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ABSTRACT 
We present a novel Smartwatch-based approach, to enable Mobile 
Assisted Living (MAL) for users with special needs. A major focus 
group for this approach are elderly people. We developed a tool 
for caregivers applicable in home environments, nursing care, and 
hospitals, to assess the vitality of their patients. Hereby, we 
particularly focus on the prediction of falls, because falls are a 
major reason for serious injuries and premature death among 
elderly. Therefore, we propose a multi parametric score based on 
standardized fall risk assessment tests, as well as on sleep quality, 
medication, patient history, motor skills, and environmental 
factors. The resulting total fall risk score reflects individual 
changes in behavior and vitality, which consequently enables for 
fall preventing interventions. Our system has been deployed and 
evaluated in a pilot study among 30 elderly patients over a period 
of four weeks. 

CCS CONCEPTS 
• Human-centered computing → Accessibility 
technologies; • Human-centered computing. → Ubiquitous and 
mobile computing systems and tools. 

KEYWORDS 
Mobile Assisted Living; Fall Risk; Assistance; Elderly People; 
Smartwatch; Health Care; Health Technology; Pulse Detection; 
Vital Signs; Pattern Recognition. 

1 INTRODUCTION 
Many facilities, such as nursing homes or geriatric wards 
experience high costs due to follow-up treatments related to 
injuries caused by falls. According to Luukinen et al. [35] and 
Rubenstein et al. [38] nursing homes experience around 1.5 falls 
per bed per year, whereas Nurmi et al. [36] state 1.4 falls per 

person per year. Factors that contribute to the risk of falling 
include injuries or pathologic conditions (e.g., hip fracture, stroke) 
or even unfamiliar environments. According to Dromerick et al. 
[13] and Forster et al. [15], from 25% to 46% of all patients in stroke 
rehabilitation wards have been reported to fall at least once during 
their admission. According to Rubinstein et al. [39], 75% of deaths 
in the age group of 65+ in the Unites States are due to fall. This 
concern 13% of the population. Heinrich et al. [25] reviewed 32 
studies with regard to costs of falls in old age. The review 
investigated study data of different regions including the UK, the 
US, Europe, and Australia. According to the authors’ results, 
between 0.85 % and 1.5% of the total health care expenditures of 
each region are related to falls. In the United States, about 0.2% of 
the gross domestic product (547 USD PPP) is paid per inhabitant 
per year (age group 65+; ~13% of US population). Figure 2 shows 
the cumulative costs of fractures due to fall among women in the 
age of 50+ years according to Bleibler et al. [5], [6]. 

Usual interventions aim to avoid falls include exercise, 
medication optimization, vitamin D supplementation, education, 
and environmental modifications [10]. However, many therapies 
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Figure 1. We present a Mobile Assisted Living Smartwatch-
app, which runs on a No.1 D5+ Android watch. 
Implemented features include the detection of: Respiratory 
Parameters, Cardiac Parameters, an explicit Help Gesture, 
Fall Detection, Sleep Parameters, Posture Parameters, as 
well as Gait and Activity Parameters. These parameters are 
used to calculate a fall risk level for the elderly. 
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and fall intervention methods are expensive while they commonly 
require prescription in order to be reimbursed by health insurance 
companies. In fact, most prescriptions that qualify as fall 
preventing interventions (e.g., supervised exercises, 
physiotherapy, or quality vitamin supplementation) are just 
prescribed after a fall occurred that resulted in significant injuries 
for the elderly person. Even if fall intervention therapies are 
prescribed prior to fall events, a reliable method of evaluating the 
possible success of these preventive measures is either missing, or 
insufficient [10]. 

 

Figure 2. Cumulative average costs of fractures among 
women in the age of 50+ years. The blue graph shows 
expenditure for patients with osteoporosis and red graph 
without [5], [6]. 

In this paper, we introduce a system for evaluating the 
individuals’ fall risk with a customary Smartwatch. Our approach 
relies on a number of standard tests with regard to balance, lower 
body strength, general fitness, sleep quality, environmental 
factors, as well as the patients’ history. We calculate a total fall 
risk score that provides a measure for caregivers, to identify 
patients with a special need for a close-meshed fall prevention 
monitoring. Furthermore, individual needs for exercises and 
physiotherapies can be identified, which enables individually 
tailored assistance in order to prevent falls. Our assistive approach 
is mobile and not tied to a specific environment, in contrast to 
most Ambient Assisted Living (AAL) solutions.  

We introduce a Mobile Assisted Living (MAL), which is 
demonstrated with a Smartwatch-based prototype. To evaluate 
the feasibility of a MAL system, we developed a proof-of-concept 
Smartwatch application (see Figure 1), which enables for the 
assessment of the user’s vitality and fall risk level, which are both 
based on a variety of medical parameters. Particularly the 
assessment of fall risk enables a prevention of falls, which is 
estimated on a multi-parametric fall risk scale. In summary, we 
contribute: 
• a proof-of-concept Smartwatch-based Mobile Assisted Living 

system, which assists elderly, people with special needs, and 
their caregivers, 

• a novel fall risk assessment based on a multifold set of 
medical state-of-the-art tests, vital and environmental 
parameters, which now allows for tailoring individual fall 
prevention intervention to the patient’s need. 

 

2 MOBILE ASSISTED LIVING 
Assisted Living (AL) or better known as Ambient Assisted Living 
(AAL) comprises technical systems to support user groups with 
special needs in their daily routines. Typically, these user groups 
consist of elderly, ill, or people with disabilities. Especially in case 
of elderly people, the goal is to retain independency and a safe 
lifestyle for as long as possible [14]. Due to the rapid development 
of smart sensor technology and the internet of things (IoT), AAL 
technologies proliferate. While the level of application is still at a 
moderate stage, it may just be a matter of time until intelligent 
assistive technologies fully pervade our daily lives [48]. A 
frequently used example in AAL is the smart kitchen [3], [33], in 
which an ambient intelligence senses the user’s activity in order 
to provide instructions or assistance respectively. While we can 
utilize camera tracking [11], which is affected by occlusion or 
generally challenging lighting conditions, we can embed any 
other type of sensor at any suitable position (e.g., into a shelf). 
Instrumenting everyday objects (e.g., a bed, sofa, chair, or a table) 
with proximity sensors also enables a rudimentary activity 
tracking [9]. In contrast to dense sensing approaches, Laput et el. 
[33], demonstrate how a future smart home could only rely on a 
single sensor-board that is capable of sensing state changes of a 
great variety of machines and objects without instrumenting 
them. Exemplary demonstrated activities, include operating a 
faucet, soap dispenser, paper towel dispenser, dishwasher, kettle, 
microwave, and refrigerator. When dealing with noisy sensor 
data, one can also utilize context information [41], such as the 
user’s location, and determine the most probable activity (e.g., 
when being in the bathroom, it is very likely that the detected 
event has been an operated faucet and not the dishwasher). Apart 
from tracking the operation of an object, solely knowing about the 
user’s location can be particularly interesting with patients 
suffering from dementia, since they suffer of disorientation and 
may often randomly wander around during the night [28]. 

Since the human is an agile subject being always on the move, 
it can quickly occur that the user might be out of defined sensing 
ranges. Therefore, an event tracking, such as tracking the user’s 
location, would be prone to error (e.g., when going for a walk). As 
a result of this, we envision a Mobile Assisted Living (MAL) 
system in order to extend or even replace traditional AAL 
technology. Here, a wearable sensing of activities [1], [32] comes 
in handy. While we can sense standard activities [19], such as 
walking, running, cycling, etc., we can also train specific motion 
sequences in order to find out about the dish that is being cooked 
[32]. However, supporting elderly people would require different 
types of information such as data about their physical and mental 
well-being. In 2013, Bieber et al. [4] and in 2015, Hernandez et al. 
[26] proposed approaches applying the accelerometer of a 
commercial Smartwatch for extracting vital data. This motion 
data can be used to determine the user’s heart rate and respiration 
rate. When combining mobile activity tracking and health 
monitoring, as recently demonstrated [7], [45], [46] we can pave 
the way for MAL. Since Smartwatches already incorporate a rich 
density of sensor types and actuators, they yield a great potential 
to be used as a MAL hardware. For instance, Smartwatches allow 
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to sense bio signals such as using an ECG wristband or an 
embedded Photoplethysmography sensor that enables to the sense 
heart rate. Inertial sensors (e.g., accelerometers, gyroscopes, or 
magnetometers) can be considered as very powerful, while they 
enable to detect a variety of motions and thus allow for classifying 
a great range of human activities.  In addition to that, many 
Smartwatches provide GPS localization and wireless connectivity 
(e.g., WiFi or Bluetooth). Even GSM modules for a mobile internet 
connection and phone calls can be found in certain autarkic 
models. In combination with a multi-touch display and other 
actuators, such as audio or vibrotactile feedback, these watches 
can serve as a powerful assistive system for MAL. 

Since many people of an advanced age are still very active, 
static and locally tied assistance cannot fulfill basic requirements. 
Thus, common AAL technologies should be mobile. Besides our 
presented concept of a Mobile Assisted Living for the purpose of 
fall risk estimation, a broad variety of other application scenarios 
can be named. Exemplary scenarios include assisting disoriented 
dementia patients in outdoor navigation tasks, calling an 
autonomous walking aid in an outdoor environment, or 
automatically notifying a means of public transportation that a 
person with special needs will be boarding at the next station. 

3 FALL RISK ASSESSMENT 
In this section, we introduce our fall risk assessment for elderly 
people, which is based on a variety of parameters that are being 
explained in detail. 

3.1 Motivation 
In Sweden, but also in any other European country, there is an 
elderly fall accident every two minutes, causing pain, fear, and 
misery for the involved person and concerned relatives. While the 
moment of a fall often significantly harms the elderly, also the 
after-treatment in hospitals yields great danger, since elderly 
people are already weakened. Following statistical data, falls often 
lead to an earlier death, while it takes more lives than traffic 
accidents. In Swedish hospitals, fall emergencies as well as 
resulting treatments create 24 Billon SEK ($5 Billion) in costs 
every year [16]. Moreover, there are as long as 6 months waiting 
time to obtain a room in elderly homes and fall accidents are a 
major reason for this. These are not just local, but global problems 
of our continuously aging society in Europe and the entire World. 
Therefore, it is reasonable to develop a solution that predicts fall 
risks and prevents falls amongst the elderly people. Such system 
would be able to estimate by continuously analyzing the user’s 
vital parameters, such as gait, balance, strength of step impact, 
posture transition times, stride, cardiac, and sleep parameters. 
With this focus in mind, we researched and developed a MAL 
system monitoring elderly people and estimating their fall risk. 

3.2 Hardware 
In fact, the hardware configuration used plays a substantial role 
for recognition capabilities. In research, we usually make use of 
various types of sensor. Quality parameters such as sensing 
quantization, noise level, and range play a significant role in 

choosing a suitable sensor. However, sticking to consumer 
hardware is more challenging, because we underlie many sensor 
limitations in terms of variety and precision, as well as limited 
battery life time. 

Our initial goal is to use a commercially available Android 
Smartwatches, such as the G99 and D5+, which offers us to access 
the accelerometer with a sampling rate of only 50Hz. Considering 
the Nyquist-Shannon sampling theorem, the provided rate is 
sufficient for human motions and locomotion as performed in 
activities of daily living as pointed out by Bouten et al. [8]. 
Nevertheless, faster motions, such as certain types of tremor or 
body vibrations such as seismocardiac motions require higher 
sampling rates. The aforementioned devices do not support higher 
sampling rates, as the Android SDK and manufacturers firmware 
does not allow it. Also, the maximum sensing range is limited to 
+/- 19.6133m/s2. The resolution of the accelerometer sensor is 
0.039226603m/s2, which is a quantization of 8bit per g and thus 
comparably low. Although the Smartwatches provides a sensor 
hub, the acceleration sensor does not support the Batch-Mode or 
FiFo-Buffering, which is another constraint at the expense of the 
battery life time. With the mentioned restrictions, a battery life of 
two days was achieved. 

3.3 Implementation of Fall Risk Assessment 
Parameters 

In order to calculate the fall risk level, we rely on a variety of tests, 
context information and user history parameters. We categorized 
the parameters into three groups, which sum up to the total fall 
risk score:  
• Basal Fall Risk Score (BFRS) 

• Environmental Fall Risk Score (EFRS) 

• Variable Fall Risk Score (VFRS).  

Activity Level and Gait Parameters (VFRS) 
Analyzing the user’s gait can provide essential 
information to assess the risk of fall. Something similar 

has also been found in literature; knowing about the user’s 
walking activity can be particularly essential for elderlies to assess 
their wellbeing [2]. Apparently, gait parameters from elderly 
people are different to younger people due to the much slower 
body movements. Therefore, standard recognition algorithms 
demonstrate great deviations and would require an adjustment. 
For detecting gait parameters from an elderly person, we extended 
the walking algorithm proposed by Neil Zhao [50]. The basic 
algorithm adapts to varying offsets and intensities and counts 
maxima as steps, that meet certain step criteria (e.g., min and max 
time between consecutive steps). In contrast to Zhao [50], we 
applied a 3D vector norm instead of choosing a particular axis for 
the detection algorithm. By doing this, we avoid choosing the 
wrong axis and leaving out valid parts of the 3-dimensional 
walking motion. Besides a basic step count, we also detect the 
impact of each individual step by calculating the acceleration 
intensity on all axes combined. By applying the algorithm of 
Scarlett [40], we can estimate the step length and thus the distance 
traveled. Since the algorithm is affected by the individual walking 
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style, we also added the possibility to compute the step length 
based-on height and gender as shown by Pratama et al. [37], or 
even setting a fixed step length based on precise measurements. 
The aforementioned parameters rely on improved accelerometer-
based step counting algorithms [44],[49]. In addition to the 
previously mentioned parameters, we compute a 6-minute 
walking test in the background. The test runs on the fly, every 
time the user continuously walks for at least 6 minutes. We also 
apply a trained classifier for identifying simple daily activities. In 
summary, our classifier [19] is able to distinguish between the 
activities walking, running and sleeping.  All types of data are 
stored on a web-server within a daily basis. 

In order to evaluate the influence of gait related parameters, 
we applied two standard tests: 1) a standardized 6-minutes walking 
threshold test (see Table 1); and 2) the number of steps walked 
throughout the day threshold test (see Table 2). 
 
6-minute Walking Threshold Test: 
In this standardized test, a subject has to walk for 6 minutes in a 
row. Depending on the subject’s age and physical state, average 
step thresholds have to be crossed in order to pass the test.  

Table 1. Showing the threshold performances of the six-
minute walk test for three age groups (see also Chetta et al. 
[12] and Steffen et al. [42]). 

  I II III 

Age in  
yrs. 60-69  70-79  80-89  

Distance in m 
(male) 572 527 417 

Distance in m 
(female) 538 471 392 

Once the calculated distance cannot be reached within six 
minutes, we add a risk point to the total fall risk level of the user. 
This risk point is valid for the day it is scored. After a successfully 
passed 6-Minute walking test, the risk point is reset, which leads 
to a reduction of the total fall risk score. 

No. of Steps Walked throughout the Day Threshold Test: 
In this test, a subject has to achieve the recommended daily 
number of steps depending on the subjects age group. In case the 
threshold for the recommended number of daily steps is exceeded 
or met, the test is passed.  

Table 2. Showing the threshold performances of the 
number of steps taken per day for five typical age groups 
(see also Tudor-Locke et al. [47]). 

  I II III IV V 

Age in 
yrs. 8-10  10-20  20-50  50-70  > 70  

#steps/ 
day 

12000-
16000 

11000-
12000 

7000-
13000 

6000-
8500 

3500-
5500 

In case the daily step performance in one of the tests falls below 
the given threshold of the user’s age group, we add a risk point to 
the total fall risk score because motor-memory is negatively 
affected and thus the risk of fall is potentially increased, in 
particular for higher age groups. This risk point is valid for the 
following day, since the daily step peak is achieved before going 
to bed. In case the daily steps walked test is passed, the risk point 
is reset for the following day. 

Postures and Transitions (VFRS) 
Postures and their transitions can provide valuable 
information on the user’s physical fitness. Based on this 

information we determine the vitality of a person, which directly 
impacts the fall risk level. Moreover, the duration of changing 
postures (e.g., time needed to get up) gives an insight on the lower 
body strength of a user. In comparison to younger people, posture 
changes performed by elderly people are differing in terms of 
execution style. This affects almost every accelerometer-based 
posture detection algorithm [18]. Our algorithms can distinguish 
between standing, sitting, and laying down, while additionally 
information on the transition times and the created peak impact 
during execution yield important information. 

In order to detect changes in posture via a wrist-worn 
accelerometer, we detect distinctive arm positions and 
orientations with respect to limitations in motion due to a 
biological human model. In addition, we included contextual 
knowledge about the positions sitting and standing and the 
related arm postures. Thus, our standing algorithm is triggered by 
arm postures that are mainly vertical in a direction pointing to the 
ground, whereas the sitting algorithm is triggered by arm postures 
that are mainly horizontal or in an upward pointed vertical 
position. Hence, we use the sign-based axes orientation of the 
acceleration sensor (see Figure 3). Since the axis orientation 
changes with respect to the wrist the device is worn at, the 
preferred wrist has to be selected in the initial setup.  

   

Figure 3. Our C4.5 DT classifier distinguishes between these 
three common postures: sitting, standing, and walking, 
while we calculate according transition parameters. 

In order to determine a possible risk level, we utilize a 
standardized timed up & go (TUG) threshold test - see Table 3.  

Timed Up & Go (TUG) Threshold Test: 
Hereby, we measure the time, it takes the user to change from a 
sitting to an upright position and walk for three meters. We only 
add a risk point to the total fall risk score, once the age dependent 
average threshold is exceeded. The risk point is valid for the day 
it was scored. The risk point resets every day. 
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Table 3. Showing threshold performance for the timed up & 
go test (TUG) for 3 typical risk groups (see also Steffen et al. 
[42]). 

  I II III 

Age in yrs. 60-69 70-79 80-89 

Time in s  
(male) 8 9 10 

Time in s 
(female) 8 9 11 

	

Detected Falls (VFRS) 
People who have a prehistory of falling are apparently 
at greater risk of falling again - see also Gaßmann et al. 

[17]. The major reasons for this can be found in an increased fear 
of tripping and injuries resulting from previous falls. The 
detection of falls itself is a complex issue, because there are many 
different ways of falling. Still, current state-of-the-art fall 
detections [30] are rather inaccurate. Especially detecting falling 
with elderly people is challenging, since very different forces are 
being created, which are mostly lower and thus a huge challenge 
for current algorithms. Therefore, we needed to develop an 
improved fall detection that also works with lower impacts. Our 
proposed fall detection is based on four stages, which is 
demonstrated in Figure 4 

 
Figure 4. Acceleration data recorded by a wrist-worn 
Smartwatch showing a typical (real) fall. In this case, we can 
ideally identify a fall based on the characterization of four 
distinct stages. 

In the first stage, the loss of equilibrium is sensed as a quick and 
strong change in motion.  

1) 𝑥[𝑛] = 	𝛼 ∙ 𝑥[𝑛] + (1 − 𝛼) ∙ 𝑥𝑛 + 1	
This is followed by a detection of free fall in the second step. The 
detection of the free fall is based on the fact, that all acceleration 
axes show almost zero g during this phase.  

2) �⃗� = 	1
𝑥
𝑦
𝑧
4;	|𝑎|77777⃗ = 	8𝑎9: +	𝑎;: +	𝑎<:	

Subsequently, we detect the impact generated by hitting the 
ground or an object. 

3) 𝛿(𝑛) = 	 ?	𝛿(𝑛)	𝑖𝑓	𝛿(𝑛 − 1) < 𝛿(𝑛)	⋀	𝛿(𝑛 + 1) < 𝛿(𝑛)	
	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

This is followed by the fourth stage; in which we can sense a 
longer period of no motion.  

4) 𝑁NOPQR = 	∑ 𝛿(𝑛)T
U 	

In case all stages occurred within a pre-defined timespan, our 
algorithm checks whether the device is worn or doffed. 

𝑖𝑓: (	𝑛9WX −	𝑛9) 	> 𝑙𝑜𝑤𝑒𝑟[\P]_O_\PR_ 	∧	(𝑛9WX − 	𝑛9) 	
< 𝑢𝑝𝑝𝑒𝑟[\P]_O_\PR_	

	
𝑖𝑓: (𝛿9WX − 𝛿9) > 𝑙𝑜𝑤𝑒𝑟cdQe_O_\PR_ 	∧ (𝛿9WX − 𝛿9)

<	 𝑢𝑝𝑝𝑒𝑟cdQe_O_\PR_ 

Basically, the acceleration signal is scanned for Microvibrations, 
while additionally a PPG-based heart rate measurement is 
conducted.  

Besides utilizing the fall detection to increase the total fall risk 
score, we also implemented an automated emergency notification, 
which is send out via a call, SMS, or web-message. Our system 
allows to set an emergency contact in the initial setup. This 
contact is usually a caregiver but can also be a relative or a person 
of trust. Part of the emergency message is the description of the 
incident (e.g., “I just fell and may need help”) as well as the 
detected parameters of the fall history (current heart rate, motion 
intensity computed over all acceleration axes, number of falls 
today). 

The total fall risk score is increased by adding a risk point 
right after a fall. This risk point will be set for 6 months. In case 
no fall happened within the last 6 months, the risk point will be 
reset. 

Emergency Communication (VFRS) 
As an additional emergency function, our system also 
features an explicitly triggered emergency call by a 

distinct arm-waving gesture [34] or taping a software button, 
which establishes a phone call, sends an SMS, or a digital message 
to a web-server, as configured on the watch. In case a user 
indicates the need of help, the fall risk may also increase. 
Exemplary, this situation could be illustrated by a resident with 
special needs in an elderly care that urgently needs help, such as 
to go to the toilet. In case a caregiver cannot get to the patient in 
time, the total fall risk score is increased by one risk point. The 
aforementioned increase of the total fall risk score happens 
because the resident might try to get there on its own, which 
contains an increased risk of fall and injury. In other 
circumstances, the emergency notification could also mean that 
the elderly person is not feeling well (e.g., feeling dizzy or sick), 
which also indicates a higher risk of falling. 

The temporary added risk point is reset 24h after an 
emergency message was triggered. 
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Sleep Parameters (VFRS) 
Bad sleep can result in risk factors, such as headache, 
increased blood pressure, dizziness, fatigue, or a lack of 
concentration, which contribute to a higher risk of fall. 

Certain sleep related disease patterns, such as apneas and epileptic 
seizures can lead to a reduction in blood oxygen and therefore 
result in brain damage. These anomalies are also detectable with 
Smartwatches during sleep [24]. By simply calculating standard 
sleep related parameters, our system can infer on the quality of 
sleep, and reveal important information on the user’s mental and 
physical state. We implemented a set of standard tests for 
evaluating the quality of sleep.  

The computed parameters include the sleep efficiency (SE), 
total sleep time (TST), wake-time after sleep onset (WASO), time 
in bed (TIB), sleep onset latency (SOL), number of position 
changes, as well as the wake-up and fall asleep time based on low-
motion body amplitudes [20].  

For the purpose of fall risk assessment, we chose 4 tests that 
combine the meaningfulness of all sleep parameters computed. 
The selected tests include 1) a sleep efficiency threshold test; 2) a 
total sleep time threshold test; 3) a bedtime schedule threshold test; 
4) a number of position shifts threshold test. Each test that is failed 
(threshold exceeded), increments the total fall risk score. 
 
Sleep Efficiency (SE) Threshold Test: 
An important sleep parameter is the so-called sleep efficiency 
(SE), it is defined as the quotient of total sleep time (TST) divided 
by time in bed (TIB). Usually, a SE of > 85% is defined as healthy 
or normal. According to Stone et al. [43] who conducted a large 
study of older women, a TST of <7 hours and SE <65% was 
associated with an 30-40% increased risk of subsequent falls. 
Therefore, we defined a SE of <70% as a failed test and therefore 
increase the total fall risk score by one risk point. The risk point 
counts for the daytime following the night it was scored. With the 
end of each night a reevaluation is done. 
 
Bedtime Schedule Threshold Test: 
Figure 5 shows the variation in going to bed and standing up in 
the morning.  

 
Figure 5. Variations in go to sleep and get up times. 
 
The example in the figure shows a regular go to bed time, but a 
varying get up time (e.g., as normally seen during the weekend). 

Irregular bedtime schedules throughout the week disturb the 
circadian rhythm, and therefore may lead to a poor quality of 
sleep [29]. In case of an irregular bedtime frequency (shift of >1h 
for 1 or more days throughout the week) we add a risk point to 
the total fall risk score. The added risk point counts for the whole 
week. The risk point is being reset at the beginning of the next 
week.  
 
Number of Position Changes Threshold Test: 
The number of position changes during sleep can provide crucial 
information on the elderly person’s sleep quality and on his 
mental and physical state on following day. Because too many 
position changes (see Table 4) indicate light and uncomfortable 
sleep, the user is very likely to feel tired next day, which we credit 
with a risk point that is added to the total fall risk score. The risk 
point counts for the daytime following the night it was scored. 
With the end of each night a reevaluation is done. 

Table 4. Number of position shifts during sleep according 
to De Koninck et al. [31]. 

  I II III IV V 

Age in yrs. 3-5 8-12 18-24 35-45 65-80 

#posshifts 42.3 44.5 27.1 19.6 16.4 

Total Sleep Time (TST) Threshold Test: 
Another important parameter is the accumulated sleep duration 
within one night. Reduced sleep obviously results in tiredness but 
can also result in dizziness particularly in elderly people. When 
the suggested [27] total sleep time is being undershot, we add a 
risk point to the total fall risk score. The risk point counts for the 
daytime following the night it was set. With the end of each night 
a reevaluation is performed. 

Table 5. Sleep duration categorized in age groups (I-V). The 
table shows the recommended total sleep time (TST)1 as 
well as to short and therefore not recommended total sleep 
times2 (See also Hirshkowitz et al. [27]). 

  I II III IV V 

Age in 
yrs. 6-13  14-17  18-25 26-64  > 64  

1TST in 
h 9-11 8-10 7-9 7-9 7-8 

2TST in 
h <7 <7 <6 <6 <5 

 

Cardiac & Respiratory Parameters (VFRS) 
Parameters of the cardiovascular system are 
good indicators for evaluating the physical 

constitution. Simple parameters, such as the resting heart rate, 
heart rate variability, or the recovery time after exertion give 
insights with regard to the stamina or general fitness level. A user 
with a bad fitness level is more likely to trip due to exhaustion or 
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a lack of concentration. In addition to this, a bad stamina can lead 
to high pulse rates, as well as heavy breathing, which can lead to 
dizziness and therefore an increased fall risk.  

In order to evaluate the current level of fitness, we sense the 
heart rate throughout the day. Therefore, we apply two sensing 
techniques. The first technique, reads the built-in 
Photoplethysmography (PPG) sensor of our Smartwatch (No.1 
D5+). In case of a resting state, such as laying down or sitting the 
sensor is read every 15 minutes. This interval allows to safe 
battery and therefore extend the runtime of the device. In case of 
motion, such as walking or exercising we constantly read the 
heart rate with the PPG sensor.  

The second technique is based on the watches built in 
acceleration sensor. This sensor allows the implementation of 
Ballistocardiography (BCG) algorithms. Our developed 
algorithms [22] enable a detection of heart rate in states of rest, 
whereby the best results can be achieved during sleep. This 
technique also enables the detection of heart rate, heart rate 
variability, as well as the respiration rate [21] during the night. 
The major advantage in comparison to optical PPG sensors is the 
very low energy consumption of such micro-electromechanical 
systems (MEMS). Moreover, a BCG approach allows to sense more 
heart rate parameters that can also be used to discover cardiac 
diseases.  

While the resting heart rate as well as the breathing rate can 
provide information on the user’s stress level, which has an 
impact on the elderly person’s fall risk, we can adjust the 
individual’s total fall risk score when the heart rate exceeds the 
age dependent average (see Table 6). In this case, a risk point will 
be added. This risk point is valid for the day it was scored and will 
be reset the next day. 

Table 6. Average resting heart rate in bpm* depending 
sorted by age group (I-VI). 

  I II III IV V VI 
Age 

in 
yrs. 

18-25  26-35  36-45  46-55  56-65  > 65  

*HR 
in 

bpm 
70-73 71-74 71-75 72-76 72-75 70-73 

 

Environmental Change (EFRS) 
Unfamiliar environments bare great challenges for 
elderly people, while they tend to feel insecure and thus 

pose in a different way. In contrast, a familiar environment, which 
is either a flat, house, or facility such as an elderly care or hospital 
ward, is by definition a well-known place. Therefore, in our 
model, we added another parameter concerning unfamiliar 
environments. Therefore, we are checking the current SSID of the 
WiFi network connection. Once the WiFi connects to a known 
network, we assume that surrounding areas are well known by 
the elderly, and therefore bare a small risk of unknown obstacles 
or tripping hazards. In addition to the known WiFi network, we 

track the current GPS position of the user. Moreover, the weather 
forecast is being checked, in case the user is recognized as outside 
(no familiar WiFi in range and GPS indicates position outside of a 
building, mainly walking activity). For the purpose of fall risk 
assessment, we apply two tests: 1) a familiar environment test; and 
2) a challenging outdoor conditions test. 
 
Familiar Environment Test: 
In case the user is outside of a familiar environment, the risk of 
tripping, distraction, or disorientation and thus falling increases. 
By tracking the SSID of a known WiFi network, this condition can 
be recognized. Therefore, a risk point will be added to the total fall 
risk score. This risk point is valid for as long as the user is outside 
of the familiar surroundings. 
 
Challenging Outdoor Conditions test: 
In case of challenging weather conditions, such as snowfall, icy 
streets, or rainfall the total risk level of falling increases. 
Therefore, a risk point is added to the total fall risk score. This 
environmental risk factor is only considered, if the user leaves the 
familiar environment (GPS location) and weather forecast reports 
rain, snow, or icy roads. When being located inside the risk point 
is reset. 

User History (BFRS) 
Many elderly people have a patient history of diseases 
or pre-existing conditions, which also result in an 

increased risk of falling. These co-morbidities need to be 
considered in order to compute a more precise total fall risk score. 
Influencing factors include diseases such as diabetes, that can lead 
to sensory disorders or numbness. In addition, blood pressure 
medication, such as beta-blockers can lead to dizziness, especially 
in case of a false or less-than-ideal dosage. Also, artificial joints 
that can negatively influence the degree of freedom in walking 
can increase the risk of falling. Besides the aforementioned 
factors, visual or cognitive impairments could also be identified as 
risk factors with regard to falling. 

Therefore, our system initially determines individual factors 
that determine the basal fall risk score (BFRS). To achieve this 
score, a caregiver has to fill out a set of questions during the initial 
setup of the application. This set includes the following question 
that have to be answered with either yes or no. Each question that 
is answered with a yes increments the basal fall risk factor.  

• Does the user have artificial joints?  
• Does the user have amputated extremities? 

• Does the user have to use a walking aid? 

• Does the user have to wear a hearing aid?  

• Does the user have diabetes? 

• Does the user have dementia? 

• Does the user have visual impairments (e.g., cataract)? 

• Does the user have had a stroke?  

• Does the user have to take blood pressure medication? 

• Does the user have to take multiple medication (n>5)?  

The resulting basal BFRS is considered in the total fall risk score. 
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3.4  Total Fall Risk Score Calculation 
Our total fall risk score calculation is based-on an overall 
evaluation of all afore introduced tests with regard to balance, 
lower body strength, general fitness, sleep quality, and 
environmental factors. In addition, we apply patient data, such as 
age, sex, medication, and pre-exiting conditions like prior history 
(e.g., falls, stroke, Parkinson, etc.) in order to adapt the total fall 
risk score. 

The total score consists of 22 individual risk points, which can 
either be set to “1” or “0”. These risk points are categorized into 1) 
basal fall risk; 2) variable fall risk; as well as 3) environmental fall 
risk. The sum of all risk points is referred to as the total fall risk 
score. 

 
Figure 6. Examples of different total fall risk scores (sum of 
blue, red, and green bar) for 6 patients. The blue bar 
indicates the basal fall risk score, the red bar indicates the 
variable fall risk score, whereas the green bar indicates the 
environmental fall risk score. 

In order to ensure valid recognition, we implemented a detection 
for recognizing a watch that is not worn (doffed detection). We 
implemented a doffed detection since it becomes crucial to 
validate the gathered data before processing it, when connecting 
the data to important health services. An example for an artifact 
is given by shaking a Smartwatch without wearing it on the body, 
which can be misinterpreted as steps. Also “ghost heart rates” may 
be detected, although the device is solely lying on the table [21]. 
Therefore, we implemented a doffed detection based-on changes 
in Microvibrations [23] emitted by the body and distinctive PPG 
outputs. A doffed watch will lead to an unknown total fall risk 
score. During sleep, we reset the total fall risk score to the basal 
risk. 

3.5  Evaluation 
All aforementioned parameters have been evaluated in dedicated 
user studies with 13 subjects, with multiple trials and sessions. 
These studies helped us to tweak the accuracy of our algorithms 
up to a level of recognition that lies between ~80% and ~94%.  

                                                             
1 NextStepDynamics: http://www.nextstepdynamics.com 
2 &gesund: https://und-gesund.de/en/ 
3 b-cared: https://b-cared.com  
4 Living Safely: http://www.livingsafely.com 

Finally, we evaluated our MAL system in a rather broad pilot field 
study with 30 elderly people over four weeks. Among these 30 
elderlies, the following prehistories were given: 16 had a stroke, 
24 had a prior history of fall, and 22 had low blood pressure. Our 
fall risk model triggered preventive care in six cases by predicting 
a fall risk well ahead of classical approaches. This has been 
determined involving a physician that is especially trained on fall 
risk assessment, who was permanently observing the data and the 
elderly people in their environment. According to the physician, 
in one case the prediction was done as early as almost four weeks 
ahead of time following information about the patient’s balance 
and strength parameter deviations. 

One of the major conclusions from the pilot is that, of the 23 
instances where the fall risk was high, a strong indicator was the 
degradation in the lower body strength parameters primarily the 
posture transition time taken to stand from a sitting position. 
About 60% of those cases had low blood pressure. While a relation 
of these parameters is not ultimately conclusive, we determined a 
correlation and future tests are planned in order to analyze this in 
detail. Also, there are ongoing plans to start another trial with a 
larger group of elderly spreads across seven municipalities in 
Northern Skåne, Sweden. 

6 CONCLUSION & FUTURE WORK 
In this paper, we introduced the concept of a Mobile Assisted 
Living (MAL) in the context of fall risk assessment. Therefore, we 
developed a Smartwatch application that allows the computation 
of multiple fall risk related parameters. We evaluated our 
approach by conducting a pilot study in the field with 30 elderly 
people in an elderly care for the duration of four weeks, while a 
physician evaluated the data and prescribed interventions. Our 
proof-of-concept allows for a tailored fall prevention therapy for 
an individual’s need. Therefore, we expect a reduction of health 
costs related to fall, by rolling out the proposed MAL approach in 
future. We see our MAL solution in the role to complement 
already implemented AAL solutions (e.g., by improving the 
recognition of activities performed or determining the users’ 
state). 

Since we could not weigh each individual risk point because 
of a lack of ground truth data, we weighed each risk point with 
the factor “1”. The investigation of individual weights is part of 
future research. As a result of this, we envision a better 
approximation of the total fall risk score. Moreover, we envision 
MAL systems to significantly improve lifestyle of especially 
elderly people. This trend is supported by the growing popularity 
of Smartwatches with several new start-up companies, which use 
Smartwatches and wristbands as an assistive technology to 
support users with special needs such as elderly people1,2,3,4,5,6. 
While our Smartwatch-based MAL system may still have the 
status of being a proof-of-concept, we already developed a web 

5 Safe Link: http://safelinkgps.com  
6 Revolutionary Tracker: http://revolutionarytracker.com 
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database service capturing all user data in a digitalized form, 
which allows us to apply data mining for pattern recognition in 
order to discover anomalies throughout the day, week, and 
months. This can be in particular interesting for physicians and 
caregivers helping to discover and monitor disease progressions 
besides a fall risk estimation. Based on the opinion of the fall risk 
expert evaluating our system, if rolling out such a proposed 
system, we may reduce fall accidents by more than 70%. In future, 
we also imagine such health monitoring systems to be connected 
to a digital medical record and third-party services, such as 
emergency assistance for elderlies. Since the collected and 
processed data is very sensitive, technologies for ensuring user 
privacy will also be a part of the future research. 
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