision of the overall 
pick-and-place process. 

To compensate for the dislocation of the part on the gripper, a second camera is 
employed. The part is positioned with the gripper over the second camera and its 
position ࢘ሬԦ ࢂ૛  ௉ on the gripper are determined within coordinateߙ and orientation  ࡼ

                                                 
2 The calculation of the position is performed analogously for the other tools. 
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system CV,2. The translational offset vector ࢘ሬԦ ࡳ  can then be determined by Equation  ࡼࢤ
(10). 
ீ Ԧݎ  ௱௉ி = ( ܶீ ∙ Ԧ௏ଵݎ ி௏ଵ ) − ( ܶீ ∙ Ԧ௏ଶݎ ௉௏ଶ ) (10) 

 
The rotational offset ࡳ ࢻ  is calculated by Equation (11), based on the absolute ࡲࡼ∆
positions. ߙ ீ ∆௉ி =  ( ீߙ +௏ଵ ி௏ଵߙ ) − ( ீߙ + ௉௏ଶ௏ଶߙ ) (11) 

 

Through knowledge of these two offsets, an absolute movement for the pick-and-place 
process can be determined. 

Different strategies for the intrinsic calibration of vision sensors are described in the 
literature (Lenz 1987; Weng et al. 1992; Höhn 2001). In intrinsic calibration, the optical 
parameters of the camera and the optics are determined and compensated if necessary. 
This process is usually performed with the help of a reference object. Intrinsic camera 
calibration functionality typically forms part of state-of-the-art vision software 
packages. 

Extrinsic calibration refers to the calibration of a vision sensor relative to the 
positioning system and process tools. This calibration process also has numerous 
strategies described in the literature (Wang 1992; Höhn et al. 2001). 

5.5.9 Process chain 

The previously described flip-chip assembly process (see Chapter 3.3.1) is used as a 
reference process for the machine concept. Based on the selected tools and the proposed 
assembly strategy, an example process chain for a flip-chip process including the 
microwave curing process is proposed. An overview of this process chain is presented 
in Figure 37. 
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The process chain comprises a total of 14 steps: 

 

1. Initially, the substrate is transported to the process position. The part (die) is 
provided, sometimes in a magazine. Both processes may happen manually or 
automatically. 

2. The pose of the bond pads on the substrate is determined by Camera 1. The 
height of the bond pads is measured using the distance sensor. 

3. Based on the determined bond pad positions and the known calibration 
values, the dispensing positions are then calculated. On each of these 
positions, a defined volume of electrically conductive adhesive is applied 
using Dispenser 1. 

4. Camera 1 is used to determine the exact part pose on the supply position. 
The height is additionally measured with the distance sensor. 

5. The part is grabbed from the previously determined position using the 
gripper. 

6. After moving the part over Camera 2, its pose on the gripper is determined. 
7. With the poses of the part and the assembly position known, the relative 

position vector is calculated. The relative movement over the placement 
position is carried out and the part is then moved down and released from the 
gripper.  

8. The microwave applicator is moved over the placed part. The adhesive is 
cured with the microwave applicator according to a defined temperature 
profile. 

9. The pose of the part after curing is measured using Camera 1 and the 
distance sensor. 

10. With respect to the pose of the part, underfill is applied between the part and 
the substrate using Dispenser 2. 

11. Using the microwave applicator, the underfill is cured according to a defined 
temperature profile. 

12. A glob of encapsulant is dispensed over the assembly using Dispenser 3. 
13. The encapsulant is then cured using the microwave applicator according to a 

defined temperature profile. 
14. The finished assembly is removed from the process position and transported 

away from the machine. 
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Figure 37 – Absolute assembly strategy with intermediate microwave curing steps. 
Process steps are described in anticlockwise direction. 
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With the above-described process chain, a combination of a typical assembly process 
with a microwave applicator is proposed. Based on this process chain, a machine 
concept can now be developed. 

5.5.10 Machine concept 

A concept for a flip-chip assembly process with intermediate microwave curing steps 
has been proposed. This will serve, together with the selected absolute assembly 
strategy, as main input variables for the conception of the machine. An overview of pre-
selected kinematic configurations is shown in Figure 38. 

 

Figure 38 – Selection of kinematic configurations 

Different parts of the system may be moved and others may remain stationary; the tools 
may be moved, the product may be moved or both may be moved in order to achieve 
the necessary relative movement. Since the workpieces are likely to be small and light, 
the moving mass may be reduced by moving the product. A drawback of such a 
configuration is that the positioning system might impair the integration of conveyor 
and feeding systems. Generally, the flexibility of the system is lower if the product is 
moved. Also, if positioning functions are on both the tools and the workpieces, then 

Process Tools

1. 2. 3.

4. 5. 6.

Positioning System Workpiece Pallet Support Structure
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flexibility is impaired. When considering flexibility of the process, a configuration with 
moving tools is preferred. 

Potentially, each tool may be positioned individually. In this way, each positioning 
system may be optimally dimensioned to the requirements imposed by the individual 
processes and their hardware. However, the implementation of such a system is 
significantly more elaborate than a central positioning system in terms of the hardware 
and the control system. Additionally, the complexity of calibration and referencing is 
clearly higher. Therefore, a single central positioning system is preferred. 

Robots are common for automated assembly tasks and robot systems with excellent 
positioning repeatability of less than 10 µm are available. However, the design of 
assembly robots, particularly SCARA robots, does not allow the robot to carry all the 
necessary process tools; a tool exchange would be required, which would negatively 
affect the assembly efficiency. Therefore, a Cartesian positioning system is preferred. In 
summary, a system with a central positioning system for all tools is preferred over the 
other option. Therefore, kinematic configuration 5 is selected. 

5.5.11 Integration of the microwave curing equipment 

The concept of the curing system consists of numerous basic components. It comprises 
the control system, a solid-state microwave source with integrated amplifier, power 
sensors, a temperature sensor and the open-ended microwave applicator. 

As pointed out in Section 5.5.10, a set-up with a fixed product position and moving 
tools is pursued. With regard to the curing system components, the microwave 
applicator itself is regarded as a crucial tool to be on the moving part of the machine. To 
enable in situ temperature measurement during the heating process, the temperature 
sensor should also be integrated into the microwave applicator. The remaining 
components may be placed on fixed parts on the machine. 

Splitting the components and their positioning within different sections of the machine 
provides the advantage that the moving mass of the machine, and thereby the load on 
the axes, can be reduced. In this way, an impairment of the dynamics and the 
positioning accuracy can be potentially circumvented. This may be important, because 
the microwave source is expected to have a large mass and will therefore present a 
significant load to the positioning system. Additionally, the size of the source takes up a 
considerable portion of the build space of the positioning system. 

The transmission of the RF signal from the source to the applicator can, in practice, be 
implemented with a waveguide or a low-loss RF cable. Waveguides offer a transmission 
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with very low losses. Waveguides are rigid and are, in principle, suitable for a direct 
connection between source and applicator without relative movement. There are flexible 
waveguides available which allow for some relative movement; however, the high cost 
and the high implementation effort render this option undesirable. 

Low-loss RF cables usually have worse transmission properties than waveguides, but 
with appropriate shielding, a transmission with relatively low losses can be achieved. 
RF cables are flexible, but there are no low-loss cables available that can be used within 
energy chains. 

The transmission properties of RF cables and connectors (e.g. SMA) are impaired when 
forces are applied to them, for example by bending. The transmission losses then 
increase significantly. Therefore, the forces applied to the connectors and the cables 
must be minimized. 

5.5.12 Machine concept overview and discussion 

A concept for a machine integrating the curing system presented above is proposed. The 
specific requirements related to the machine were analysed. Processes needed for the 
assembly of microelectronic packages were considered and propositions for the specific 
subsystems to carry out these processes were made. With the proposed process tools, a 
positioning strategy has been developed. Based on the example of flip chip, an example 
process chain was developed. A first machine concept was then selected and the 
implications imposed by the microwave integration discussed. 

The features and the solution approaches towards the machine are presented in  
Table 17. 
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Table 17 – Machine concept overview 

Feature Approach Section 

Process Flip-chip process chain with intermediate microwave 
curing steps 

5.5.9 

Substrate Microelectronic packages, PCBs, complex assemblies 5.5.2 

Feeding Preferably from magazine with optional modification to 
automated conveyor systems or feeders.  

5.5.2 

Pick and Place Absolute positioning strategy with two vision sensors and 
laser triangulation sensor. Utilization of vacuum grippers 
for pick and place.  

5.5.8 

Dispensing Time–pressure dispensers for ECA, underfill and 
encapsulant materials 

5.5.4 

Curing Implementation and integration of proposed microwave 
curing system 

5.5.11 

Machine Type Cartesian system with fixed product and feeding 
positions. Process tools are placed on the moving part of 
the machine.  

5.5.10 

 

With the concepts for both the curing system and the machine now available, the 
manufacturing of both systems can be carried out. 
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6 Design and Set-up of Prototype System 

6.1 Integrable microwave curing system 

6.1.1 Solid-state power amplifier 

A solid-state power amplifier (SSPA) manufactured by RF Com Ltd and Freshfield 
Microwave Systems Ltd is used. The SSPA has been custom designed and built 
according to specifications provided by Heriot-Watt University, Edinburgh, Scotland.3 
The microwave source is relatively compact, with dimensions of 180 × 100 × 50 mm³. 
It has an integrated frequency generator and amplifier. The maximum output power is 
11.2 W and the maximum power consumption is 100 W. Approximately 90 W are 
dissipated as heat, making active cooling necessary to prevent overheating. The 
operating frequency range is 7.5–8.7 GHz. The output power can be regulated by 
pulsing the source. The minimal pulse width specified by the manufacturer is 1 ms. A 
typical approach is to use pulse width modulation (PWM) with a fixed frequency of 
10 kHz, giving a minimal duty cycle of 1% (1 ms ‘On’ and 99 ms ‘Off’) (Rupp 2011). 
The minimum time required for a frequency change is 2.15 µs (Rupp 2011). 

6.1.2 RF power measurement 

As described in Section 5.3, a satisfactory power output can be ensured by a frequency-
tracking algorithm. To implement the tracking, a feedback of the power is necessary. 
Therefore, power measurement is required. 

An overview of the microwave components and their insertion losses is shown in  
Figure 39. 

The microwave source provides a signal to the directional coupler. Most of the power 
P12 is directly transferred via a low-loss RF cable and a rotary joint into the oven. A 
portion of the power is not absorbed and is reflected by the oven. This power P21 travels 
back through the rotary joint, the low-loss RF cable and the directional coupler into the 
source, where it is dissipated into heat (Rupp 2011). 

 

                                                 
3 The specifications and procurement of the microwave source were carried out by Dr. S. K. Pavuluri, 
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ଶܲଷ ≈ ଵଵ଴଴଴ ଶܲଵ , ଵܲସ ≈ ଵଵ଴଴଴ ଵܲଶ (18) 

As can be seen from Equation (16) and Equation (17), the reflected power P21 must be 
very small in comparison to the incident power P12 to obtain a considerable error. 
However, to implement the frequency control, the measured values of the reflected 
power do not need to be exactly determined. It is regarded as sufficient if the measured 
values can be compared relative to each other. Therefore, a directivity of 17 dB is 
regarded as sufficient. The error caused by the power coupled from Port 4 to Port 3 can 
therefore be neglected. 

The insertion loss is a measure of the power absorbed by a component in a signal path. 
Every microwave component and every connector absorbs signal power. The insertion 
losses of each component are shown in Figure 39. The sum of total insertion losses 
ILtotal is given by Equation (19). The maximum output power of the source PSource is 
11.2 W (Equation (20)). Taking the losses of the coupler ILcoupler, the cable ILcable and 
the rotary joint ILjoint into account, the maximum incident power at the oven Poven is 
6.6 W (Equation (21)). The reflected power is affected by losses in the cable and in the 
rotary joint before it reaches the directional coupler. The maximum reflected power at 
the direction coupler Pcoupler is 4.2 W (Equation (22)). The loss-induced difference 
between incident and reflected power has to be taken into account when a measurement 
of the absolute reflected power is performed. ܮܫ௧௢௧௔௟ = ෍ ܮܫ = 2.312  (19) ܤ݀

ௌܲ௢௨௥௖௘ = 11.2 ܹ = 40.5  (20) ݉ܤ݀

ைܲ௩௘௡ =  ௌܲ௢௨௥௖௘ − ஼௢௨௣௟௘௥ܮܫ − ஼௔௕௟௘ܮܫ − ௃௢௜௡௧ܮܫ = 38.19 ݉ܤ݀ = 6.6 ܹ (21) 

஼ܲ௢௨௣௟௘௥ =  ைܲ௩௘௡ − − ஼௔௕௟௘ܮܫ  ௃௢௜௡௧ܮܫ  = 36.23 ݉ܤ݀ = 4.2 ܹ (22) 

For the acquisition of the incident and reflected power, two suitable sensors are 
required. Pavuluri et al. used two Satori ST185SMA USB power meters for a 
comparable measurement (Pavuluri et al. 2010a). These sensors would, in principle, be 
applicable in this case, as they are suitable regarding frequency and power range and 
this type of sensor also directly provides a power value. However, the USB protocol in 
use has comparatively high latency times, resulting in sample frequencies in the range 
of 8–50 Hz. 
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An alternative to USB sensors are Schottky diode detectors. This type of sensor offers 
wide measurement ranges and requires a low amount of input power. Schottky diode 
detectors are very compact in comparison to the USB sensors. This type of sensor 
rectifies the RF signal into a DC signal. The measurement of the DC signal can be 
realized with an analogue control interface. This set-up provides much higher sampling 
rates than the USB sensors, which would be a clear advantage for the frequency-
tracking algorithm. A drawback is that the signal has to be filtered from noise and 
amplified for the range of the analogue interface. Furthermore, the processing of the 
measured value, including calibration, has to be implemented in the control system. 
Considering the requirements on the quality of the frequency-tracking algorithm, which 
strongly depends on the sampling rate of the power sensors, Schottky diode sensors 
were selected. 

The Schottky sensors have a frequency range of 2–18 GHz and a maximum input power 
of 100 mW. Since a maximum incident power of 11.2 mW and frequencies between 
8 GHz and 9 GHz are expected, these sensors are appropriate for this application. A 
16-bit analogue input interface for the Beckhoff control system with a measurement 
range of 0-10 V was used for the adaptation. The sensor output signal has a linear 
characteristic in the range 0-1 V. This signal needs to be amplified to obtain the required 
resolution. As with the signal amplification, an amplification of noise was also 
observed, which distorted the measurement. To counter this, two active low-pass filter 
boards with an amplification of 10 and a cut-off frequency of 4 kHz were built and 
integrated into the circuit. 

6.1.3 Integration of temperature sensor 

The open-ended microwave applicator by Sinclair et al. was designed for experiments 
in a laboratory environment (Sinclair 2009). For integration into a precision placement 
machine, an adapted design is necessary. 

Sinclair et al. proposed an optimized dielectric insert to be integrated into the open-
ended applicator (Sinclair et al. 2008c). This modification results in a field enhancement 
of up to 9.4 dB (Sinclair et al. 2008c). By analytical and experimental testing, a 
significant improvement of the heating performance could be demonstrated (Sinclair et 
al. 2008c). As this modification promised a remarkable productivity gain, it was 
implemented in the oven design. 

According to Sinclair’s proposal, the applicator is square-shaped with a cross-section of 
18 × 18 mm². The majority of the applicator is filled with a low-loss dielectric material. 
PTFE was chosen as the ‘bulk’ material since it has a low dielectric constant (εb = 2.1) 
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and a low loss tangent (tan δ = 10-4). In order to achieve the desired field enhancement, 
an intermediate layer with a higher dielectric constant is required. A ceramic with a 
dielectric constant εc = 6 and a thickness of 3.5 mm was applied, following the findings 
of Sinclair et al. (Sinclair et al. 2008c) and Pavuluri et al. (Pavuluri et al. 2010b). 

The need for temperature feedback was pointed out in Section 5.3.2. The subsequent 
assessment of different temperature sensors identified a pyrometer as a sensor that was, 
in principle, suitable. The pyrometer is going to be integrated into the applicator and 
placed on the moving part of the machine. The selected pyrometer has a sensor head 
that is separate from the control unit and can be fitted with a focussing lens. The 
temperature sensor has a measurement range from -40 °C to 600 °C. The measurement 
frequency is 50 Hz and the measurement accuracy is ±1 °C or ±1% (whichever is 
larger). Exact specifications can be retrieved from the manufacturer’s data sheet 
(Sensortherm 2013). 

Changes to the design were kept minimal in order not to affect the function of the 
applicator by the integration of the temperature sensor; negative effects on the sensor 
performance were possible. Figure 40 shows three concepts for the integration of the 
pyrometer. 

In the first concept (Variant A), the pyrometer is integrated on top of the applicator. The 
angle is nearly ideal for measurements. However, a significant portion of the bulk 
dielectric material and the optimized dielectric insert has to be removed, which strongly 
influences the heating characteristics. The second concept (Variant B) integrates the 
pyrometer at an angle of 45°. This angle is not ideal, but still allows the measuring of 
the temperature during curing. In this case, small portions of the bulk dielectric and the 
optimized dielectric insert have to be removed. In the third concept (Variant C), the 
pyrometer observes the product from the bottom. The observation angle is ideal. The 
oven does not need to be adapted in this case. However, the temperature measurement is 
not a part of the oven itself in this case, which impairs its flexibility. Furthermore, the 
temperature of the substrate is measured primarily and not the temperature of the heated 
polymer. The measurement would therefore be highly inaccurate and most likely not be 
suitable for closed-loop control. 

With respect to the requirement of closed-loop control of the temperature, the second 
concept (Variant B) with the pyrometer and a 45° angle is selected for further 
consideration. 

As the oven is carried on the precision placement system as a tool, its mass affects the 
dynamics and possibly the precision of the machine. The mass of the oven should 
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measurements were performed at each temperature level with both the Pt100 and the 
pyrometer. Figure 43 shows the relative measured values between the pyrometer and the 
Pt100 values (red plot – ‘Pyrometer Measurement’). 

An ideal transfer function is shown as the green plot. According to this transfer function 
the values of the pyrometer would ideally correspond to the thermocouple values. 
However, the measured values cannot be simply corrected with a multiplying factor or 
an offset as the transfer function, shown as the red curve, has a strong curvature. 
Therefore, a correction function was applied to adjust the measured values. 

஼ܶ,ଵ = ߙ ∙ ௣ܶ௬௥௢ఊ +  (23) ߚ

The function TC,1 combines three typically applied correction parameters. The curvature 
is adjusted by the γ factor, the slope by the α factor and the offset by the β factor as can 
be seen in Equation (23). A correction with these three factors is sufficient in most 
cases. The median deviation after fitting the function was found to be 0.43 °C. 

To further reduce the error, a second method for correcting the measured values was 
considered. The differences between the ideal transfer function and the measured values 
were determined. Different functions were fitted using a least square estimate to the 
difference values. It was found that a fitting with a seventh-order polynomial function 
produced no significant error (median deviation 9.4·10-4 °C) and was therefore regarded 
as a suitable correction function. A plot of the difference function is shown in Figure 43. 
The measured temperature values can now be adjusted by adding the value of the 
difference function, as indicated in Equation (24). 

஼ܶ,ଶ = ௣ܶ௬௥௢ + ݂( ௣ܶ௬௥௢) (24) 

Both ways of compensation are applicable and both have advantages and drawbacks. 
While an adjustment according to Equation (23) allows better manual tweaking of the 
temperature values without the need for many values, it is relatively imprecise. 
However, it is still far better than the initial values. An adjustment according to 
Equation (24) is far more elaborate and requires a set of experimental values. However, 
the quality of the compensation is very good. This compensation method is appropriate 
where precision is needed and for series processes, especially when a precise 
temperature control is required. Numerous correction functions for different materials 
and surfaces may be stored within the control software, which would ease the set-up 
process of the temperature correction in the future. 
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Current process time and current temperature are processed by the ‘Temperature 
Control’ function block. The ‘Cure Profile’ structure provides the parameters regarding 
maximum duty cycle and the control algorithm. The temperature set points are 
continuously provided from an external source and are buffered within an array. Actual 
and set temperatures are compared, and a PWM duty cycle is set as the output variable. 

This PWM duty cycle is the input variable for the ‘Set PWM’ function block. The duty 
cycle value is converted into a compatible value for the PWM interface. The ‘Source 
State’ variable is set in the program’s global variable list, according to the set duty 
cycle, which is either equal to zero or one, to indicate if the source is switched on or not. 

6.1.5 Human machine interface 

The aim of the human machine interface (HMI) is to provide the system user with the 
capability to set the parameters of a cure profile, to start and stop curing processes and 
to visualize important factors during processing. Therefore, the HMI is, in this particular 
case, an intermediate layer between the user and the programmable logic controller 
(PLC). 

Numerous components are necessary to implement the HMI. The HMI needs to 
communicate with the PLC to send control commands and to receive status and process 
information. The user sets up cure profiles, may manually start and stop the curing 
process and needs to view the status of a running process. Functionality to save and load 
cure profiles and process data is also required. Components for PLC communication, 
user interaction and cure profile and data management are needed. 

Based on the functional requirements, an initial class diagram of the HMI was designed, 
as shown in Figure 47. The main class is the ‘Graphical User Interface’. It instantiates 
the ‘PLCBase’ class, a concrete class based on the abstract PLC class. From the 
‘PLCBase’ class an arbitrary number of communication classes can be instantiated. The 
‘CureProfileList’ class compiles the available cure profile data. These class 
relationships describe the relations between the three functional elements of graphical 
user interface, PLC communications and data management. 
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out within the machine concept. The resulting machine represents the first of its kind in 
having an integrated pick-and-place machine with embedded microwave curing system. 

Table 18 – Curing system implementation overview 

Feature Approach Implementation Section 

Curing Principle Microwave curing Prototype of microwave 
curing system 

6.1 

Microwave Source Solid-State Power 
Amplifier (SSPA) 

Custom designed and 
built SSPA 

6.1.1 

Microwave Applicator Open-ended waveguide 
resonator 

Open-ended waveguide 
resonator with integrated 
pyrometer 

6.1.3 

Control System Soft-PLC Beckhoff TwinCAT Soft-
PLC 

6.1.4 

Temperature Sensor Non-contact temperature 
sensor (pyrometer) 

Integration of pyrometer 
into applicator 

6.1.3 

Control Methods Frequency, temperature 
and heating control 

Implemented in TwinCAT 
Soft-PLC 

6.1.4 

 

Now that the curing system and the machine are available, their functions and their 
capabilities can be evaluated. 
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Table 19 – Machine implementation overview 

Feature Approach Implementation Section 

Process Flip-chip process chain with 
intermediate microwave 
curing steps 

Machine is, in principle, 
capable of performing the 
desired process 

5.5.9 

Substrate Microelectronic packages, 
PCBs, complex assemblies 

Flexible set up allowing the 
processing of the desired 
substrates. Adaptation to 
other substrates possible 

5.5.2 

Feeding Preferably from magazine 
with optional modification to 
automated conveyor 
systems or feeders 

Magazine feeding has been 
implemented. Adaptation to 
other feeding systems is 
possible 

5.5.2 

Pick and Place Relative positioning strategy 
with two vision sensors and 
laser triangulation sensor. 
Utilization of vacuum 
grippers for pick and place  

Process tools and sensors for 
proposed relative positioning 
strategy have been 
developed and integrated 

5.5.8 

Dispensing Time–pressure dispensers 
for ECA, underfill and 
encapsulant materials 

Three separate time–
pressure dispensers have 
been integrated 

5.5.4 

Curing Realization and integration 
of proposed microwave 
curing system 

Microwave curing system 
has been integrated 

5.5.11 

Machine Type Cartesian system with fixed 
product and feeding 
positions. Process tools are 
placed on the moving part of 
the machine 

Machine has been fully 
realized according to the 
proposed concept 

5.5.10 
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Requirement 4 demands reliability testing according to industrially relevant standards. 
These standard industrial tests are performed. Additionally, the effect of the curing 
mode on residual stresses within electronic packages is investigated. 
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7 Validation of the Proposed Solution Approach 
This chapter investigates whether the proposed method fulfils the previously identified 
requirements. This validation is performed by a number of experiments as outlined at 
the end of the previous chapter. 

7.1 Curing system capabilities 

A number of tests have been carried out to evaluate the heating capabilities of the 
proposed microwave heating system. To perform these tests, three different materials 
have been selected: an ICA; an underfill; and an encapsulant material. The selection has 
been performed based on the flip-chip process chain. For each of the required pastes, a 
suitable material was considered. The particular materials were selected with respect to 
prior work performed on microwave curing of polymer adhesives, whereby research 
was carried out on the properties during and after cure (Tilford et al. 2008b; Tilford et 
al. 2008a; Tilford et al. 2010e; Tilford et al. 2010b). 

7.1.1 Frequency control 

The three frequency control methods of constant frequency, variable-frequency 
microwave and frequency sweeping have been implemented and tested. All methods 
were found to be functional (Rupp 2011). 

Optimal heating results require the oven to be operated as close as possible to a resonant 
frequency. Perturbations, such as temperature or dielectric materials placed inside the 
load section, cause the resonant frequencies to change slightly, but not in a significant 
manner. As the temperature and the dielectric properties of the oven, and particularly 
the material placed in the oven, change during processing, the resonant frequencies also 
change. Therefore, in order to track a set resonant frequency, an auto-tuning algorithm 
has been implemented. Figure 70 shows a heating process with a set starting frequency, 
which is autotuned during the process (Rupp 2011). 
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been determined by the ratio of TgI and TgF.4 The results of the DSC measurements are 
shown in Table 21. 

Glass transition temperature Tg is considered to be a sensitive probe for the DoC 
beyond 95%, at which point regular DSC curves cannot predict a complete cure of the 
material (Zhang et al. 2004). The cure factor ΔTg can be regarded as a relative measure 
of DoC; the lower the cure factor, the higher the DoC of the specimen. The reference 
specimen U3 and C2 were prepared according to manufacturer specifications and can 
therefore be regarded as sufficiently cured. 

Table 20 – Cure profiles (MW: microwave, Convection: convection heating) 

ID Material Method Ramp Rate 

[°C/s] 

Hold Time 

[s] 

Temp 

[°C] 

Source 

E1 Hysol EO1080 MW 1.5 180 150 [1] 

E2 Hysol EO1080 MW 1.5 360 150 [1] 

E3 Hysol EO1080 Convection - 1200 150 [2] 

U1 FP4511 MW 1.5 360 150 [3] 

U2 FP4511 MW 1.5 720 150 [3] 

U3 FP4511 Convection - 7200 150 [4] 

C1 CE3103WLV MW 1.5 180 150 [5] 

C2 CE3103WLV Convection - 180 150 [5] 

[1] (Pavuluri et al. 2010a), [2] (EO1080 2010), [3] (Tilford et al. 2010a),  
[4] (FP4511 2010), [5] (CE3103WLV 2011) 

 

Sample E1 and E2, the microwave-cured samples of encapsulant exhibit practically the 
same behaviour during the first and the second pass. The glass transition temperatures 
are also very similar between the two passes. These materials are almost fully cured. 
The reference encapsulant sample E3 had a significantly higher cure factor. 

Sample U1 of the underfill showed a chemical reaction in the first pass; therefore, the 
glass transition temperature could only be preliminarily determined. The material 

                                                 
4 This calculation method is not accurate, but supports the illustration of the results. 
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sample U2 exhibited a slightly lower glass transition temperature and a slightly higher 
cure factor than the conventionally cured sample. 

The samples C1 and C2 show comparable glass transition temperatures and cure factors. 
The microwave-cured sample was exposed to heat for slightly longer, due to the 
controlled ramp-up, which might explain the slightly lower cure factor and higher DoC. 

It was possible to cure the adhesives according to the defined temperature profiles with 
the proposed curing system. After finding applicable parameters, the defined 
temperature profiles could be ideally followed in practice – fulfilling Requirement 2. 

Table 21 – DSC measurements 

ID Material Method TgI 

[°C] 

ΔCpI 

[J/g·°C] 

TgF 

[°C] 

ΔCpF 

[J/g·°C] 

ΔTg 

[°C] 

DoC 

E1 EO1080 MW 114.73 0.197 115.30 0.208 0.57 99.5% 

E2 EO1080 MW 117.34 0.152 117.72 0.198 0.38 99.7% 

E3 EO1080 Conv. 107.02 0.256 114.75 0.209 7.73 93.3% 

U1 FP4511 MW (128.30) - 143.11 0.108 (14.8) (90%) 

U2 FP4511 MW 132.49 0.155 139.92 0.108 7.43 94.7% 

U3 FP4511 Conv. 140.67 0.110 145.2 0.084 4.53 96.9% 

C1 CE3103 MW 85.30 0.073 87.69 0.088 2.39 97.3% 

C2 CE3103 Conv. 85.83 0.075 88.62 0.089 2.79 96.9% 

 

All three materials could be successfully cured. The results obtained from DSC testing 
and from the literature show that materials EO1080 and FP4511 can be cured to at least 
the same degree in drastically shorter times compared to the profiles proposed for 
convection ovens. Although no general statement about the reduction of curing cycle 
times can be made, it could be shown that curing cycles can be significantly reduced for 
certain materials with the proposed system. Requirement 1 is therefore regarded as 
fulfilled. 

7.1.4 Selective heating 

Open-ended cavity design is specifically designed to apply energy within the load 
section. Since the RF power is solely applied within the load section, heating processes 
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are confined to this designated volume (Sinclair 2009). The oven therefore supports 
selective heating of individual components on a substrate by design. 

The power absorbed per unit volume due to dielectric loss within a material exposed to 
an electric field is defined by Equation (25): 

஽ܲ =  ௥݂௘௦ߝߨ′′ ׬ ሬԦܧ ∙ ሬԦܸ݀௏ܸܧ  (25) 

where 

௥݂௘௦  resonant frequency of the coupled mode [Hz]; ߝᇱᇱ imaginary component of the complex permittivity; ࡱሬሬԦ  electric field [௏௠]; ܸ volume of the material [m³]. 

In order to maximize the dielectric power loss, and therefore the heating potential, the 
target sample should have a high dielectric loss tangent relative to the dielectric filling 
material within the cavity. Typical values for the dielectric constant of an 
epoxy/encapsulant range from 4 to 13. Typical values of tan δ at X band and at 24 °C 
for the epoxy range from 2·10-4 to 5·10-1 (Sinclair et al. 2008a; Sinclair et al. 2008d; 
Sinclair 2009). Therefore, for the application of the proposed curing system, materials 
with a high loss tangent at the applied microwave frequencies should be used. If, for 
example, an encapsulant with a very high loss tangent is applied onto an assembly with 
lower loss properties, then the encapsulant will be mainly heated. 

Silicon has a comparatively high loss tangent of 0.02 in the X band and can be 
effectively heated with the proposed system. To assess the selectivity of the system, an 
experiment was performed. A silicon block with dimensions of 3 × 3 × 1.5 mm was 
placed onto an FR4 circuit board with dimensions of 10 × 10 × 1 mm. A silicon block 
of height 1.5 mm was selected as the worst-case model for a silicon die.5 Eight SMD 
LEDs (Kingbright KP2012SGD) were placed at an approximate distance of 2 mm from 
the edge of the silicon. The LEDs were used as representative examples of temperature-
sensitive components. The oven was set up upside down, with the pyrometer pointing 
onto the silicon surface. Pictures of the experimental set-up are presented in Figure 77. 

                                                 
5 Silicon dies are typically significantly thinner (< 0.8 mm) and have a much lower mass. 
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Table 22 – Functionality of flip-chip samples 

Sample No. 

Process Step 
1 2 3 4 5 6 7 8 9 10 11 12 C1 C2 

Die Bonding               

Underfill               

Encapsulation               

 

Nine out of twelve samples were functional after the process. In sample 7, one of the 
two amplifiers did not survive the underfill process. In sample 9, no signal was obtained 
directly after die bonding. In sample 11, one amplifier was working normally after the 
encapsulation process, while the other amplifier was not found to be functional. The 
curing profiles of all chips were inspected, but did not show any significant deviations 
from the set cure profiles. Both control samples survived all processes. 

For the microwave-cured samples, 91.7% of the assembly operations per process step 
were successful. Defect rates in this order are common for new processes and are 
always subject to optimization. The results show that the attempted flip-chip assembly 
was successful and that the proposed system is, in principle, applicable for flip-chip 
assembly. 

7.3 Performance and effort comparison of microwave and 
reference heating methods 

An assessment of the assembly performance and handling effort is performed on the 
representative flip-chip process described in Section 3.3.1. The handling times within 
the machine were assumed to be 3 s. The handling times between assembly machine 
and oven were assumed to be 60 s. The curing cycle time assumptions were as indicated 
in Table 23. 

The convection curing cycle times correspond to the manufacturer’s guidelines. The 
microwave curing cycle times were derived from the findings described in Section 
7.1.3. Underfill curing allows for slightly incomplete curing in the first pass, which is 
permissible according to JEDEC J-STD-030. 
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Table 24 – Process durations for serial processing 

Process Type 

 

Process 

Total Process 
Duration 

Total Duration 
Of Primary 
Processes 

Total Duration 
Of Secondary 

Processes 

Total Duration 
Of Curing  
Processes 

Convection 9031 s 8607 s 424 s 8580 s 

Microwave 973 s 867 s 106 s 840 s 

 

The time expenditure for primary processes consists of assembly operations and curing 
processes. Curing processes are regarded as primary processes, but are separately 
presented in this graph. As can be seen from Figure 88, the vast majority of the primary 
process duration is required for curing processes. The main reason for the reduced 
processing time lies in the drastically shorter curing cycle times of microwave curing 
processes. The assembly times were equal for both the convection and microwave 
heating processes. 

The secondary processes are the handling processes. In this case, the machine with 
integrated curing system was compared to an external convection oven. The handling 
time between machine and oven was determined to be 60 s. The handling time within 
the machine was determined to be significantly lower with 3 s. In this case the handling 
times were reduced by the machine with integrated microwave curing system by 75%. 
In reality, the target product-handling effort between the individual processes could be 
completely eliminated. 

Overall, the calculation shows strong advantages to the microwave process compared to 
the convection heating process for single-piece processing. The proposed microwave 
process has a higher performance, requires lower handling effort than conventional 
processes and requires less space. 

7.3.2 Batch processing 

Convection heating processes in microelectronics are typically performed in batches. 
The proposed microwave heating process is a serial process. To assess the performance 
of a serial microwave process relative to convection heating batch processes, the 
throughput for both cases has been calculated. The results are shown in Table 25. 

With increasing batch size, the overall throughput of the convection process increases. 
A batch size of ten has approximately the same throughput as the microwave process. 
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For batch sizes larger than 10, the convection heating process has a higher performance 
than the microwave process. 

The dimensions of the waveguide resonator can be adapted to larger sizes. In this way, 
batch processing would also be possible with the microwave process. For example, a 
waffle pack could be processed in one step with this method. To assess the performance 
of a batch microwave system, the throughput has been calculated for different batch 
sizes. Figure 89 shows the throughput for microwave and convection heating for 
different batch sizes. 

The microwave process has, for all batch sizes considered, a significantly higher 
throughput than the convection heating process. The difference in throughput 
performance is particularly large in batch sizes below 1000. This corresponds to the 
capacity of typical magazines used is microelectronic packaging, such as waffle packs. 

The serial microwave process is particularly suitable for low-volume scenarios, such as 
prototyping. A variant of the curing system, suitable for batches, would have distinct 
performance advantages and would require less handling effort. 

Table 25 – Process durations for batch processing 

Properties

 
 

Process 

Batch 
Size 

Throughput 

[parts/h] 

Total  
Primary 

Processes 

Total  
Secondary 
Processes 

Total  
Duration Of 

Curing  
Processes 

Microwave 1 3.70 867 s 106 s 840 s 

Convection 1 0.40 8607 s 424 s 8580 s 

Convection 2 0.79 8634 s 458 s 8580 s 

Convection 4 1.56 8688 s 526 s 8580 s 

Convection 8 3.05 8796 s 662 s 8580 s 

Convection 10 3.76 8850 s 730 s 8580 s 

Convection 16 5.79 9012 s 934 s 8580 s 

Convection 32 10.55 9444 s 1478 s 8580 s 
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with the curing system set-up at Heriot-Watt University Edinburgh, which was used 
with a 50 W laboratory source (Pavuluri et al. 2012). 

Table 26 – Produced samples for reliability tests 
Profile 

Number 
Type of 

Cure 
No. of 

Samples 
Ramp Rate

[°C/s] 
Set Temp

[°C] 
Hold Time

[s] 
Function 

After Cure 

1 MW 20 1.66 150 100 OK 

2 MW 20 0.65 150 180 OK 

3 MW 20 0.4 150 669 OK 

4 Oven 20 - 150 1200 OK 

 

Each chip was tested once before curing and three times after curing. All samples were 
found to be functional before and after curing. 

7.4.2 Temperature cycling test 

Ten chips per profile have been subjected to a temperature cycling test based on JEDEC 
JESD22-A104. Figure 91 shows the parameters of the applied temperature cycle. These 
parameters correspond to ‘Test Condition H’. The high-temperature set point T1 was 
150 °C, while the low-temperature set point T2 was -55 °C. A dwell time td of 600 s was 
chosen. The ramp rate was not controlled, as it is regarded as non-critical for component 
testing (JEDEC 2015). A total of 1000 cycles were conducted in tests carried out by 
IMT Bucharest. Intermediate functionality measurements were carried out every 50 
cycles. 
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Table 27 – Overview of reliability test results 

Profile

 

 

Reliability Tests M
ic

ro
w

av
e 

Pr
of

ile
 1

 

M
ic

ro
w

av
e 

Pr
of

ile
 2

 

M
ic

ro
w

av
e 

Pr
of

ile
 3

 

Co
nv

en
tio

na
l P

ro
fil

e 

HAST Test (130 °C, 85% RH for 96 hours)     

Number of defective parts 0 0 0 0 

TCT (Lognormal)     

Mean life µ [cycles] 1000 1400 1500 450 

Standard deviation σ 1.8 2 2.1 1.5 

TCT after HAST (Lognormal)     

Mean life µ [cycles] 1600 700 1000 450 

Standard deviation σ 1.7 1.3 1 1.2 

 – Fulfilled, o – Partly fulfilled,  – Not fulfilled 

7.5 Stress measurement 

Results from reliability testing have shown a significantly improved reliability of 
microwave-cured packages compared to conventionally cured packages. A potential 
explanation could be reduced residual stresses caused by microwave curing compared to 
those of oven curing. As microwave curing provides volumetric heating, it is suspected 
that it thereby provides a more uniform curing process, with lower residual stresses 
compared to convection heating. 

7.5.1 Stress-measurement chips 

To measure and to subsequently optimize these residual stresses, a number of stress-
measurement chips have been developed within the last decade (Jaeger et al. 2000; 
Schwizer et al. 2003; Chen et al. 2006; Hirsch et al. 2006; Kittel et al. 2008b; 
Majcherek et al. 2009; Niehoff et al. 2009; Gieschke et al. 2010). 

One of these systems has been developed at Fraunhofer IZM as part of the BMBF-
funded project iForceSens (Kittel et al. 2008a). The main components of the system are 
a calibrated test chip and an ASIC control unit (Schreier-Alt et al. 2013). 
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The test chip itself was fabricated using CMOS technology and contains orthogonal 
stress-sensitive current mirrors (Kittel et al. 2008a). An external mechanical load causes 
an asymmetry of the current mirrors (Majcherek et al. 2009). The change in the drain 
current within these orthogonal Si-MOSFETs is described by the theory of 
piezoresistivity of silicon: ܴ݅,݆(ߪ) = ܴ0 ∙ ൭1 + ෍ ݈,݇,݆,݅ߨ ∙ ݈,݈݇,݇ߪ ൱ (26) 

where σ is the stress, π is the piezoresistive tensor and R is resistance (Suhling et al. 
2001). By a series of four-point bending tests of silicon strips with defined orientations 
and at various temperatures, the piezoresistive tensors have been determined as part of 
the project iForceSens (Kittel et al. 2008a). 

The stress sensor ASIC is structured with an array of orthogonally oriented nMOS and 
pMOS structures. The nMOS transistor channels are oriented along the [010] and [100] 
silicon crystal directions and are used to calculate the in-plane shear stress τxy as 
described by Equation (27) (Schreier-Alt et al. 2013). The pMOS transistor channels are 
aligned in the [-110] and [110] direction and are used to determine the in-plane normal 
stress σxx – σyy as described by Equation (28) (Schreier-Alt et al. 2013). 

߬௫௬ ≈ ଵଵ(௡)ߨ1−  − ଵଶ(௡)ߨ  ௢௨௧ܫ − ௢௨௧ܫ௜௡ܫ +  ௜௡ (27)ܫ

௫௫ߪ − ௬௬ߪ   ≈ ସସ(௣)ߨ2  ௢௨௧ܫ − ௢௨௧ܫ௜௡ܫ +  ௜௡ (28)ܫ

௫௫ߪ + ௬௬ߪ   ≈ ଵଵ(௡)ߨ2 + ଵଶ(௡)ߨ  ൬1 − ௜௡ܫ + ଴ܫ௢௨௧2ܫ −  ௭௭൰ (29)ߪଵଶ(௡)ߨ

By determination of the sum of the in-plane normal stresses as described by 
Equation (29), it becomes possible to calculate the normal in-plane stress components 
σxx and σyy (Schreier-Alt et al. 2013). The calculation of the components can be 
performed with an accuracy of 13%, while shear stress and normal stress differences 
can be calculated with an accuracy down to 4.5% and 1.2%, respectively (Kittel et al. 
2008a). These accuracies apply as long as the stress component σzz normal to the chip 
surface is negligible (< 10 MPa) or is known and the temperature is measured correctly 
(Schreier-Alt et al. 2013). The measurement accuracy further depends on the integration 
time during measurement (Suhling et al. 2001). 
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7.5.2 Preparation of samples for stress-measurement tests 

Different versions of this particular stress chip are available, which offer different arrays 
of measuring cells (Schreier-Alt et al. 2013). A version with dimensions 
1.13 × 1.11 mm², was chosen for further experiments, as the dimensions of the chip are 
comparable to those of the previously used voltage regulator die. A total of 104 stress-
measurement dies were packaged in the same open QFN packages as were used for the 
reliability tests. The chips were die-bonded to the package using Henkel CE3103WLV 
isotropically conductive adhesive. The four die contacts were wire bonded to the chip 
casing using 25 µm gold wire. 

The initial stresses on the open packages were measured as a zero-level reference. In 
summary, 95 packages were encapsulated with the same four curing profiles as used for 
the reliability tests. The curing system from Heriot-Watt University was used for these 
experiments with a 50 W source (Pavuluri et al. 2012). For each of the microwave 
profiles, 25 samples were produced and 20 chips were cured using the conventional 
profile. A total of four chips were discarded as these had either visible voids or strongly 
irregular surfaces (three from Profile 1, and one from Profile 2). Table 28 shows an 
overview of the produced samples and the cure profiles applied. 

Table 28 – Produced samples for stress-measurement tests 
Profile 

Number 
Type of Cure No. of 

Samples 
Ramp Rate

[°C/s] 
Set Temp 

[°C] 
Hold Time

[s] 

1 MW 25 1.66 150 100 

2 MW 25 0.65 150 180 

3 MW 25 0.4 150 669 

4 Convection 20 - 150 1200 

 

The stress was measured for each of the encapsulated chips. One stress chip from 
Profile 2 was not readable and was discarded. All other stress chips were readable. 

7.5.3 Results 

The distributions of the in-plane normal stresses σxx and σyy, as well as the distributions 
of shear stresses τxy were determined for each chip. All components of the plain stress 
tensor σ are thereby known. Based on the individual components of the stress tensor, an 
equivalent stress can be calculated – facilitating a comparison of the stress between 
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convection oven curing. The results of the conventional cured packages are in a 
comparable range as values obtained for transfer moulding of QFN packages (Schreier-
Alt et al. 2013). 

7.6 Assessment of results 

In this chapter, it has been experimentally demonstrated that the proposed microwave 
heating system can be successfully applied to cure typical adhesives in electronic 
packaging. Furthermore, the integration of this system into precision assembly systems 
was successfully demonstrated, reducing the number of handling steps, which is 
particularly beneficial for lower volumes or prototyping. Microwave curing was 
successfully applied for the intermediate curing steps of flip-chip assemblies. Thermal 
cycling and HAST tests indicated an improved reliability compared to conventional 
curing. 

The requirements identified in Chapter 3 are manifest in the design and build of the 
system and have been fulfilled. Table 29 illustrates the fulfilment of each requirement. 
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Table 29 – Assessment of fulfilment of requirements 

Requirement Description Status 

1 
Reduction of curing cycle times down to the 
duration of reflow processes according to J-STD-
020E 

Fulfilled  

 Section 7.1 

 ECA, underfill and encapsulant materials can be cured with the proposed microwave 
curing system with drastically reduced cycle times – below 420 s – compared to 
convection oven curing, albeit with potential for process optimization.  

2 

Controlled heating of the polymer adhesive 
according to a defined temperature profile 
within an industrially relevant range of process 
parameters 

Fulfilled  

 Section 7.1 

 Heating processes can be performed with the proposed microwave curing system 
according to the defined range of temperature profiles, with closed-loop control of 
temperature and resonant frequency, and without the occurrence of arcing and 
sparking. 

3 
Selective heating with reduction to target 
temperature within clearance area 

Fulfilled  

 Section 7.1.4 

 Selective heating is achieved by the confined geometry of the applicator and a 
potential selectivity by materials with a high loss tangent. Reduction to target 
temperature within specified distance was achieved.  

4 
At least the same reliability as conventional 
technologies 

Fulfilled  

 Sections 7.4, 7.5 

 Microwave-cured QFN packages have lower internal stresses than packages cured in a 
convection oven, which significantly improves performance in thermal cycling and 
HAST tests. 

5 
Integration of all process components into a 
single machine, particularly the curing 
equipment 

Fulfilled  

 Sections 6.5, 7.2 

 The combination of automated assembly and microwave curing equipment is possible, 
enabling microelectronic packaging processes such as flip chip to be implemented, 
with distinct advantages regarding process performance. 
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Prior to an industrial exploitation, an economic assessment of the proposed method and 
the connected machinery against potential alternatives is to be carried out. This requires 
target definitions to be performed beforehand, as these mainly define the functionality 
and properties of the applied process and machinery. Only then the application of the 
prototype in an industrial setting is possible. 

7.7 Progress beyond the state of the art 

The method proposed in this work integrates a novel microwave curing system into a 
precision assembly machine. 

Within this work a machine-integrable microwave curing system is developed. In 
contrast to existing microwave heating and curing systems, the presented concept 
applies an open-ended microwave applicator. This novel approach enables the effective 
processing of single components, without the necessity for intermediate handling steps. 

The control system implements temperature control, power control functionalities and 
novel methods for the frequency control, which allow optimization of the efficiency of 
the system and enables preventive measures against arcing and sparking. The concept 
and the realization of the curing system – capable of being integrated into a machine – 
are novel and represent significant progress beyond the current state-of-the-art 
equipment. The novel control system exceeds the capabilities provided by existing 
microwave curing systems and therefore represents significant progress. 

A concept of a machine integrating the proposed curing system has been developed. 
Using the example of a flip-chip assembly process, a process chain with intermediate 
microwave curing steps was developed. A prototype precision assembly machine was 
built, integrating the microwave curing system to provide the proposed process chain. 
The proposed system is the first of its kind and represents significant progress beyond 
the state of the art as there is currently no precision assembly machine with integrated 
microwave curing equipment available. 

In the course of the experimental validation of the system, several new aspects have 
been investigated. For the first time, experimental tests have been performed to discover 
the occurrence of arcing or sparking and investigate its possible prevention. The 
proposed novel flip-chip assembly process has been experimentally verified. For the 
first time, a number of QFN packages have been prepared using the open-ended 
applicator and tested for reliability. In another experiment, stress-measurement chips 
have been packaged, cured with the microwave curing system, and subsequently 
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analysed. The experiments carried out with the proposed microwave curing system are 
novel and represent a significant progress beyond the current state of the art. 

A summary of the achieved progress is compiled in Table 30 (for the microwave curing 
system), Table 31 (for the machine with integrated curing system) and Table 32 (for the 
experimental validation). 

Table 30 – Progress beyond state of the art regarding curing system 

Microwave Curing System 

State of the Art Progress Beyond State of the Art 

Commercial batch microwave curing systems 
and laboratory-scale microwave curing 
system with open-ended resonator 
(Section 4.1.4) 

Machine-integrable microwave curing system 
with open-ended microwave resonator and 
solid-state microwave source (Section 5.2) 

No integrated temperature measurement in 
open-ended resonator. Temperature 
measurement inside heated material (Section 
4.1.4) 

Integration of pyrometer into open-ended 
resonator. Non-contact measurement of 
temperature (Section 6.1.3) 

Frequency control strategies comprise 
constant frequency, pulsing and frequency 
sweeping (Section 4.1.4) 

Implementation of constant frequency, 
pulsing, frequency sweeping and frequency 
hopping (Section 5.4) 

No tracking of resonant frequency 
(Section 4.1.4) 

Auto-tuning of the resonant frequency for 
maximum power output (Section 5.3.1) 
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Table 31 – Progress beyond state of the art regarding the proposed machine 

Precision Assembly Machine with Integrated Microwave Curing System 

State of the Art Progress Beyond State of the Art 

Precision assembly and microwave curing are 
performed in separate machines (Sections 4.2 
and 4.3) 

Assembly machine with integrated microwave 
curing process has been proposed (Sections 
6.3, 6.4 and 6.5) 

There is currently no combined precision 
assembly and microwave curing strategy 
(Section 4.1.4) 

An absolute assembly strategy with 
intermediate microwave curing steps for flip-
chip assemblies has been proposed 
(Section 5.5.9) 

Product handling between process steps is 
usually necessary, particularly between the 
assembly and curing steps (Sections 4.2 and 
4.3) 

No intermediate product handling necessary 
(Section 7.2) 
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Table 32 – Progress beyond state of the art regarding experimental validation 

Experimental Validation 

State of the Art Progress Beyond State of the Art 

Open-ended resonator shown to cure EO1080 
encapsulant and FP4511 underfill (Section 
4.1.4, (Pavuluri et al. 2012)) 

It was demonstrated that encapsulant, 
underfill and ICA can be cured with the 
proposed system. Microwave curing has 
significantly reduced curing cycle times for 
selected materials (Section 7.1.3) 

Occurrence of arcing and sparking with open-
ended resonator has not yet been 
investigated (Section 4.1.4) 

Experiments with high-speed camera have 
been performed. No arcing or sparking 
occurred during processing of several 
microelectronic parts. Occurrence cannot be 
fully excluded, but preliminary results indicate 
no detrimental effects due to microwave 
curing (Section 7.1.5) 

Commercial batch processing systems achieve 
partial selectivity through material properties, 
mainly the loss tangent. Effect is weakened by 
frequency sweeping (Section 4.1.4, (Mead et 
al. 2003)) 

Open-ended resonator allows application of 
energy in confined area. Also, due to loss 
tangents, material-selective heating is 
possible. Has been proven by thermal imaging 
(Section 7.1.4) 

No assembly of microelectronic packages 
performed with open-ended resonator 
system. 

Broad spectrum performed with batch system 
(Section 4.1.4) 

Flip-chip process chain with intermediate 
microwave curing steps has been performed 
with proposed machine. Process is not fully 
stable yet, but feasibility has been 
demonstrated (Section 7.2) 

Reliability of components cured with open-
ended microwave resonator system unknown 
(Section 4.1.4) 

TCT and HAST testing of microwave-cured and 
conventionally cured QFN was performed. 
Microwave-processed parts showed improved 
reliability compared to control (Section 7.4) 

Possible influence of microwave curing on the 
residual stresses of cured materials is 
unknown. Positive influence and hence lower 
residual stresses are suspected (Section 4.1.4) 

Encapsulation of stress-measurement chips 
into QFN packages was performed. 
Microwave-cured packages show significantly 
lower stresses than conventionally cured 
packages (Section 7.5) 
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8 Summary and Outlook 

8.1 Summary 

Driven by the continuous trend for miniaturization with concurrent functional 
integration, the field of advanced electronic packaging continues to gain prevalence. 
The processes in use today are efficient for mass production, but are not suitable for the 
purposes of low volume and prototype production. 

The need for expensive masks and tooling in advanced packaging processes can be 
obviated by the application of adhesives, where bonding processes can be employed 
with significantly greater flexibility, particularly for lower-volume production. A 
significant drawback of adhesive bonding is the duration of the curing processes. 

A typical assembly process of an electronic package (a flip-chip process, for example) 
requires numerous heating cycles to cure the adhesive and encapsulant materials. These 
heating cycles extend from several minutes to several hours, representing a clear 
bottleneck in the production of microelectronic assemblies. 

Moreover, the system technology typically applied in electronics packaging today is 
implemented by a number of separate stations, with each station carrying out one part of 
the process chain. While this approach is efficient for batch production, when 
considering lower-volume production, a number of drawbacks become apparent. 

To overcome these problems, a novel method for the assembly of electronic packages 
and MEMS is required, one that improves the efficiency of assembly processes and 
reduces the handling effort between the separate process steps. 

The domain of electronic packaging was analysed in Chapter 3 and surface-mount 
devices were identified as being of particular interest. Since flip-chip assemblies involve 
the same characteristic base processes as complex multi-chip assemblies, the flip-chip 
process is an appropriate reference process. A detailed analysis of the flip-chip process 
revealed ECA interconnects, underfill and encapsulation as key adhesive-application 
processes within the flip-chip assembly process. Curing of the respective pastes requires 
precise control according to defined temperature profiles and these curing cycles often 
last for several hours – this was identified as the main subject for optimization. Another 
important aspect is reliability; the assembly should be exposed to minimal stress, which 
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should ideally be confined to the volume of interest – the cured paste itself. Reliability 
of the electronic assembly must not be affected. 

The assembly process is analysed from the production perspective. Through means of a 
primary–secondary analysis, a considerable number of handling processes were 
identified, the majority of which involved the transport of the product assembly to an 
oven for curing. This drastically reduces the performance of the process for low-volume 
production carried out using separate stations. 

A review of the current state of the art in Chapter 4 revealed that, besides convection 
heating, which is in common usage, numerous other methods exist for the curing of 
pastes in electronic packaging. Each of the methods has distinct advantages, but none 
currently provide a solution to the requirement profile identified in the present study. A 
review of state-of-the-art packaging machines showed that integration of curing 
equipment into the assembly machines is not currently available. 

The concept of a curing system and its machine integration was developed in Chapter 5, 
where basic heating processes were discussed and assessed and microwave heating was 
selected. The main components for the system were identified and viable options for 
these components were assessed and selected according to the requirements. An open-
ended cavity was selected for the applicator. A control concept was developed around 
the components of the heating system comprising frequency, temperature and power 
control. 

The machine concept was developed based on the curing system and the specific 
requirements of the machine were analysed. The processes needed for the assembly of 
microelectronic packages were studied and proposals were made for specific 
subsystems to carry out these processes. A positioning strategy was developed with the 
proposed process tools and, based on the example of flip chip, an example process chain 
was proposed. An initial machine concept was then derived. 

A prototype for an integrable microwave curing system was developed and 
implemented; this is described in Chapter 6. The RF power was provided by a solid-
state microwave source and an applicator with integrated pyrometer sensor was 
designed and built. Diode sensors for measurement of inbound and outbound power 
were integrated and a PLC control system was developed that implemented different 
algorithms for temperature and frequency control. 

Based on an existing precision placement system, a machine providing assembly and 
curing processes in one system and the associated process tools were designed and built. 
The curing system was integrated physically and interfaced with the control system. A 
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control software for the complete integrated system was developed. In so doing, a first-
of-its-kind assembly machine with integrated microwave curing system was proposed. 

The basic function of the curing system is evaluated in Chapter 7. Testing showed all of 
the temperature and frequency control functionality to be operational. 

Three representative materials were selected for the curing tests: an ECA; an underfill; 
and an encapsulant material. All three materials were successfully cured using the 
proposed microwave curing system and all three saw improved cure rates compared to 
conventional methods.  

The occurrence of arcing and sparking was experimentally tested with different 
parameters on different relevant components. Neither by electrical measurement, nor by 
a high-speed camera, could arcing or sparking be observed. The occurrence of arcing 
and sparking, and their potentially detrimental effects, cannot, however, be fully 
excluded, although there is no indication of undesired destructive arcs or sparks during 
microwave processing with the proposed curing system. 

The proposed flip-chip process with microwave curing was subject to testing with 
twelve sample assemblies and it was shown that the complete process chain could be 
successfully realized. The principal feasibility of the proposed flip-chip process with 
intermediate microwave curing was proven. 

A series of reliability tests (thermal cycling, HAST) were carried out on QFN packages 
encapsulated with EO1080. Three microwave profiles and a reference conventional 
profile were used. The results showed that the microwave-cured samples delivered a 
significantly higher level of reliability. 

To investigate the improved reliability of the microwave-cured packages, another set of 
samples was prepared with the same curing profiles, but with packaging stress-
measurement chips. The results showed that the microwave-cured profiles have 
consistently lower internal stresses than conventionally cured samples. A possible 
explanation for this is that volumetric heating causes significantly lower residual 
stresses, as predicted by multi-physical modelling. 

The performance of the proposed microwave process relative to a convection heating 
process was calculated. In a one-piece-flow scenario, the proposed microwave process 
provided significantly better performance. When comparing a one-piece-flow 
microwave process to a convection oven batch process, the microwave process provided 
better performance up to batch sizes of ten. A microwave batch system was then 
investigated and the results showed that a microwave batch system would provide 
distinct performance benefits, with a particularly strong performance gain for batch 
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sizes of up to 1000 pieces per batch. An applicator suitable for a whole magazine would 
therefore provide a strong performance improvement compared to convection heating 
processes. 

8.2 Outlook 

In this work, the microwave curing of three different materials were studied. The 
materials used were commercially available and not specifically optimized for 
microwave heating. To obtain further-increased heating rates and improved process 
stability, as well as increased selectivity during heating, materials with high loss 
tangents need to be either identified or developed. Additives with high loss tangents, 
such as carbon black, carbon nanotubes, graphenes, fullerenes or silicon powder may be 
applied to increase the susceptibility of the processed pastes. 

The proposed curing system provides curing according to defined temperature profiles. 
It has been shown that the chemistry of the processed pastes is similar to that of 
conventionally cured pastes. However, the involved gelation and vitrification processes 
are performed faster and with different dynamics, which may lead to different material 
properties. Further research and development is necessary to identify temperature 
profiles that are optimized for microwave curing, including optimization for specific 
assemblies. The polymer cure modelling performed by Tilford et al. may be further 
exploited for this purpose (Morris et al. 2009; Tilford et al. 2010d). 

The experiments performed in this work indicate that microwave-cured assemblies are 
more reliable than conventionally cured assemblies due to having lower residual stress. 
The experiments were carried out with relatively small sample sizes and just one 
encapsulant material. Further research and development is advised to reproduce and to 
statistically substantiate the findings. Additional research is necessary to investigate 
whether the beneficial effects extend to other materials and assemblies. 

The machine developed, constructed and tested in this work shows how microwave 
curing can be directly integrated into an assembly machine to provide an integrated 
process chain without intermediate handling steps. In so doing, the overall performance 
of the process has been significantly improved. In this work, the flip-chip assembly 
process was used as an example of an advanced packaging process. In order to further 
exploit the benefits of the proposed technology, the assembly of complex 2D and 3D 
packages should be investigated. 

Finally, the performance of the microwave curing system has clear advantages in 
comparison to convection heating systems. A modification of the curing system for 
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batch processing would potentially provide even further performance gains. Therefore, 
the development of a curing system with a larger waveguide resonator would be a 
possible next step towards an industrially exploitable microwave curing system. 
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Appendix 

I. Flip-chip-on-board process 
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SMT Process* [Harper 2004]   

Solder paste printing* 420 8.57 

Solder paste inspection* 420 8.57 

Component placement* 420 8.57 

Pre-reflow optical inspection* 420 8.57 

Reflow soldering [JEDEC 2015] 420 8.57 

Post-reflow optical inspection* 420 8.57 

Flip-Chip-On-Board Process   

Dispensing ECA 60 60.00 

Placement of die 60 60.00 

Curing of ECA (Epotek 377H) 3600 1.00 

Dispensing of underfill 60 60.00 

Curing of Underfill (FP4511) 7200 0.50 

Dispensing of ECA 60 60.00 

Curing of Encapsulant (EO1080) 1200 3.00 

Throughput Without Flip-Chip-On-Board  8.57 

Throughput With Flip-Chip-On-Board  0.5 

*SMT processes are all assumed to have the same duration (serial process, bottleneck: reflow) 
 



 

II

 

 

I. Prrimmary––SSeccoonddar

 

ry annalyssiss 

11855 

 



 

18

III

86 

. FFliip--chhipp aasssemmbblyy pprooceess

 



 

 

11877 



 

18

 

88 

 
 



 

189 

IV. Extended reliability test results 

 

Microwave Profile
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HAST Test (130 °C, 85% RH for 96 hours)     

Number of defective parts 0 0 0 0 

Temperature Cycling Test (Weibull)     

Shape parameter β 1.09 0.98 0.87 1.77 

Characteristic life η [cycles] 1467.58 1858.14 2260.74 907.68 

Mean life µ [cycles] 1421.75 1874.16 2425.77 808.28 

Variance σ² 1.68·106 3.65·106 7.83·106 2.21·105 

TCT After HAST (Weibull)     

Shape parameter β 1.02 1.16 0.66 1.31 

Characteristic life η [cycles] 2366.50 1239.87 3291.67 762.88 

Mean life µ [cycles] 2346.87 1176.25 1313.15 702.90 

Variance σ² 5.29·106 1.02·106 1.11·106 2.96·105 

Temperature Cycling Test (Lognormal)     

Mean life µ [cycles] 1000 1400 1500 450 

Standard deviation σ 1.8 2 2.1 1.5 

TCT After HAST (Lognormal)     

Mean life µ [cycles] 1600 700 1000 450 

Standard deviation σ 1.7 1.3 1 1.2 

 – Fulfilled, o – Partly fulfilled,  – Not fulfilled 
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Kurzfassung 

 

Durch den anhaltenden Trend der Miniaturisierung bei gleichzeitiger 
Funktionsintegration steigt die Komplexität in der Aufbau- und Verbindungstechnik 
stetig. Die dabei eingesetzten Fertigungsverfahren sind ausgelegt auf eine 
Massenproduktion und nur bedingt geeignet für kleinere Stückzahlen. Durch den 
Einsatz von Klebstoffen in der Aufbau- und Verbindungstechnik kann die aufwändige 
und für die Massenproduktion typische Herstellung von Werkzeugen umgangen 
werden. Die dabei eingesetzten Fügeprozesse weisen eine deutlich höhere Flexibilität 
auf, insbesondere bei kleinen und mittleren Stückzahlen. Ein deutlicher Nachteil ist 
jedoch die häufig lange Dauer der Aushärteprozesse im Verhältnis zu den übrigen 
Montageprozessen. Im Zuge dieser Arbeit wird daher ein neues Verfahren beschrieben, 
welches den Durchsatz der Montageprozesse erhöht und den Wirkungsgrad des 
Gesamtmontageprozesses steigert. Dabei wird insbesondere eine Reduzierung der 
Aushärtezeiten adressiert. 

Es wird zunächst eine Anforderungsanalyse der Aufbau- und Verbindungstechnik mit 
Fokus auf die Anforderungen des Aushärtens von Klebstoffen durchgeführt. 
Anschließend wird der relevante Stand der Technik analysiert und die Notwendigkeit 
eines neuen Verfahrens erörtert. Es wird ein Konzept eines neuartigen Mikrowellen-
Aushärtesystems unter Einsatz eines einseitig offenen Wellenleiters beschrieben. 
Verschiedene Konzepte zur Regelung des Heizprozesses werden beschrieben. Zur 
Realisierung des gesamten Mikromontageprozesses wird eine Montageanlage mit 
integriertem Mikrowellen-Aushärtesystem konzipiert. Beide Systeme werden 
anschließend prototypisch umgesetzt. Im Folgenden wird das Verfahren experimentell 
evaluiert. In diesem Zuge wird eine Flip-Chip-Baugruppe mit dem neuen Verfahren 
aufgebaut. Um den Einfluss auf die Zuverlässigkeit zu bestimmen werden an einer 
repräsentativen Baugruppe Thermozyklentests durchgeführt. Weiterhin werden 
Einflüsse des Verfahrens auf Zuverlässigkeit, Durchsatz und Montagewirkungsgrad 
untersucht. 

Mit dem beschriebenen Verfahren können die Aushärtezeiten deutlich reduziert und 
somit der Durchsatz gesteigert werden. Der Montagewirkungsgrad kann durch die 
Verringerung des Handhabungsaufwands stark verbessert werden. Weiterhin konnte 
gezeigt werden, dass die Zuverlässigkeit der montierten Baugruppen durch reduzierte 
innere Spannungen innerhalb des Klebstoffs erhöht werden kann. 

 



 



 

 

Short Summary 

 

Advanced electronic packaging continues to gain prevalence, driven by the continuous 
trend for miniaturization with concurrent functional integration. Processes in use today 
are typically efficient for mass production, but are not suitable for the purposes of low 
volume and prototype production. Adhesive bonding circumvents the elaborate tooling 
typical for mass production and provides a higher degree of flexibility. Disadvantages 
lie in long curing cycle times and high handling effort. To overcome these problems, a 
novel method for the assembly of electronic packages is proposed, one that improves 
the performance and efficiency of the assembly processes and reduces the handling 
effort between the separate process steps by integration of assembly and curing process 
equipment into a single machine. 

An analysis of the field of electronic packaging with particular respect to adhesive 
curing processes is performed. Then the relevant state-of-the-art is reviewed and the 
need of a novel method is identified. The conception and realization of a microwave 
curing system, based on an open-ended waveguide resonator are carried out. Different 
concepts for the control of the curing process are described. A machine integrating the 
curing system and the assembly process equipment is designed and prototypically 
realized. This is followed by extensive evaluation and testing of the novel method. In 
the course of the evaluation a representative flip-chip assembly is realized. In order to 
assess the influence on reliability, a series of temperature cycling tests is performed. 
Additionally, stress-measurement dies are packaged and the influence of the proposed 
method onto residual stresses is studied. The influence of the proposed method on 
throughput and assembly efficiency is investigated. 

The proposed method provides reduction of curing cycle times for three different 
adhesive materials and therewith an increase of the overall throughput. By reduction of 
handling effort, the overall process efficiency could be improved. Furthermore, by 
microwave curing with the proposed method, a higher reliability of the resulting 
electronic packages can be achieved. The experiments with the stress chips reveal lower 
residual stresses in the microwave-heated chips compared to convection heating. 

 



Advanced electronic packaging continues to gain prevalence, driven by the 
continuous trend for miniaturization with concurrent functional integration. 
Processes in use today are efficient for mass production, but are not suitable 
for the purposes of low volume and prototype production. To overcome 
these problems, a novel method for the assembly of electronic packages is 
proposed, one that improves the efficiency of assembly processes and 
reduces the handling effort between the separate process steps by 
integration of assembly and curing process equipment into a single machine. 
An analysis of the field of electronic packaging with particular respect to 
adhesive curing processes is performed, the relevant state-of-the-art is 
reviewed and the need of a novel method is identified. The conception and 
realization of a microwave curing system, based on an open-ended wave-
guide resonator and a prototype machine integrating the curing system are 
carried out. This is followed by extensive evaluation and testing of the novel 
method. The proposed method provides reduction of curing cycle times for 
different adhesive materials and improvement of the overall process 
efficiency.
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