PRECISE SELECTIVE DOPING AND METALLIZATION FOR NEXT-GENERATION PERC TECHNOLOGY

<u>R.Keding</u>, R.Efinger, E.Lohmüller, M.Jahn, T. Fellmeth, M.Messmer, S.Meier-Meybrunn, J.Horzel, S.Lohmüller, J.Weber, M.Demant, A.Lorenz, P.Saint-Cast, A.A.Brand, J.Nekarda, F.Clement, J.Greulich, R.Preu, M.Pickrell¹, J.Hermans²

¹Sun Chemical (UK)

²Meyer Burger (NL) B.V.

AGENDA

Motivation

PERC's roadmap according to ISE

- ITRPV predictions
- Approach
 - PERC base line
 - Precise, congruent patterning
- Application
 - Selective emitter PERC
 - Bifacial cells
- Conclusions

ITRPV: International Technology Roadmap for Photovoltaic

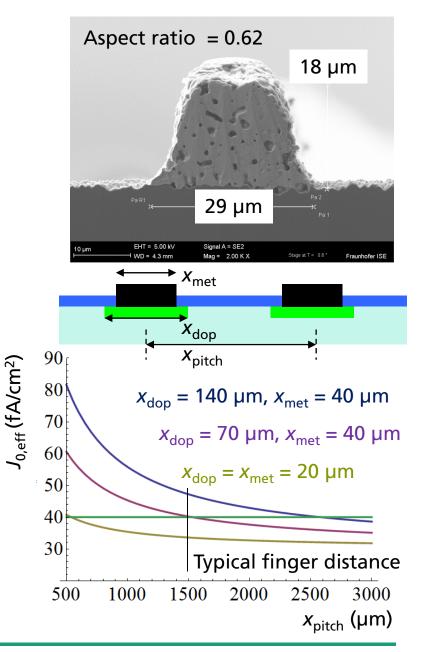
Motivation PERC's roadmap according to ISE

7-step program to 240 W/m² *

1: Fine, high aspect ratio front contacts

2: No-overlap selective emitters

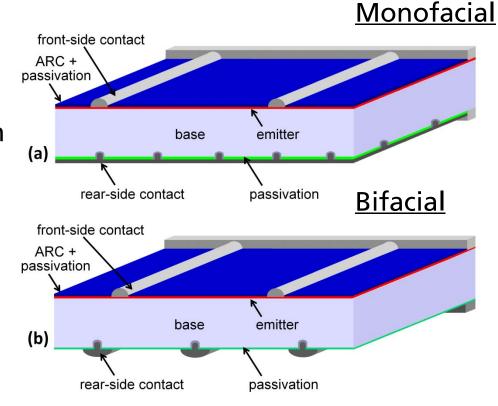
- 3: Low-cost, high quality material
- 4: Increased productivity


5: Bifaciality

- 6: Bifacial shingled cells with passivated edge
- 7: Introduction of passivated contacts

Motivation ITRPV predictions for 2029

- Feature size target *x*_{met} below 20 µm
- Effective dark saturation current density target per side
 J_{0,eff} below 40 fA/cm²
- Precision enables ITRPV predictions
- Max. alignment tolerance of ±15 µm



Motivation ITRPV predictions for 2029

Bifacial cells enable

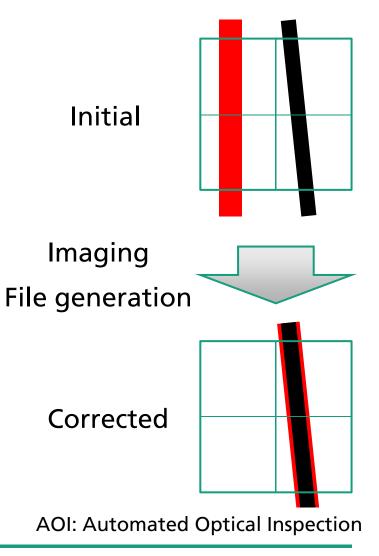
- Collection of light from both solar cell sides
- Additional yield by 10 - 40% [1-3]
- Bifacial cells will gain market share
 - 15% in 2019
 - 60% in 2029

[1] L. Podlowski et al., Bifi workshop, 2017;
[2] N. Eisenberg, R. Kopecek, V. Fakhfouri et al., PV-tech.org, 2017;
[3] A. Flores et al., Taiyang News, 2017;

Even more patterning

Approach PERC base line process

- Industrial PERC solar cells processed in two separate pilotlines
 - Front-End (no metal)
 - Back-End
- Efficiency of **21.6 %**
- Evaluation of
 - Machines and Components
 - Materials like solar cell precursors



Approach *Precise, congruent patterning*

- Digital file generation based on e.g. screen-printed pattern
- Procedure
 - Fabrication of test samples
 - Imaging, *r*_{x,y} = 5 μm
 - Shape determination
 - Offset determination
 - Typ. max. offset ± 50 µm
 - Shape-congruent file generation incl. Offset (algorithm)
 - Vision: AOI meets file generation

Approach Industrial application

- Patterning process 2 and 1 can be adapted to each other
- Patterning process 1 can be adapted to process 2 and the processes are directly in a row
- Potential industrial PERC upgrades

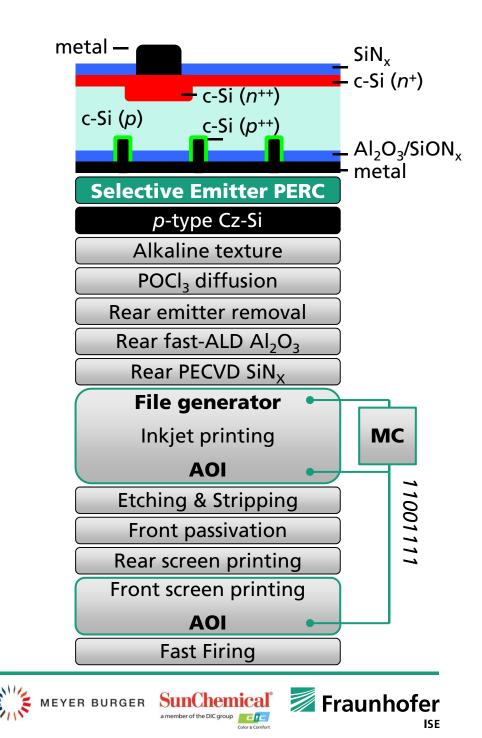
Cell	SE PERC / Plating	biPERC	biPERL				
Front-End							
Patterning 1	Laser LDSE	Laser LCO 🔦	Laser PassDop 🥿				
Patterning 2	Laser LCO 🖉	SP metal 🥏	SP metal 🥏				
Back-End							

R&D option: SE PERC; inkjet for ink&etch doping and screen printing for metallization;

LDSE: Laser-diffused sel. Emitter; LCO: Laser contact opening; SP: Screen printing; SE: Selective emitter;

Application I (R&D) Selective emitter PERC

Screen-printed metal on ink&etch doping



Selective Emitter PERC *Patterning*

- Doping patterning
 - Diffusion
 - Ink&etch of c-Si (n++)
- Metal application
 - Screen printing
 - Alternatives at ISE
 - Rotational printing
 - Flexo and Rotational SP
 - Dispensing
- MC: Microcontroller

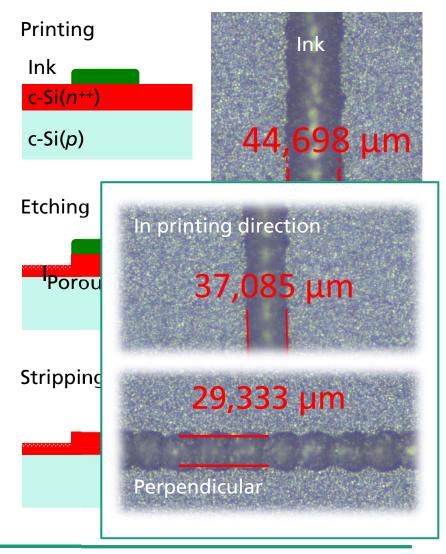
Selective Emitter PERC

Feature size of c-Si(n++)

Technique

- Inkjet of wax
- Selective etching of silicon
- Stripping and cleaning
- No underetching detected
- Feature size of $c-Si(n^{++})$ equals jetted lines
- Minimum feature size below 30 µm

MEYER BURGER SunChemical


Selective Emitter PERC

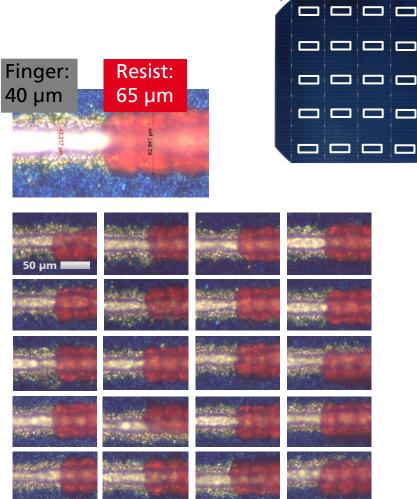
Feature size of c-Si(n++)

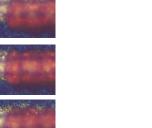
Technique

12

- Inkjet of wax
- Selective etching of silicon
- Stripping and cleaning
- No underetching detected
- Feature size of c-Si(n⁺⁺) equals jetted lines
- Minimum feature size below 30 µm

Fraunhofer

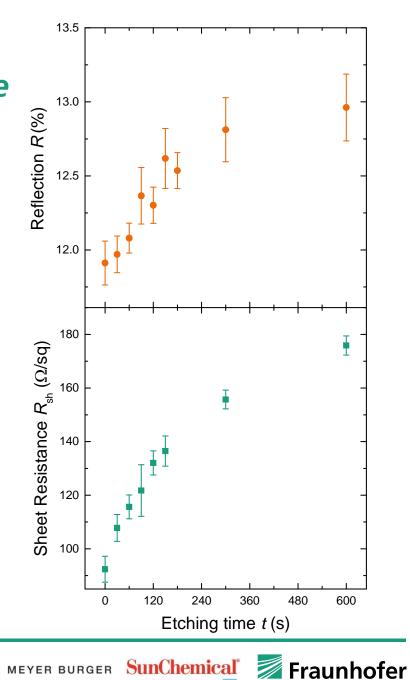

ISE


Selective Emitter PERC

Aligment precision

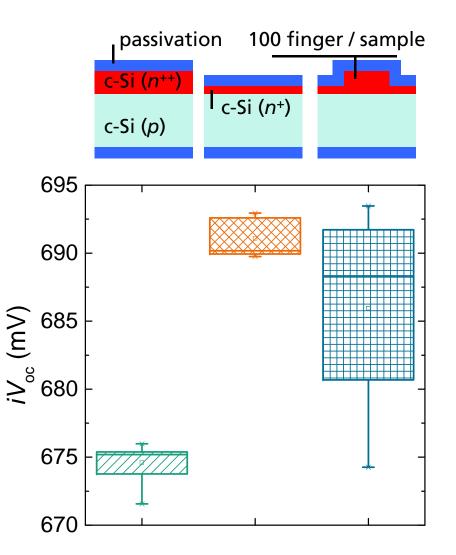
Method

- Screen printing of fingers
- Inkjet printing of adapted pattern incl. interrupted lines for vizualization
- Microscopy of around 1000 positions per wafer
- Result
- Alignment accuracy below ±15 μm



156 mm

Selective Emitter PERC Reflection and sheet resistance


- Sheet resistance R_{sh} adjustable with etching time
- Minor increase in reflection due to rounding of pyramids' tips
- Trade-off between resistive and recombination losses at
 *R*_{sh} = 120 Ω/sq

ISE

Selective Emitter PERC Recombination

- Evaluation of recombination by QSSPC and unsymmetrical sampling
- Silicon etching improves implied open circuit voltage i V_{oc} by around 20 mV
- Selective silicon etching leads to a decrease in homogeneity
- Interaction between ink and etching media assumed

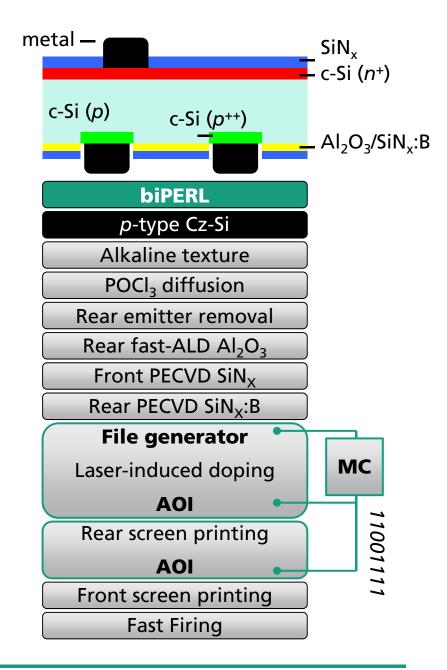
QSSPC: Quasy steady state photo conductance

Fraunhofer

ISE

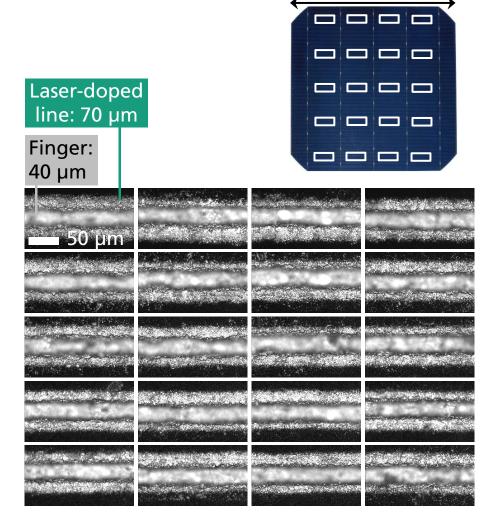

MEYER BURGER SunChemical

Screen-printed metal on <u>laser-induced doping</u> (pPassDop) and <u>Laser Contact Opening (LCO)</u>



Bifacial PERL *Patterning*

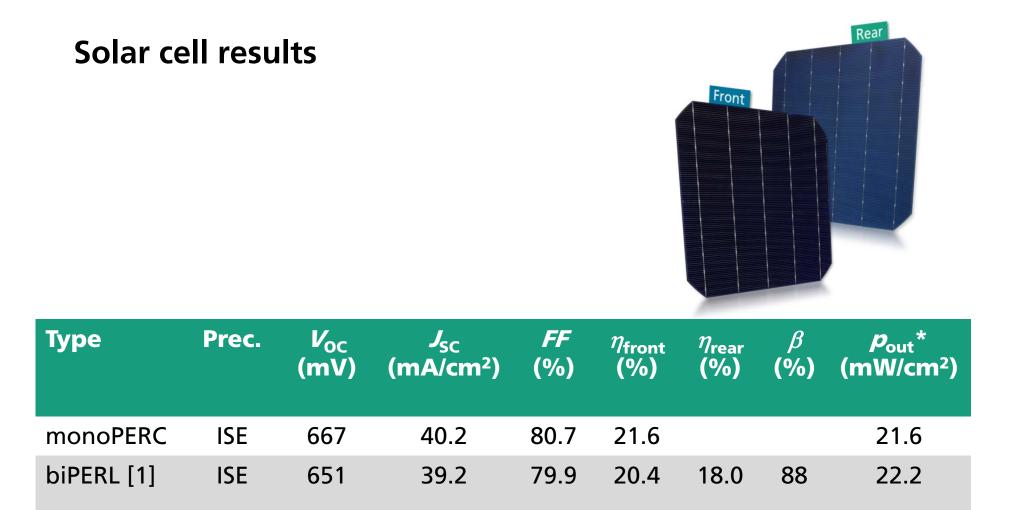
- Compatible with existing cell fabs
- Laser processing and screen printing in a row
- Compatible with hazardous failure of screen printers
- Doping patterning
- > pPassDop
 - Deposition of AI_2O_3/SiN_x :B
 - Laser-induced Al/B doping


Bifacial PERL *Alignment precision*

Method

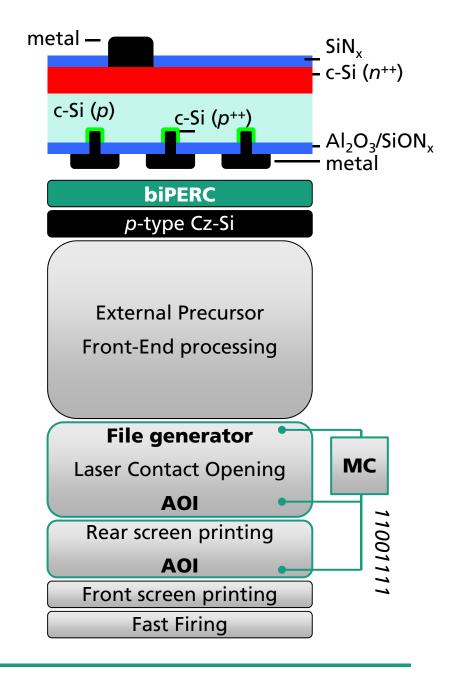
- Laser writing of adapted pattern
- Screen printing of fingers
- Microscopy of around 1000 positions per wafer

Result

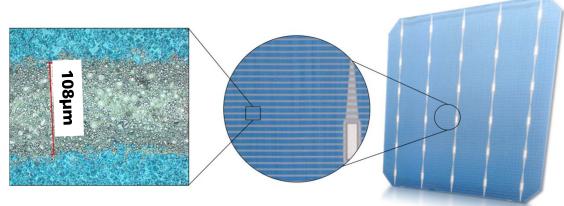

Alignment accuracy below
 ±15 µm

156 mm

E. Lohmüller et al., WCPEC, 2018


* p_{out} for G_{front} = 100 mW/cm² (STC) and G_{rear} = 10 mW/cm²;

Conversion efficiencies measured on a black chuck;


[1] E. Lohmüller et al., WCPEC, 2018

Bifacial PERC *Patterning*

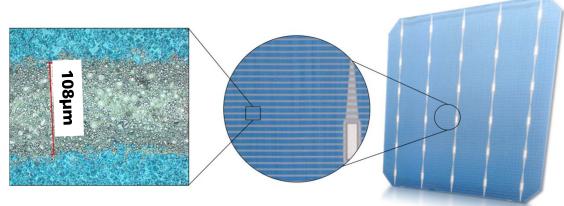
- LCO patterning
- Laser processing
- Metal application
 - Screen printing
 - Al Paste (not firing-through)
- Contact fomation
 - Fast Firing
 - Al-Si alloying

Solar cell results

> Generally: method works stable on e.g. 100 μ m Al on 30 μ m LCO

Туре	Prec.	V _{oc} (mV)	J _{sc} (mA/cm²)	FF (%)	η _{front} (%)	η _{rear} (%)	β (%)	p _{out} * (mW/cm²)
monoPERC	ISE	667	40.2	80.7	21.6			21.6
biPERL [1]	ISE	651	39.2	79.9	20.4	18.0	88	22.2
biPERC [2]	Yes	674	39.7	80.0	21.4	12.6	59	22.7

* p_{out} for G_{front} = 100 mW/cm² (STC) and G_{rear} = 10 mW/cm²;


Conversion efficiencies measured on a black chuck;

[1] E. Lohmüller et al., WCPEC, 2018; [2] T. Fellmeth et al., PV-SEC, 2017;

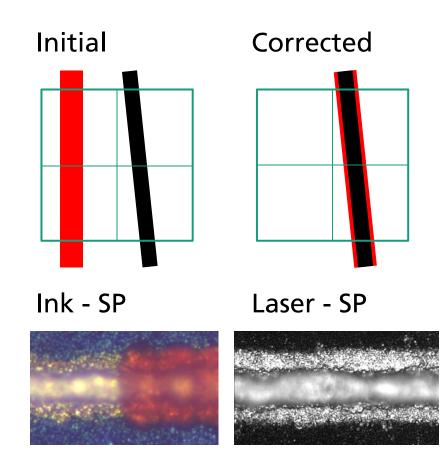
Solar cell results

> Generally: method works stable on e.g. 100 μ m Al on 30 μ m LCO

Туре	Prec.	V _{oc} (mV)	J _{sc} (mA/cm²)	FF (%)	η _{front} (%)	η _{rear} (%)	β (%)	p _{out} * (mW/cm²)
monoPERC	ISE	667	40.2	80.7	21.6			21.6
biPERL [1]	ISE	651	39.2	79.9	20.4	18.0	88	24.0
biPERC [2]	Yes	674	39.7	80.0	21.4	12.6	59	23.9

* p_{out} for G_{front} = 100 mW/cm² (STC) and G_{rear} = 20 mW/cm²;

Conversion efficiencies measured on a black chuck;


[1] E. Lohmüller et al., WCPEC, 2018; [2] T. Fellmeth et al., PV-SEC, 2017;

Conclusion

- Digital method established for precise, shape-congruent patterning
- Scalable with AOI
- High alignment accuracy of ±15 µm between different patterning methods
- Successful process integration
- biPERL (p-type)
- biPERC (p-type)

Acknowledgement

- The authors would like to thank all colleagues at Fraunhofer ISE
- The German Federal Ministry for Economic Affairs and Energy for funding within the projects
 - "HELENE" (contract no. 0325777D)
 - "PV-BAT400" (contract no. 0324145)
- SOLAR-ERA.NET for funding within the project
 - PEarl (contract no. 0324222)

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr.-Ing. Roman Keding

www.ise.fraunhofer.de

roman.keding@ise.fraunhofer.de

