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Abstract

In this work, the influence of operating conditions on the shape parameters of surface texture is investigated by means
of both numerical and experimental investigations. The analysed texture consists of micro-dimples obtained through
laser surface texturing on a pin-on-disc configuration. From the numerical point of view, particular attention is paid to
the faithful representation of the 2D surface of the experimental set-up and to modelling cavitation phenomena through
a mass conserving algorithm. As results, the dimple depth shows a higher relevance than diameter in determining the
optimal texture shape (both in terms of friction reduction and load carrying capacity). Moreover, the dimple depth,
corresponding to the minimal friction, is found to scale with the square root of the Sommerfeld number in agreement
with the experimental results. Finally, it is found that a numerical approach with the present hydrodynamic model
cannot account for friction reduction obtained experimentally with different orientation of the texture.
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1. Introduction

Using textured surfaces is a widely spread stratagem in nature in order to improve specific performance in the
interaction between surfaces and their surrounding environment [1]. Taking inspiration from this fact, a huge interest
has emerged in the last decades on the applications of such surfaces for tribological purposes [2]. The great potential of
such engineered surfaces was tested in the early works of Hamilton [3], Anno [4] and subsequently with experimental
and numerical investigations by Etsion’s group for various kinds of industrial applications such as parallel sliders [5],
mechanical seals [6] and piston rings [7, 8].

Among the unlimited ways to realize surface textures, non-communicating textures like grooves and dimples have
drawn most of the attention, thanks to the great improvement of Laser Surface Texturing techniques (LST) [2, 9]. In
the struggle to identify the condition under which dimpled surfaces bring actual benefits, the following main mecha-
nisms have been detected. In the boundary lubrication regime, dimples can reduce static friction mainly thanks to a
contact area reduction [10]. In mixed lubrication, dimpled surfaces can better entrap debris, hence reducing the wear
by minimizing the third-body abrasion [11, 12]. Their ability to act as a lubricant reservoir improves the contact wet-
tability under starved lubrication [13]. Moreover, dimples can shift the transition from the mixed lubrication regime to
the hydrodynamic one to lower velocities [14]. Finally, regarding the hydrodynamic regime, dimples are responsible
for a pressure build-up which consequently leads to a reduction of the tangential stress through a thickening of the
fluid film and thus to a reduction of the overall friction coefficient.

From the numerical point of view, the underlying mechanisms of the above mentioned effects have been exten-
sively studied over the last years for various applications. In case of low convergence bearings, dimples are deemed to
be effective thanks to the hydrodynamic lift which results from the asymmetrical pressure distribution when cavitation
[15] occurs. The physical mechanism behind this pressure build-up has been explained by Fowell et al. as an ”inlet
suction” effect due to the reduced pressure in the dimples [16]. More generally for other kind of geometries, the effects
introduced by dimples can be interpreted in terms of density changes or by considering the coupling with thermody-
namics [17]. Non-linear effects also play a role in generating a non-symmetrical pressure distribution, which may
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lead to beneficial as well as detrimental effects, as found in many works [18, 19, 20]. For more complex geometries,
an explanation of the pressure build-up has been provided by Cupillard et al. by analysing how energy is transferred
from the moving wall to the fluid and converted into pressure at the beginning of the texture [21].

The difficulty in the thorough comprehension of the physics behind textured surfaces is complicated by the large
variety of texture design parameters such as texture location, pattern and density, as well as details of the texture
shape (e.g. dimple depth and diameter). In order to cast light on the design and optimization of dimples many studies
adopted a systematic approach in describing the influence of each of the above mentioned design parameters on the
overall performance of typical industrial applications. Different texture shapes are analysed by Adjemount et al. [22],
who show that cylindrical and spherical dimples have the most positive influence. The role of partial texturing is
investigated, among others, by Fillon’s group, showing that a partial texturing can lead to an increase in load carrying
capacity if compared to a fully textured case [23, 24]. In respect to texture density, a disagreement existed originally
between numerical and experimental analysis, since most of numerical works [25] overestimated the experimentally
determined optimal value found between 10% and 20% [26]. An explanation to this discrepancy is proposed by Wang
et al. [27] by considering the influence of roughness and contact mechanics.

Among the above mentioned design parameters, the diameter and the depth of dimples have risen the biggest inter-
est in the research community. Numerical analysis revealed the importance of texture depth on texture performances
[28, 29]. In particular, Ramesh et al. [30] and Fowell et al. [31] present a direct correlation between dimple depth and
gap height for a 2D geometry and point out that the optimal depth increases with higher viscosity. A systematic exper-
imental investigation of this trends is carried out by Braun et al. [14] with a pin-on-disk set-up. In this work, different
dimple diameters ranging from 15µm to 800µm are considered at constant texture density and depth-to-diameter ratio.
The results, based on various sliding velocities and viscosities, indicate that the Stribeck curve of the optimal texture
scales with the Hersey number µΩ

W , where µ is the viscosity of the lubricant, Ω the rotational speed and W the average
contact pressure. With respect to the influence of the texture pattern and the optimal orientation angle on friction
reduction, experimental and numerical studies come to different conclusions [26, 32].

In this work we intend to deepen the physical understanding of the experimental results from Braun et al. [14] by
numerically investigating the same geometry of the experiments. The numerical approach allows to analyse the scaling
of optimal dimple parameters with respect to the operating conditions; particularly viscosity, velocity and gap height.
At first we focus on the numerical and experimental investigation of the sensitivity of the load carrying capacity with
respect to the position of the dimple on the macro-geometry. After this prior analysis an exhaustive parametric study
of a 2D textured surface as extension of the 1D works of Fowell and Rahmani [31, 33, 34] is performed. Lastly, we
discuss the effects of the texture orientation based on a comparison of numerical and experimental results.

2. Numerical approach

Among the different effects that textures have on tribological performance we consider from the numerical point
of view only those which are related to the hydrodynamic regime; an approach taken in the vast majority of literature
on this topic [2]. In contrast to some previous studies with 1D textures [31, 34, 35], a realistic 2D surface, which
corresponds to the one employed in the corresponding experiments, is considered for the numerical parameter studies
in the present work. In order to enable such a parametric study at reasonable computational cost, particular attention
is paid to an efficient numerical implementation.

2.1. Governing equation

We model the shear flow of a Newtonian lubricant between two sliding walls through the incompressible Reynolds
equation. The employed equation considers also cavitation phenomena through a mass conserving algorithm as pre-
sented by Woloszynski et al. in [36]

∇ ·
(
h3∇p − 6µ~Vh (1 − θ)

)
= 0 (1)

where h(x, z) describes the gap height distribution, µ is the dynamic viscosity, ~V = {U,W} is the upper wall velocity.
The cavity fraction θ is defined through a reference density ρre f as follows:

θ = 1 −
ρ

ρre f
. (2)
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number of cells in each direction normal force [N] tangential force [N]

65 1178.379057 5.029480
129 1188.524679 5.037692
257 1193.755952 5.045461
513 1196.401560 5.049900

1025 1197.470182 5.051418
2049 1198.008821 5.052289
4097 1198.288155 5.052802

Table 1: Convergence of the Reynolds solver with respect to the normal and tangential force. The results corresponds to the textured pin geometry
A with a dimple diameter D = 40µm.

The pressure p and the cavity fraction θ satisfy the complementarity constrain (p− pcav)θ = 0, in which the relative
pressure p − pcav and the cavity fraction θ are always positive. The cavitation pressure is kept at a realistic constant
value of Pcav = 80000Pa, in order to keep the investigated parameter space in a reasonable dimension. The flow is
considered isoviscous and isothermal.

As shown in [36] and subsequently also in [37], equation (1) can be directly coupled with the complementar-
ity constrain in a non-linear unconstrained system, whose solution requires only few steps of the Newton-Raphson
scheme, making this algorithm tremendously faster than other traditional approaches based on constrained solution of
the Reynolds equation (such as, for example, the p− θ algorithm by Elrod and Adams [38]). For the present work, the
non-linear unconstrained system is iteratively solved until the residuum on pressure and cavity fraction drops below
10−6.

The Reynolds equation is discretized with a finite volume method, which is based on its weak formulation [39],
allowing to increase the solution precision in the presence of high geometry discontinuities like in the considered
set-up. Moreover, the finite volume method is a good compromise between computational performance and easiness
of implementation [18], the achieved convergence for one of the test cases is presented in table 1.

2.2. Geometry description

The geometry of the untextured pin is extracted from the experimental set-up based on optical profiler measure-
ments of the employed pellets. It should be noted that the experimental campaigns (see section 3) employed two
different pin geometries which are both considered numerically. The 3D numerical representation of the first pin (A)
is shown in figure 1 for a case in which a computer generated partial texture is imposed on the surface topography
of the untextured pin. In the experiments, the pellets are textured with LST resulting in very similar shapes as the
dimples that are considered numerically [14, 26]. The surface of the pin is not perfectly flat, but presents a perceptible
curvature which is shown through a magnification in figure 2 which corresponds to a cut through the computational
domain at z = 0. This curvature is the main cause for the creation of a pressure distribution along the gap which is
perturbed by the presence of the texture. We define the reference gap height H in the centre of the pin surface where
the distance between the two surfaces has its minimum. The second pin (B) is also cylindrical, but its surface is much
flatter (< 0.1µm) than the one of pin A. The average profile of pin B is shown through a further magnification in figure
2.

A constant ambient pressure p|∂A = pamb is prescribed at the domain boundaries (see figure 2) where the cavity
fraction is set to θ|∂A = 0 since the whole pellet is submerged in oil in the pin-on-disc experiments. In conformity to
the experimental set-up, the height of the edge of the pin is set to 2.5mm. In this way the inlet height hin is at least one
order of magnitude larger than the gap height between the pin surface and the upper wall. This leads to a flat pressure
distribution outside the pin surface and thus the pressure distribution over the pin surface becomes independent from
the boundary conditions [21]. The upper wall moves in the x-direction with velocity U. A comparative analysis of the
untextured case with both Navier-Stokes and Reynolds equations has shown that inertial effects are negligible despite
the gap height discontinuity at the edge of the pin.

The texture consists of spherical dimples which can be fully characterized by two parameters: diameter and depth.
The distance between the center of two adjacent dimples can vary according to their diameter in order to keep the
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Figure 1: Representation of the geometry of pin A. The partial texture shown here corresponds to a dimple diameter D = 400 µm, Depth = 40
µm and a surface density of ρtex = 10%. The surface is in relative motion to the upper rotating disc so that a mean flow in positive x−direction is
generated in the gap. In the numerical simulation, only the first half of the surface is structured with dimples for reasons discussed in section 4.2.2.
The domain size is Lx = Lz = 9mm while the radius of pin A is Rpin = 8mm.

Figure 2: Profile of the pins as measured form the experimental set-up, please note that the y axis is 1000 times magnified. The gap height H is
defined at the center, where the distance between the two plates is minimal. A further magnification of the surface profile of pin B is provided, axis
values are expressed in mm, the maximal measured height variation is δh = 0.047µm . The domain boundaries are located at (x,± Lz

2 ) and (± Lx
2 ,z).
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texture density at the constant value ρtxt = Atxt
Apin

= 10%. This value of texture density corresponds to the one used in
the experimental campaigns (see section 3).

Thanks to the good convergence (see table 1) a mesh of 2049x2049 can be considered for all the results presented
in this work, allowing a maximal resolution of 4.3 µm in both x and z direction with a computational time in the range
of some minutes. The convergence rate reported in table 1 corresponds to the geometry of pin A with dimples of
diameter D = 40µm and Depth = 4µm. This case is the numerically most challenging since the small dimple size
requires the highest resolution. Similar convergence results are obtained also with pin B. Note that, although a first
order spatial convergence is achieved by the chosen cavitation algorithm, a very low number of iterations (around 15)
is required, such that the overall computational effort is limited to a minimum.

3. Experimental setup

Three experimental campaigns are considered in this work. The results of the first two are already published
[14, 26], while the third one, concerning the investigation of texture positioning, is reported here for the first time.

All above mentioned tribo-experiments are pin-on-disc set-ups, realized on two different tribometers. The experi-
ments presented in [14] and [26] were conducted on a Plint TE-92 HS tribometer (Phoenix Tribology, Kingsclere, UK)
sketched in figure 3. This apparatus consists of a rotating disc with 70mm diameter, upon which a pin (8mm, height
2.5mm) is pressed with a normal force of 150N. The tribo-contact was submerged in an additive free PAO-18-oil bath
at controlled temperatures during the tests. The discs were made of hardened and tempered steel 100Cr6 (AISI 5210),
with hardness values of about 800HV . The roughness of the fine-ground discs varied in the range from Ra = 0.080
to 0.120µm. The pins were mounted in a self-aligning holder and pressed on the disc from below at sufficient dis-
tance from the center of rotation, in order to reduce the velocity gradient effects [40]. In these first two experimental
campaigns [14, 26], the pin was made of normalized steel C85 with homogeneous pearlitic grain structure (400HV)
and the surface was ground and subsequently polished using a 3µm and 1µm diamond suspension. The pin geometry
employed in the first two experimental campaigns correspond to pin A shown in figure 2.

The third experimental campaign was conducted on a CSEM pin-on-disc tribometer (CSEM, Peseux, Switzer-
land). While the discs used in these experiments were prepared as described above, pins made of cemented carbide
(WC-Ni, 1450HV) were employed. These pins were fine-ground, resulting in very low waviness of the surfaces with
roughness values of Ra = 0.025 to 0.035µm (see pin B in figure 2). The experiments on the CSEM tribometer were
conducted at room temperature (20◦ ± 2◦C) and a low viscous automotive Shell V-Oil1404 was employed. According
to the manufacturer, the kinematic viscosity at 20◦C is 3.8mm2/s while the density at 15◦C is 826kg/m3. The normal
force was kept constant at 15N, applied via dead weights. The sampling of friction values for different sliding speeds
was realized by a stepwise reduction of the rotational speed of the disc, for a total number of nine speed steps. Each
step was hold for 300 seconds and the whole test sequence was repeated five times during one experiment. In order to
eliminate run-in effect, only the last three data sets are considered in the data evaluation.

Experiments for each test configuration were repeated at least twice with a fresh pin and disc in order to ensure the
reproducibility of the measurements. In all presented cases, the dimpled surfaces for the experiments were obtained
through laser surface texturing [14]. Particular attention was paid to the removal of laser ablation debris by means of
an additional polishing procedure or grinding step for the steel and cemented carbide pins, respectively.

4. Results and discussion

Both experimental and numerical investigations are based on a systematic variation of the design parameters and
operating conditions with the goal to identify combinations of operating conditions and texture design which lead
to the minimal friction or the maximal load carrying capacity. Similar studies in literature, which carry out such
systematic investigations, mainly describe either 1D slider bearings [31, 6, 33, 41], 1D or 2D parallel thrust bearings
[34, 22, 42, 43], 2D seals [44] or 2D journal bearing [45, 46]. In contrast, the present work focuses on a pin-on-disc
tribometer and its 2D numerical representation. To the authors’ knowledge such a numerical parametric study of a 2D
surface of the pin of a pin-on-disc tribometer is not yet available in the literature.

The obtained results are grouped in four sections in the following. First, the new experimental results are in-
troduced along with the ones, which were already presented [14, 26]. Second, the result of a preliminary study is
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Figure 3: Experimental set-up of the Plint TE-92 HS tribometer form Phoenix Tribology, from Braun et al. [14]
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Figure 4: Experimental Stribeck curve of the partially textured surface in comparison to the untextured case. Both textured cases have the same
dimple shape and texture area as in the numerical simulations shown in figure 11.

presented, which addresses the differences between the experimental set-up and its numerical representation. Sub-
sequently, the scaling of the optimal dimple shape parameters is analysed with respect to the operating conditions.
Lastly, the influence of different texture arrangements is considered and the related contradictions between experi-
mental and numerical findings are discussed.

4.1. Experimental results

The first aspect of the experimental campaign analysed in this work concerns the influence of partial texturing in
order to investigate, in parallel with the numerical analysis, which part of the pin surface delivers the best performance
if textured. Two different extensions of the textured area are considered here: partial texturing on the front part of the
pin and on the rear part. Figure 4 shows the experimental Stribeck curve obtained with the three texture extensions
and the untextured reference case. The texturing of the leading half of the pin clearly leads to a friction reduction in
comparison with the untextured case and represents a better improvement than the case with texture on the trailing
half. This result is in agreement with previous studies in literature [35, 47, 48, 49] and is numerically further analysed
in section 4.2.2. The experimental results reveal the biggest difference between the textured and the reference curves
in the mixed lubrication region. In the hydrodynamic region of the Stribeck curve low signal-to-noise ratio does not
allow to identify appreciable differences in the friction coefficient.

The second aspect of the experimental results considered in this work concerns the study of Braun et. al. [14]
about the effects of temperature (i.e. viscosity) on the determination of the dimple diameter which leads to the lowest
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Figure 5: Experimental Stribeck curve as function of the Hersey number at two different temperatures, comparison between two untextured cases
and the corresponding ones with optimal texture. Adapted from [14].

friction coefficient. In this experimental study, the Stribeck curve of pellets with different dimple diameters (ranging
from 15µm to 800µm) were tested at two different temperatures, T = 50◦C and T = 100◦C, under the constrain
of constant normal load. Figure 5 shows the experimental Stribeck curves from [14] for the untextured and the
optimally textured cases at two different temperatures. The dimple shape is spherical and aspect ratio is kept constant
to λ = Depth/D = 0.1. It is interesting to note that the experimental curve obtained with the optimal texture scales
very well with the Hersey numberH = µΩ/W, where µ is the dynamic viscosity, Ω the rotational speed of the upper
disc in the pin-on-disc tribometer and W is the normal load. The numerical comparison with this experimental analysis
is addressed in section 4.3.

The last aspect based on [26], concerns the impact of the dimple arrangement. The dimple pattern was changed by
imposing a progressive shift sz in the rows of dimples so that the overall pattern could change between a quadratic one
and a pseudo hexagonal one. This shift can be depicted in terms of the angle between dimples from two consecutive
rows as shown in figure 6. The measured Stribeck curve is shown in figure 7. As can be seen, for pseudo hexagonal
disposition of dimples, α = 60◦ (i.e. sz/lz = 0.5), the textured surface shows a higher friction reduction compared to
the case with α = 45◦ and α = 55◦. Only the angle between consecutive rows of the dimple distribution is changed,
while all other dimple design parameters such as diameter and depth are kept constant. In particular, the texture
density is fixed to ρtxt = 10%, the dimple diameter to D = 40µm and the depth to Depth = 4µm.

4.2. Preliminary considerations of the numerical representation of the experiments

The typical pressure and cavity fraction distributions over the textured pin surface displayed in figure 1 are shown
in figures 8a and 8b. In the first half of the pin surface the convergent height distribution induces a consistent increase
of pressure which subsequently reduces in the second half where cavitation occurs and therefore density diminishes.
The pressure distribution is flat in the proximity of the domain boundaries, indicating that the domain is big enough
in order to have a solution which is independent of the boundary conditions.

4.2.1. Comparison between 1D and 2D textured surface
Despite the increase in computational cost, we based our numerical analysis on the realistic 2D surface of the

experimental set-up. This choice stems from the rationale that 1D textures, although extensively studied, lead to
pressure distributions which can be misleading if compared to 2D results. Figure 9 shows the net pressure distribution
in the centerline of the pin due to the placement of a single dimple for both 1D and 2D simulations. The pressure
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Figure 6: Schematic representation of the dimple pattern. The upper wall slides in positive x−direction. The distances between dimples in x and
z−direction are set to lz = lx so that a constant texture density ρtxt = 10% is kept for each value of sz. When sz = 0 (α = 45◦) the square pattern is
obtained. The pseudo-hexagonal pattern corresponds to α = 60◦ and sz = Lz/2.
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Figure 7: Experimental Stribeck curve as function of the Hersey number with different orientations of the textured surface. Dimple aspect ratio
λ = 0.1, Diam = 40 µm, ρtex = 10%. The experiments were run with the same specimens as in [14] but with the CSEM tribometer and the
load/speed parameters of the newest experiments.
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Figure 8: Pressure (a) and cavity fraction (b) distribution over the textured pin, D = 400 [µm], Depth = 40 [µm], ρtxt = 10%. In both figures the
cavitation region is delimited by the red line. The cavity fraction, defined in equation 2 is non zero in most of the divergent part of the pin surface,
where cavitation occurs. The upper wall slides from left to right with velocity U = 1m/s, viscosity µ = 0.1871Pas and the gap height H = 1µm.

perturbation due to the presence of the dimple clearly propagates differently in both cases. In particular, the 2D
pressure perturbation is smaller and decays faster than in the 1D case. The pressure perturbations disappear in the
rear region of the pin where cavitation occurs. This difference might be attributed to the fact that in the 1D case
the texture does not actually represent a spherical dimple but rather a channel perpendicular to the sliding direction.
Moreover, the presence of a pressure gradient in the z−direction in the Reynolds equation additionally smooths the
pressure distribution.

Previous analyses concerning the influence of the number of considered dimensions were carried out in literature
[50, 51, 52]. However, only the differences between the 3D and 2D Navier-Stokes approach for single texture elements
was investigated, coming to the conclusion that little or no difference is noticed by switch from 3D Navier-Stokes
results to 2D ones. The present case requires the use of the 2D Reynolds equation (see Eq.1).

Figure 10 shows the normalized net pressure distribution due to the presence of a single dimple on the pin surface
(geometry A). As one can see, the influence of the single dimple decays very fast and becomes smaller than 1% within
10 diameters from the center of the dimple. This implies that in realistic 2D surfaces, dimples influence a restricted
area, whereas in 1D simulations the corresponding pressure perturbations can reach the domain boundaries.

4.2.2. Setting of the numerical parametric study
Numerical simulation should ideally mimic the same operating conditions under which the tribological tests are

carried out. In the experiment, the employed tribometer runs under a constant normal force until it converges to a
steady state with an unknown gap height. In contrast, the Reynolds equation requires a prescribed height distribu-
tion as input and delivers the value of normal force as output. Simulations with prescribed constant normal force
can be carried out iterating on the gap height until the equilibrium solution is found. However, this procedure is
computationally expensive and thus difficult to realize for parametric studies.

Moreover, as we can see in figure 3, the pin is mounted on a support which can automatically pitch in order to
ensure the ideal formation of a flat-on-flat contact during the tribological tests. This feature of the tribometer implies
that an additional parameter should be considered in the simulations, since the asymmetry in the pressure distribution
generates an angular momentum which might make the pin pitch. The pitch angle becomes then the results of an
additional bisection algorithm nested into the one on the gap height. The consideration of both loops would represent
a significant increase in the computational costs which would make a parametric study with 2D textured surfaces
infeasible.

These two additional degrees of freedom of the geometry, namely the gap height and the pitch angle, are deemed
to play also a role together with the extension of the texture on the pin surface. As a matter of fact, the experimental
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obtained with the pin geometry B. All textured cases have the same dimple shape, with D = 60µm and Depth = 4.5µm. Texture density is 10% of
the pin area. The gap height is set to H = 10µm, U = 0.1m/s, mu = 0.18Pas

results presented in [14, 26] are obtained with fully textured pins, while numerical analysis mostly leads to the result
that only a partial texturing is effective in improving the tribological performances [23, 24, 53]. This apparent differ-
ence between experiments and numerics is probably related to the fact that experiments are carried out in the mixed
lubrication regime, while our numerical approach describes the tribological interaction from the hydrodynamic point
of view only.

The effect of partial texturing in the numerical simulations is discussed in the following. Figure 11 shows the
numerical results for different texturing of the pin surface and their comparison with the untextured reference case.
As one can see from the pressure distribution in the centerline, only the partial texture of the front part can increase
the load carrying capacity, whereas the fully textured case and the one with a texture only on the rear half present
a pressure distribution which is lower than the untextured case, hence a lower load carrying capacity. This has
implications also on the friction coefficient, since, in most of the cases, a higher load carrying capacity is directly
related to lower friction values. The improved behaviour of partial front texture is found numerically for all operating
parameters tested in the present study, and is confirmed experimentally as shown in section 4.1 and figure 4. Although
these results are obtained in case of a geometry based on a pin-on-disc tribometer, the particular flatness of the pin
(pin B shown in figure 2) makes the pressure distribution similar to the one of a parallel bearing. For such a geometry,
several studies in literature have confirmed that a partial front texture has a much better impact on the friction reduction
than full or rear texturing [47, 48, 49].

In the experiments, the partial rear textures shows for some velocities a lower friction coefficient as seen in the
numerical simulations. This could be due to the fact that the numerical simulations do not consider the probable
inclination of the pin as well as mixed lubrication phenomena. In the following numerical simulations, only the case
with partial texturing in the front half of the pin is numerically considered and we leave the analysis with self-aligning
pins to further studies.

4.2.3. Sensitivity to positioning location of single dimple
In this section we assess the sensitivity of the pressure distribution with respect to the dimple position on the

surface, in order to understand how a single dimple interacts with the macro-geometry. This is particularly important
in view of the consideration expressed in section 4.2.1 about the propagation of the pressure perturbations due a dimple
on 2D surfaces. For such analysis the position of a single probing dimple is varied in order to establish on which part
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of the surface the overall normal force is increased. Furthermore, such simulations are carried out for different values
of operating parameters (viscosity, gap height and velocity of the upper wall) as well as design parameters such as
diameter and depth.

The variation of operating parameters can be represented in a more generic fashion through the Sommerfeld
number. The Sommerfeld number is derived as the relevant non-dimensional parameter when equation 1 is written in
dimensionless form. It is given by

S =
µUL
H2Wr

(3)

where µ, U, L are the viscosity, wall velocity and length, respectively; H is the gap height and Wr the load applied
on the upper surface. In this analysis the reference length L corresponds to the domain length and therefore is kept
constant; the reference load Wr is the one of the untextured case, since the presence of a single dimple affects the load
by an almost negligible amount. Therefore, the other three parameters can be varied in order to study their impact on
the pin regions in which the presence of a dimple leads to an increase of the load carrying capacity.

Figure 12 shows the isolines of the net normal force for different positions of the probing dimple on the pin surface.
For symmetry reason only the lower half of the pin is shown. The shape of the probing dimple is kept constant in this
first case with D = 100 µm and Depth = 10 µm. Twelve different isolines are depicted in three coloured groups, each
group represents a different gap height ranging from 1 to 10 µm, while each line style portrays a different value of the
Sommerfeld number S obtained through different combination of velocity and viscosity.

The contour of the area with positive net normal force lies always in the first half of the pin surface. This suggests
that, in case of full texture, only the front part would contribute in generating a positive lift, while dimples located in
the rear part would have a detrimental effect. In particular, in the rear half of the pin, dimples have almost no influence
since that region is dominated by the cavitation pressure. This finding is again in agreement with previous studies,
which have pointed out how partial texturing can be more effective than a fully textured case [23, 24, 47, 49, 48].
Moreover, in case of curved geometries, dimples are deemed to become more effective when placed close to the
center of the geometry where the pressure reaches its maximum [21].

Isolines with same gap height but different values of the Sommerfeld number (hence with different viscosity and
velocity) almost collide, while those with different gap height show a more prominent distance between each other.
This hints to the fact that gap height plays a more important role than viscosity and velocity, meaning that the area of
positive normal force is extremely sensitive to changes of the distance between the two walls. In other words, if the
changes in the Sommerfeld number are simply due to a different combination of viscosity and velocity, the area of
positive normal force will remain almost unaffected. Furthermore, for small values of gap height, the area in which
dimples have positive effects shrinks considerably. This trend is likely to be related to the increasing relative gap
height variation (slope) with reduced gap height. A similar trend has been observed in slider bearings by Murthy et
al. [41], where a reduction of texture effectiveness is shown for highly slanted geometries.

4.3. Scaling of the optimal dimple shape

In order to analyse the scaling of the optimal dimple shape (in terms of friction reduction or increase of load
carrying capacity), two parametric studies of the dimple diameter and depth with respect to the operating parameter
are considered. The first one concerns simulations with prescribed gap height, which, due to the lower computational
cost, allows studying a richer parametric space. The second one is based on the simulations with constant normal
force, so that a closer comparison with experimental data can be obtained.

4.3.1. Analysis of the optimal dimple depth
In this study we vary viscosity and velocity in a range which is broad enough to represent most of the operating

conditions in real applications. Table 2 resumes the range of these parameters while the gap height ranges from 0.5µm
to 20µm. For each point of this parametric space we consider the influence of different dimple diameters and depths
on the load carrying capacity and on the friction coefficient. These two quantities are computed, according to [36] and
[37], through the following definitions:

FN =

∫
A

(P − Pamb) dA (4)
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Figure 12: Zero-isolines of the net normal force ∆Fn = Fntxt − Fnuntxt obtained through a variation of velocity, viscosity and gap height. Only one
half of the pin (geometry A) is shown due to symmetry. The flow is from left to right. The Sommerfeld number is computed according to the
definition in equation 3. The normal load W is a result of the simulations which are carried out at prescribed gap height H. The values of viscosity
and velocity are varied in the following range: 0.0187 < µ < 1.871 Pas and 0.01 < U < 1 m/s.
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(a) Constant dimple aspect ratio λ = 0.1. Different dimple diame-
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Figure 13: Zero-isolines of the net normal force ∆Fn = Fntxt − Fnuntxt plotted on half of the pin (geometry A). Variation of dimple shape and gap
height H. Viscosity and velocity are kept constant in this plots: µ = 0.187Pas and U = 0.1m/s
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Figure 14: Distribution and contour lines of the normal force in the depth-diameter parameter space. The red line indicates the position of the
optimal depth. The black one represents the aspect ratio λ = 0.1 that was employed in the experimental parameter study [14]. The portrayed case
is obtained with the following operating parameters: U = 1m/s, µ = 0.187Pas, H = 7µm

FT =

∫
A

[
(1 − θ) µ

U
h

+ (1 − θ)
h
2
∂P
∂x

]
dA (5)

C f =
FT

FN
. (6)

As explained in section 3, only the first half of the pin surface is textured. The texture density is kept constant at
ρtxt = 10% as in the corresponding experiments [14, 26]. The dimple diameter varies between 40µm and 400µm while
the depth varies between 0 (untextured case) and 200µm. Since the dimples have a spherical shape, the maximum
aspect ratio λ =

depth
diameter cannot exceed the value 0.5. As shown by Dobrica and Fillon [19], for values of λ > 0.1 the

applicability of the Reynolds equation may become arguable in case of square 1D dimples, nonetheless, thanks to the
less sharp shape of the 2D spherical dimples non-linear effects are less likely to occur. The validity of the Reynolds
equation is also be assured by the very low Reynolds number, which is given by Re < 0.01 for every combination of
the operating parameters.

Figure 14 shows the distribution of the normal force for different values of dimple diameter and depth. It can
clearly be seen that the normal force is strongly governed by the dimple depth and depends on the dimple diameter
in a much weaker way. This means that an optimal depth value exists, which is insensitive to the diameter. The
experimental investigation [14] addresses the role of the dimple diameter at constant aspect ratio λ = 0.1, hence, the
optimal diameter is located at the intersection between the optimal depth line (red) and the line that links diameter and
depth for that specific aspect ratio (black).

It is interesting to notice that the topology of the normal force distribution in the depth-diameter space does not
change for different values of viscosity and velocity although the absolute force value is directly proportional to them
according to the Sommerfeld number (see Eq. 3). The optimal depth can shift only if the prescribed gap height
changes. This indicates that geometrical parameters such as the gap height play a much bigger role than viscosity and
velocity in the definition of the optimal depth, which is in agreement with the findings discussed in section 4.2.3.

This fact becomes even more evident in figure 15, where the value of the optimal depth, obtained with the process
just described, is plotted against the gap height for several different values of viscosity and sliding velocity. Each
single point in this figure corresponds to a parametric investigation of the normal force in the diameter-depth space for
a specific combination of velocity and viscosity, as shown in table 2. It can be seen that the dependency of the optimal
depth on the gap height is almost perfectly linear, regardless of the combination of viscosity and velocity. This linear
dependency is also in agreement with the findings of 1D parametric studies such as those by Fowell et al. [31] and
Ramesh et al. [30].
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Figure 15: Scaling of the optimal dimple depth with respect to the gap height. Each point represents the optimal depth extrapolated from the
process explained with respect to figure 14 for a certain combination of viscosity and velocity as shown in table 2.

XXXXXXXXXXµ[Pas]
U[m/s]

0.01 0.05 0.1 0.5 1 5 10

0.0187
0.0935
0.1871
0.9357
1.8714

Table 2: Velocity and viscosity range of the parametric study with prescribed gap height used in the figure 15. The texture density is kept constant
at ρtxt = 10%, while the gap height ranges between 0.5 and 20µm. The overall range of Sommerfeld number based on the gap height H is
172 < S < 14.3 · 103.
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4.3.2. Scaling between dimple depth and the Sommerfeld number
Even though the above found linear relation between optimal dimple depth and gap height is not affected by

viscosity changes, a dependency of the optimal depth on viscosity can be observed when the tests are carried out
at imposed normal load. This is in agreement with the experimental results, where the pin-on-disc tribometer are
run under the input of constant normal force. In these experiments, the performance of different dimple diameters
with constant aspect ratio λ = 0.1 is tested at two different temperatures (see figure 5) and a viscosity dependence is
identified.

As explained in section 4.3, an iterative procedure is required in order to represent the experimental procedure
numerically. In these simulations, just like in the experiment, the normal force is assigned as input while the gap
height is obtained as a result. It is known that for geometries such as slider bearings and the current one, the resulting
load is directly proportional to viscosity,velocity and reference length and at the same time inversely proportional to
the square of the gap height according to the relation W = Wr

µLU
H2 [54, 55, 56]. Where the Wr is the non dimensional

load which can be arbitrarily chosen to a constant. Consequently, the variations of gap height at imposed normal load
are inversely proportional to the applied load as follows:

H =

√
µLUWr

W
(7)

Therefore, any change in the viscosity µ influences the gap height H, which is now free to vary in order to find the
equilibrium position at which the pressure distribution balances the constant load.

With these simulation settings, we focus again on the diameter-depth space as done in section 4.3.1 (figure 15).
Since the normal force is prescribed, the search for the optimal depth is carried out with respect to the lowest friction
coefficient. As in the previous findings shown in figure 14, the minimal friction coefficient can be found for a constant
value of dimple depth and it is not affected by the diameter. The values of optimal depth are plotted against viscosity
variation in figure 16. In this scenario, the optimal depth (which corresponds to the minimal friction coefficient)
can change through the variation of gap height induced by different values of viscosity. The plot also includes the
experimental optimal depth values previously shown in figure 5. As one can see, the slope of the numerical curves is
the same as the one observed in experiments, indicating that the computed scaling of the optimal depth is in agreement
with the experimental results. Nonetheless, a shift is evident between the numerical curves and the experimental ones.
This is most likely due to the fact that the experimental results are obtained in the mixed lubrication regime while
the numerical ones, being based on the pure Reynolds equation, can only describe the hydrodynamic regime. In the
simulation results, a higher normal force yields smaller optimal depths. This is in agreement with equation 7, because
under higher normal load the system finds its equilibrium at a smaller gap height, hence the optimal dimple depth will
be smaller.

As a further confirmation of the linear dependency of the optimal depth on the gap height, figure 17 represents
the optimal depth values computed at constant normal force with respect of the gap height found as output for every
single simulation point in figure 16. It becomes obvious that this linear relation is independent from the approach used
to carry out the simulations, namely either with prescribed gap height or prescribed normal force.

As final outcome the linear dependency can be explicitly formulated by recalling, at first, a more general descrip-
tion of the relation between the optimal depth and other parameters, Depthopt = Depthopt(µ,U,H,D,W), where µ is
the viscosity, U the sliding velocity, H the gap height, D the dimple diameter and W the applied load. Thanks to the
above mentioned scaling considerations and to the fact that the optimal depth does not depend on the dimple diameter
(see figure 14), one can simplify this generic formulation into the following one:

Depthopt = kH(µ,U,W) (8)

where k is a constant which depends on the shape of the macro-geometry. By substituting equation 7 into equation 8
we obtain

Depthopt = k

√
µLUWr

W
= K

√
µLU

W
(9)

where the reference dimensionless load Wre f can be grouped outside of the square root together with k into the
constant K. Therefore, the optimal depth is proportional to the square root of viscosity, velocity and reference length,
and inversely proportional to the square root of the normal load.
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Figure 16: Comparison of the scaling of the optimal depth with respect to viscosity for a set of simulations with constant normal force and
experimental results [14]. The fitting dashed line represents the scaling expressed in equation 9.

The relation expressed in equation 9 can be brought into a non-dimensional formulation through the introduction
of the Sommerfeld number. For geometries such as slider bearings and the current one, Hamrock et al. [54] and
Raimondi and Boyd [55], propose a definition of the Sommerfeld number based on the shoulder height sh (i.e. the
inlet-outlet difference between of the slider height, see figure 2). This is because, unlike in journal bearings, the
clearance cannot be defined a priori. For the geometry of the pin A, this shoulder height sh is measured as the
difference between the height at the center of the pin and the one at the edge, so sh = 6.22µm. Thanks to this
definition we can reformulate relation 9 as follows:

Depthopt = ksh
√

S = K

√
µULs2

h

Ws2
h

(10)

which can finally express the relation between the non-dimensional optimal depth and the Sommerfeld number.

Depthopt

sh
= K
√

S (11)

This relation suggests that the non dimensional optimal depth is proportional to the square root of the Sommerfeld
number times a constant K which depends on the shape of the macro-geometry and the arbitrary reference dimension-
less load Wre f . This relation is particularly suitable for the comparison between experimental and numerical results
since the gap height which is unknown in case of the experiments is not a parameter anymore. Figure 18 shows the
numerical results from figure 16 in terms of non-dimensional depth versus the Sommerfeld number S . It can clearly
be seen that all data collapse onto a single curve indicating that this scaling holds indeed. The experimental results
reveal the same slope but different absolute values in this plot, which is probably due to the fact that they correspond
to the mixed lubrication regime. Nonetheless, the good agreement in terms of slope might indicate that the scaling,
which was observed experimentally in the mixed lubrication region, is likely due to hydrodynamic mechanisms.

4.4. Effects of the dimple distribution
The third parametric investigation concerns the pattern of the dimpled texture. As shown in section 4.1, dimpled

surface textures can have a very different impact on the friction reduction depending on the orientation of the texture.
The corresponding numerical parametric study is set by varying the parameter sz for several cases with different

viscosity, velocity and gap height. In addition, the design parameters such as diameter and depth are varied, while the
texture density is kept constant at ρtxt = 10% like in the experiments. The typical results of such a study is shown
in figure 19, where the friction coefficient is plotted against the normalized shift parameter sz/lz. As one can see,
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constant normal force and experimental results by Braun et al. [14]. The fitting dashed line represents the scaling expressed in equation 11.
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Figure 19: Friction coefficient with respect to the shift parameter of the dimple pattern. The shift parameter is defined in figure 6.

besides a vertical shift due to the fact that the textured surface has a lower friction coefficient, no clear difference can
be noticed for different values of sz. Such behaviour is encountered for all operating and design parameters of the
present study and the very small difference, that one can identify in figure 19, remains always below the numerical
uncertainty.

This result implies that the Reynolds equation, as used in the present study, does not take into account the relevant
physical phenomena which lead to the experimental observation that the hexagonal disposition of dimples shows better
results than any other kind of dimple arrangement. The reason behind this discrepancy is likely to lie either in the
absence of contact mechanics modelling (as already indicated in section 4.3.2) or in the neglection of the non-linear
term [18, 24].

Consequently, the use of the simple Reynolds equation, although with mass conserving cavitation algorithm,
cannot explain the effects of different dimple arrangements.

5. Conclusion

A joint numerical and experimental analysis of textured surfaces in tribological contacts is carried out in this work
focusing on the relations and scalings between operating parameters and the optimal shape of dimples. The numerical
investigation is based on the incompressible Reynolds equation with mass conserving cavitation, whereas particular
attention is paid on the computational performance of the solver in order to carry out parametric studies based on
high-resolution surface representations of experimental set-ups. The experimental campaigns treated in this work,
concerns both, known literature results [14, 26] as well as new tribological tests about partial texturing and texture
orientation. The main findings of this work can be summarized as follows:

• The numerical analysis of the sensitivity of the load carrying capacity with respect to the dimple placing points
out that the gap height plays a relevant role in defining which part of the surface benefits from the presence of a
texture. This numerical evidence leads to the conclusion that a partial texturing on the front half of the pin can
improve the tribological performance much better that textures either on the whole or on the second half of the
pin. This is in agreement with the experimental investigation carried out in this work and also with literature
results.
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• Thanks to an extensive parametric study, the effects of operating parameters on dimple diameter and depth are
investigated. As results we find that the load carrying capacity has a maximum in the diameter-depth space
which is independent of the diameter value, therefore an optimal depth exists which is shown to be a linear
function of the gap height. In addition, it is shown that other operative parameters such as viscosity and sliding
velocity play a minor role compared to the gap height itself.

• The linear relation between optimal dimple depth and gap height can be expressed through the following rela-
tion:

Depthopt = kH = K

√
µLU

W
(12)

or consequently in its non-dimensional formulation:

Depthopt

sh
= K
√

S . (13)

This scaling is in agreement with the experimental results [14]. The quantitative shift between experimental
and numerical results can be linked to the fact that the numerical analysis describing the hydrodynamic lu-
brication regime while experiments are carried out in the mixed lubrication regime. Nonetheless, the good
agreement in terms of slope between the experimental and the numerical results in figure 16 and 18 suggests
that hydrodynamic mechanics induced by dimples play a role also in the mixed lubrication region.

• The experimental investigations concerning the role of texture orientation show that the pseudo-hexagonal ar-
rangement of dimples performs better than a square arrangement or intermediate dispositions. In contrast, the
incompressible Reynolds equation alone leads to results which are insensitive to the pattern orientation for all
the different combination of operational and design parameters which are tested, indicating that the relevant
physical mechanisms is not captured by this model formulation.
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