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Abstract—When appropriate infrastructure is not available,
localization of pedestrians becomes a difficult task. This is
especially the case in urban or indoor scenarios, where satellite
navigation is hindered due to occlusions or multipath effects.
A promising alternative is to combine a small, low-cost IMU
with a camera in order to exploit the complementary error
characteristics of these devices by simultaneously estimating the
positions of observed landmarks and the trajectory of the sensor
system with a stochastic filter.

In this work, a standard approach to parameterize the error in
position and attitude estimates that is commonly used in GNSS-
INS integration is compared to alternative parameterizations that
are based on the twist representation of rigid body motions, which
has gained increasing popularity in the literature. For this pur-
pose, the error-state transition and measurement equations are
formulated for the twist representation as well as for the standard
approach. Finally, the different approaches are compared on a
simulated and a real indoor dataset by applying an extended
Kalman filter (EKF).

I. INTRODUCTION

A. Pedestrian navigation and visual SLAM

When operating in extended indoor environments, first re-
sponders strongly depend on their ability to reliably localize
themselves in order to successfully accomplish their task. This
is especially true when a team of first responders that is scat-
tered over the environment has to perform a concerted action.
In such a situation, a system that improves the situational
awareness by displaying the locations of team members on
a map would be very helpful.

Unfortunately, satellite navigation signals are usually not
available or severely disturbed in urban scenarios due to
occlusions or multipath effects. This motivates the research in
alternative localization systems like Honeywell’s GLANSER
system [1], where utra-wideband radio signals are used to
measure the distance to stationary anchor nodes, which have
to be installed in advance at the site of operation.

Systems that do not depend on such external infrastructure
are inevitably subject to an increasing error because they
essentially perform dead reckoning, i.e., each position estimate
depends on previous position estimates. An inertial measure-
ment unit (IMU) is an example of a dead reckoning system
because it measures acceleration and angular velocities which
yield an estimate of the displacement of a sensor system when
integrated. Since IMUs which offer the accuracy that is needed
to obtain position estimates for extended periods of time with

reasonable accuracy are both expensive and bulky, it seems
promising to consider a combination of a low-cost IMU with a
camera which compensates for the rapidly accumulating errors
in the position estimate obtained by integrating the IMU’s
measurements by observing stationary landmarks in the video
images. The different kinds of measurements obtained thereby
are usually fused by applying a stochastic state estimator
in order to estimate the trajectory of the combined camera-
IMU system and the locations of the observed landmarks
simultaneously, a problem that is commonly referred to as the
simultaneous localization and mapping (SLAM) problem.

B. Contribution

This work compares different approaches to parameterize
the sensor’s attitude and position in an inertial aided visual
SLAM system using an extended Kalman filter to estimate
the SLAM state. More specifically, a parameterization that
is commonly used for GNSS-INS integration which treats
position and attitude errors separately is compared to alter-
native parameterizations where position and attitude errors
are subsumed in a screw motion parameterized by an error
twist. For this purpose, it is shown how the time prediction
and covariance propagation equations for the error twist may
be formulated. The observations reported in this work also
pertain to alternative estimation techniques which also rely on
a linearization of the motion and measurement models.

II. RIGID BODY MOTIONS

This section reviews the basic concepts that are needed for
the description of rigid body motions. Most of the material
presented here can also be found in [2], [3].

In this work the term pose refers to the position and attitude
of a rigid body. The pose of a rigid body is commonly
specified in terms of a coordinate transformation that converts
the coordinates of points given in a coordinate system that
is attached to the body into the coordinates of a fix reference
coordinate system. Mathematically, these transformations form
a group: The special Euclidean group SE(3) whose elements
are the isometries of three-dimensional Euclidean space. More
specifically, SE(3) is the semi-direct product of the special
orthogonal group SO(3), whose elements represent rotations
about the origin in three-dimensional space, and the three-
dimensional vector space R3. The group operation is given



by the concatenation of coordinate transformations and the
inverse of a group element is given by the inverse coordinate
transformation. In practice, the elements of SE(3) are often
given as 4× 4 homogeneous matrices

T ba =

[
Cba

bpa
0 1

]
. (1)

where Cba ∈ SO(3) is a rotation matrix and bpa ∈ R3

is the position of frame a in the coordinates of frame b.
However, the parameterization with homogeneous matrices is
an overparameterization since the pose of a rigid body can be
specified with six parameters. In addition, care has to be taken
to retain the orthogonality of the rotation matrix Cba. Therefore,
alternative parameterizations for the group elements of SE(3)
are often suggested, especially in least-squares problems or
filtering applications.

1) Twists: Fig. 1 illustrates two ways to describe the dis-
placement of a coordinate system that is attached to a rigid
body, which is moving with angular velocity bωωω and velocity
bv, both given in the body’s coordinate system. While in
Fig. 1a the displacement is interpreted as a translation of
the origin along a straight line and a separate rotation, the
same displacement may be described by a screw motion which
consists of a displacement d along a screw axis and a rotation
about that same axis as shown in 1b. According to Chasles’s
theorem, any proper rigid body motion that is not a pure
translation can be described by such a screw motion, cf. [2].
This is the basis for the twist or screw representation of rigid
body motions in terms of six-parameter vectors

t =
[
ωωωT ξξξT

]T (2)

where ωωω is the screw axis and ξξξ is another three-component
vector that encodes the position of the screw axis and the
amount of displacement along the screw axis. The norm of
the screw axis is just the corresponding angle of rotation. In
case of a pure translation, the screw axis vanishes and ξξξ is
replaced by the translation vector.

2) Lie groups and Lie algebras: The importance of the twist
representation becomes apparent when the geometric proper-
ties of the matrix group SE(3) are taken into account. The
group elements T ∈ SE(3) form a continuous, differentiable
manifold with the group operation and the inversion of group
elements acting as differentiable mappings on the manifold.
Such groups are also called Lie groups. For any path T (s) in
the Lie group that passes through the identity, i.e., T (0) = I ,
the derivatives at the identity d/dsT (s)|s=0 are matrices that
belong to a vector space, i.e., the tangent space at the identity
element. The matrix commutator of two elements X,Y yields
a binary operation on the tangent space:

[X,Y ] = X · Y − Y ·X (3)

This operation is called Lie bracket and the tangent vector
space augmented with this operation forms a Lie algebra. The
Lie bracket is linear in both of its arguments. Thus, fixing
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Fig. 1. Two ways to describe the displacement of a rigid body moving with
velocity bv and angular velocity bωωω. Tn

b denotes the coordinate transformation
from the body coordinate system to the navigation frame. (a) Separate
translation and rotation (b) Screw motion with displacement d and angle

∥∥bωωω∥∥
about the screw axis ωωω.

the first argument yields a linear map on the Lie algebra, the
adjoint representation of the algebra:

adX(Y ) = [X,Y ] (4)

In case of the group SE(3) its algebra is written as se(3)
and its elements are given by the twists that describe the screw
motion. The twists can be identified with the matrices that form
the tangent space of SE(3) at the identity by the following
mapping:

Sωωω,ξξξ =

[
bωωωc× ξξξ

0 0

]
(5)

Where bvc× is the skew-symmetric cross-product matrix
associated with a vector v.

3) The exponential map: The elements of the Lie algebra
can be mapped to the elements of its corresponding Lie group
by means of the matrix exponential:

T (S) = exp(S) =
∑∞
k=0

Sk

k!
(6)



For a constant element S ∈ se(3) and a parameter t ∈ R
the exponential map defines a curve

T (t) = exp(St) (7)

on SE(3) whose elements form a one-parameter subgroup.
These curves are the solutions of the differential equation

dT (t)
dt = T (t) · S (8)

and S can be interpreted as the body-velocity if t is the
time. On compact Lie groups the curves given by (7) have an
additional desirable property: They are the unique geodesics
through the identity and thereby the shortest paths between the
identity element T (0) and T (t) on the Lie group w.r.t. a given
Riemannian metric. However, as pointed out in [4] this is not
true for general non-compact Lie groups like SE(3) where the
notion of distance and shortest paths is complicated by the
lack of a bi-invariant Riemannian metric.

4) Lie algebra in optimization problems: The properties
presented in the previous sections motivate the parameteriza-
tion of Lie group elements in terms of vectors in the corre-
sponding Lie algebra in filtering and optimization problems.
The general approach is as follows: In order to estimate the
true value M of a Lie group element, one starts with an initial
estimate M̂ that is related to the true value by a multiplicative
error M = M̂ · exp(S) or M = exp(S) · M̂ . Then some
objective function that depends on the Lie algebra element S
is optimized. The resulting estimate Ŝ is finally used to correct
M̂ according to the multiplicative error function. Thereby it
is possible to work with elements of a vector space (the Lie
algebra), which can be added and multiplied by scalars in the
usual way, while still preserving the geometric properties of
the underlying manifold. In this way, the Lie algebra provides
local coordinates for the Lie group nearby the estimated state.

III. RELATED WORK

A number of different approaches to represent rigid body
motions can be found in the computer graphics and robotics
literature. For instance, Dorst suggests the use of the conformal
model of geometric algebra in order to represent Euclidean
motions [5]. In contrast to homogeneous coordinates, which
require different representations of Euclidean motions to move,
e.g., points and lines, this allows for a unified treatment of mo-
tions for different geometric objects. The use of screw motions
is suggested to interpolate between rigid body motions, but it
is noted that no interpolation scheme can cope with changes
in the body frame and the world frame simultaneously. As an
explanation, it is stated that no bi-invariant metric exists on
SE(3) that is invariant under moving world as well as moving
body frame, as stated in [4].

However, despite the absence of a bi-invariant metric on
general non-compact Lie groups like SE(3) it was shown by
Mahony et al. that the Newton algorithm displays quadratic
convergence when formulated in terms of the local coordinates
provided by the Lie algebra [6].

Wu et al. derive the kinematic equations for the dual quater-
nion representation of rigid body motions for a strapdown
inertial navigation system with highly accurate measurements
[7]. In their work, the focus is on accurate integration of
inertial measurements and not on sensor fusion. Therefore, the
propagation of the uncertainty associated with pose estimates
is not described. They give a differential equation to propagate
a screw vector during minor time intervals, which is used
to update the dual quaternion estimate of the sensor’s pose
regularly.

In textbooks on GNSS-INS integration, the error model for
the IMU’s pose often comprises an additive position error
and a multiplicative attitude error, thereby treating errors in
position and attitude separately and not as elements of the Lie
algebra se(3), c.f. [8]. Jones et al. use this approach to describe
pose error in their inertial aided visual SLAM system, where
an EKF is used to estimate the state [9]. They derive the
equations for the time prediction step starting from the body
velocity differential equation (8) and end up with a motion
model where the velocity is given in the reference frame as it
is also described in [8]. In order to improve the observability
properties of the state to be estimated, they include the gravity
vector in the filter’s state and estimate the pose of the sensor
system w.r.t. the first sensor pose.

A similar parameterization is chosen by Lupton for a graph-
based optimization approach to the integration of inertial and
visual measurements [10]. Here, the errors in attitude and
position are also treated like independent entries in the state
vector and the system’s pose is estimated relative to the very
first pose with the direction of the gravity vector included in
the state.

Recently, another visual-inertial system based on a factor
graph formulation of the SLAM problem was presented by
Indelman et al. [11]. The authors claim to use a Lie algebra
formulation when estimating the sensor’s trajectory, but the
state prediction equation that relates the IMU’s measurements
to consecutive sensor poses is not given explicitly.

While applications of the Lie algebra seemingly are rare
when it comes to the integration of inertial and visual mea-
surements, a number of authors exploit the Lie algebra formu-
lation in connection with pose graph optimization or bundle
adjustment methods that do not require a sophisticated motion
model.

For instance, Agrawal exploits the Baker-Campbell-
Hausdorff equation that operates on elements of the Lie algebra
to formulate a measurement equation that relates adjacent
poses to pose-pose constraints, which were derived by visual
odometry with a stereo camera system [12]. This approach
enables to express poses as well as pose-pose constraints as
elements of the Lie algebra se(3), thereby allowing for an
elegant formulation of the optimization procedure.

Strasdat et al. present a visual SLAM approach that is
based on an efficient bundle adjustment implementation and
a graphical interpretation of the dependencies between state
variables [13]. By default, camera pose errors and pose-pose



constraints are represented by elements of se(3). However,
when closing large loops with a monocular camera the camera
poses are are represented by similarity transformations, where
one parameter contains a local scale factor and the errors
belong to the corresponding Lie group sim(3).

A bundle adjustment framework for SLAM that allows
to compare different parameterizations to represent poses is
presented in [14]. The authors report improved convergence
properties of the iterative minimization procedure when cam-
era pose errors are parameterized as Lie algebra elments as
opposed to a parameterization by independent rotation and
translation vectors.

IV. EKF-SLAM FORMULATION

A. Preliminaries

The following sections present the EKF-SLAM formulation
that was used for the comparison of different pose error pa-
rameterizations presented in sec. V. The overall objective is to
estimate both the pose of the IMU’s body coordinate frame {b}
and the locations of observed landmarks w.r.t. the navigation
frame {n}. The navigation frame is a fix coordinate system
with its x- and y-axis aligned with the north and east directions
and the z-axis aligned with gravity. However, in order to reduce
the effects of linearization errors, an intermediate strapdown
coordinate system {s} is employed, following [10] and [9].
The EKF is then applied to estimate the IMU’s pose and
the position of observed landmarks in the coordinates of the
strapdown coordinate system. Additionally, the pose of the
strapdown frame in relation to the navigation frame needs to
be estimated. Thus, the EKF state vector is of the form

st =
[
s′T mT

]T
. (9)

Where s′ comprises the parameters describing the IMU’s
pose and motion. Its specific composition depends on the
chosen pose error parameterization. Therefore, a more detailed
description is deferred until secs. IV-B3 to IV-B5. The Carte-
sian coordinates of all landmarks that are included in the filter’s
state are combined in the map vector m:

m =
[
YT

1 . . . YT
N

]T (10)

Here, N is the number of landmarks. Subsequently, esti-
mated values are denoted by a hat (̂·) and a tilde (̃·) indicates
the error, i.e., the deviation between a true value (·) and its
estimate: (̃·) = (·)− (̂·).

Because the EKF relies on a truncation of the Taylor series
expansion of both the time update step and the measurement
equation, it can be regarded as an estimator for the state
error, which lies in the tangent plane of the manifold that
contains all possible state values. Therefore, the dimension of
the error state s̃ is not necessarily identical to the dimension
of the state vector s. In particular, any parameterization for
the pose of a rigid body can be chosen, like a homogeneous
matrix (1) or a combination of a quaternion and a position
vector. Independent of this, the error may be represented by a

screw motion or by a rotation vector and a translation vector.
Only the covariance matrix, the Jacobians for the measurement
as well as the prediction step, and the state update equations
after measurements will change depending on the chosen error
model.

B. Prediction step

1) Inertial measurements: During the prediction step, the
IMU’s pose and the associated uncertainty are propagated in
time. The IMU measures its acceleration and angular velocity
relative to an inertial reference frame:

b
ma = ba + ba + na (11)
b
mωωω = bωωω + bg + ng (12)

Where b
ma and b

mωωω are acceleration and angular rate mea-
surements, respectively. These measurements are disturbed by
additive, white Gaussian noise terms na and ng as well as
additive biases ba and bg . The biases change according to a
random walk process driven by white Gaussian noise terms
nba and nbg .

2) Covariance propagation: The error state is propagated
according to a first order differential equation that depends on
the chosen error model as well as the physical model:

·
s̃′ = F · s̃′ +G · n (13)

Here, vector n summarizes the noise terms. The entries of
the matrices F and G are determined by the coefficients of the
time derivatives given in secs. IV-B3 to IV-B5. With the time
derivatives of the error state, the covariance is propagated as
follows for each inertial measurement:

Φ = exp(F · τ) ≈ I15×15 + F · τ (14)
P ′t+τ = Φ · Ps̃′,s̃′ · ΦT

t + Φ ·G ·Q ·GT · ΦTτ (15)

Pt+τ =

[
P ′t+τ Φ · Ps̃′,m̃

Pm̃,s̃′ · ΦT Pm̃,m̃

]
(16)

In the expression above, P and P ′ are the covariance
matrices pertaining to s and s′, respectively. Furthermore, Q
is the power spectral density matrix which characterizes the
noise vector n.

3) Standard error state: In this work, the term standard er-
ror state refers to the following description of the relationship
between the true IMU pose T sb and its estimate T̂ sb :

T sb =

[
C(ΨΨΨs

b) · Ĉsb sp̂b + sp̃b
0 1

]
(17)

Where C(ΨΨΨ) = exp(ΨΨΨ) is the rotation matrix corresponding
to the Rodrigues vector ΨΨΨ ∈ so(3). The definition (17) is
equivalent to the definition given in [8]. In this case, the error
state is given by:

s̃′ =
[
sp̃T

b
sṽT
b b̃T

a ΨΨΨs
b
T b̃T

g
np̃T

s ΨΨΨn
s

T
]T

(18)



In order to propagate the estimate of the IMU’s pose in time,
the effect of gravity on the inertial measurements needs to be
compensated. This leads to the following equations to update
the velocity and pose estimates:

sâ=Ĉsb · (bma− b̂a)+Ĉsn ·n g (19)
sp̂b,t+τ=sp̂b+

sv̂b · τ+
1

2
sâ · τ2 (20)

sv̂b,t+τ=sv̂b+
sâ · τ (21)

Ĉsb,t+τ=Ĉsb · C(bω̂ωω · τ) (22)

Where τ is the time interval between consecutive inertial
measurements. Thus, the time derivatives, which are needed
to propagate the covariance according to (13), can now be
stated as:

·
sp̃b=

sṽb (23)
·

sṽb=
⌊
−Ĉsb · (bmab − b̂a)

⌋
×
·Ψs

b + Ĉsb · na − ...

Ĉsb · b̃a + Ĉns
T · bngc× ·Ψn

s (24)
·

b̃a=nba (25)
·

Ψs
b=−Ĉsb · (b̃g + ng) (26)
·

b̃g=nbg (27)
·

np̃s=03×3 (28)
·

Ψn
s=03×3 (29)

Henceforth, the error model given by (17) is always used
for the transformation between the {s} and {n} frames. Since
it does not change in time, its time derivatives (28) and (29)
vanish and are thus omitted in the ensuing sections. Moreover,
the time derivatives for the bias terms (25) and (27) as well
as the attitude propagation equation (22) will not be restated.

4) Left-invariant error twist: When using a multiplicative
error model based on the twist representation, the corrections
can be applied either by multiplying from the left or from
the right. The latter case is subsequently called left-invariant
error twist, because the error is invariant w.r.t. multiplications
by constant matrices from the left. Consequently, applying the
correcting transformations from the left is henceforth referred
to as right-invariant.

For the left-invariant case the corrections are applied as
follows:

T sb = T̂ sb · exp(SΨΨΨ,ξξξ)

=

[
Ĉsb · C(ΨΨΨ) Ĉsb · u + sp̂b
0 1

]
(30)

With C(ΨΨΨ) and u defined by:

exp(SΨΨΨ,ξξξ) =

[
C(ΨΨΨ) u
0 1

]
(31)

Hence, the error model is different from (17). In particular,
the position correction has to be transformed to the reference
system. Note, that the error twist in (30) is similar to a body
velocity as defined in (8). It is assumed that the IMU moves
according to

·
T sb = T sb · Sωωω,v. (32)

Where Sωωω,v is the body velocity. The error state vector for
this parameterization is:

s̃′ =
[
ξξξT bṽT b̃T

a ΨΨΨs
b
T b̃T

g
np̃T

s ΨΨΨn
s

T
]T

(33)

Here, the position error and the translational velocity relative
to the reference frame are replaced by the corresponding
part of the error twist and the body velocity. Subsequently,
the shorthand notation E(ΨΨΨ, ξξξ) = exp(SΨΨΨ,ξξξ) is used for the
multiplicative error. Also, the error twist and the body velocity
twist are written as vectors tε and tv , respectively. Solving (30)
for the error and taking the time derivative gives:

·
E (ΨΨΨ, ξξξ)=

·(
(T̂ sb )−1 · T sb

)
(34)

=−Sω̂ωω,v̂ · (T̂ sb )−1 · T sb + (T̂ sb )−1 · T sb · Sω,vω,vω,v (35)
=−Sω̂ωω,v̂ · E(ΨΨΨ, ξξξ) + E(ΨΨΨ, ξξξ) · Sω,vω,vω,v (36)

In [15], Bullo and Murray derive a version of this differential
equation that only depends on elements in the Lie algebra. If
second order terms, i.e., products of error terms, are neglected,
this can be stated as:

·
tε=−adt̂v (tε) + tv − t̂v (37)

Or, equivalently:



·

ΨΨΨ
·
ξξξ


=

[
−
⌊
bω̂ωω
⌋
× 0

−
⌊
bv̂
⌋
× −

⌊
bω̂ωω
⌋
×

]
·
[

ΨΨΨ
ξξξ

]
+

[
bω̃ωω
bṽ

]
(38)

Eq. (38) describes the change of the error state in time
for the twist representation. With this relationship the time
derivatives for the whole error state can be written as follows:

·
ξξξ =−

⌊
bv̂
⌋
× ·ΨΨΨ

s
b −

⌊
bω̂ωω
⌋
× · ξξξ + bṽ (39)

·
bṽ =C(−bω̂ωω · τ) ·

(
na − b̃a +

⌊
Ĉsb

T · Ĉns T · ng
⌋
×
·ΨΨΨs

b + ...

Ĉsb
T · Ĉns T · bngc× ·ΨΨΨn

s

)
−
⌊
bω̂ωω
⌋
×
bṽ (40)

·
ΨΨΨs
b=−

⌊
bω̂ωω
⌋
× ·ΨΨΨ

s
b − b̃g − ng (41)

The corresponding equations to propagate the position and
velocity estimates in time are:



bâ =b
ma− b̂a+Ĉbs · Ĉsn ·n g (42)

sp̂b,t+τ=sp̂b+Ĉ
s
b

(
bv̂b · τ+

1

2
bâ · τ2

)
(43)

bv̂t+τ =C(−bω̂ωω · τ) · (bv̂+bâ · τ) (44)

5) Right-invariant error twist: Applying the corrections to
the estimated pose by left multiplication leads to the following
update rule:

T sb = exp(SΨΨΨ,ξξξ) · T̂ sb
=

[
C(ΨΨΨ) · Ĉsb u + C(ΨΨΨ) · sp̂b
0 1

]
(45)

In this case, attitude corrections also affect the position
estimate. In conjunction with this error model the subsequent
error state vector is used:

s̃′ =
[
ξξξT sṽT

b b̃T
a ΨΨΨs

b
T b̃T

g
np̃T

s ΨΨΨn
s

T
]T

(46)

The parameters ΨΨΨs
b and ξξξ now belong to the spatial error

twist (45). A derivation as described in the previous section
yields the time derivative of the error state if a spatial velocity
twist is used in conjunction with the spatial error twist. How-
ever, the calculations are more involved and a larger number
of second order terms were omitted during the calculations.
Finally, the time derivatives can be stated:

·
ξξξ =bsvbc× ·ΨΨΨs

b − bsp̂bc× · Ĉsb · (bg + nr) + sṽb (47)
·

sṽb=
⌊
−Ĉsb · (bmab − b̂a)

⌋
×
·Ψs

b + Ĉsb · na − ...

Ĉsb · b̃a + Ĉns
T · bngc× ·Ψn

s (48)
·

ΨΨΨs
b =−Ĉsb · (b̃g + ng) (49)

Eqs. (19)-(22) are used to propagate the estimated pose in
time.

C. Measurement update

Characteristically textured surface elements serve as land-
marks whose projections onto the image plane are continuously
tracked in the video stream. The image coordinates of these
projections are are stacked to a single measurement vector z
that is used to update the filter state by performing an EKF
update step to obtain an estimate of the error state s̃, c.f. [16]:

K=HT · P · (H · P ·HT +R)−1 (50)
ˆ̃s =K · (z− h(s)) (51)

Here, R is the covariance matrix of the stacked measurement
vector and H is the Jacobian of the measurement equation,
which consists of a coordinate transformation followed by a
central projection. The linearized measurement equation for a
landmark Yi can be stated as

zi=h(ŝ′, Ŷi) +Hs′ · s̃′ +Hy · ỹy + v , (52)

thereby making its dependence on the error state explicit. In
(52) v is the zero mean measurement noise. The Jacobians Hs′

and Hy depend on the chosen error model. They are calculated
numerically by applying small perturbations to the estimated
states according to the multiplicative error models described
in sec. IV-B3 to IV-B5. Finally, the estimated error state is
employed to update the state variables, again by applying the
appropriate update rule for the pose estimates. In addition, the
covariance matrix is updated according to:

P+=P− −K · (H · P− ·HT +R)−1 ·KT (53)

These measurement update equations in connection with the
equations for the time update given in the previous section
define the EKF-SLAM estimator for different pose parameter-
izations.

When new landmarks are introduced in the filter’s state,
an inverse form of the measurement model is employed in
order to obtain an initial estimate of their position and the
cross covariance terms. New landmarks are initialized with a
fix depth of eight meters and a large uncertainty in the direction
of the projection ray.

Both the position vector and the yaw angle pertaining to
the transformation Tns are not observable, c.f. [9]. For the
simulation experiments the corresponding entries in the state
vector were therefore fixed by setting the respective entries in
the covariance matrix and calculated Jacobians to zero.

On the contrary, when processing real data sequences, we
make use of the composition step to reduce the effects of
linearization related errors as originally proposed in [17]. The
composition step is essentially a coordinate transformation that
is applied to reset the reference frame. In this case the complete
transformation Tns is needed to perform the composition step.

V. EXPERIMENTAL RESULTS

A. Simulation runs

A number of simulation runs were conducted in order
to compare the different approaches to pose error parame-
terization. For this purpose, acceleration measurements were
generated by sampling the second derivative of a C2-spline
that is used to specify the trajectory of the sensor system.
Similarly, angular rate measurements were obtained from the
incremental rotations between successive reference frames.
White, Gaussian noise with zero mean and additive biases
were added to the generated inertial measurements. The pa-
rameters of the artificial noise were chosen to imitate the
noise characteristics measured by the sensor system used
for the experiments described in V-B. Moreover, landmark
observations were simulated by projecting known reference
points onto the image plane and adding Gaussian noise with
zero mean and a standard deviation of one pixel.



The simulations provide accurate ground truth which allows
to assess the consistency of the employed filtering technique by
computing the NEES measure [18]. For a consistent estimator,
the NEES should be roughly below a threshold of 14 most of
the time.

Fig. 2 presents the results for a simulated walk through a
long rectangular-shaped hallway with sharp right turns at the
end of each section. In this scene, landmarks go out of view
while new landmarks have to be added to the filter’s state
regularly.

According to the plots for pose error and NEES in Fig. 2b
and 2c, the right invariant error parameterization performs very
similar to the standard error parameterization concerning atti-
tude error as well as attitude NEES while the plots for the left-
invariant error deviate from this pattern. However, the situation
changes for the position estimates. Here, the left-invariant and
the standard error parameterization are almost indistinguish-
able while the plots for the right-invariant parameterization
are slightly different. At the end of the hallway trajectory, the
standard error parameterization slightly outperforms the two
alternative approaches.

This behavior may be explained by the structure of the
update equations (17), (30), and (45): The attitude correction
equations are identical for the right-invariant and the standard
parameterization, but the position update for the right-invariant
parameterization also depends on the estimated attitude error.

Because the plots are partly indistinguishable, tables I and
II additionally summarize the simulation results in terms of
average pose error and average NEES.

Overall, the results for the simulated turntable sequence
shown in Fig. 3 confirm these findings. Yet, the standard
error state and the left-invariant error parameterization are even
closer regarding position error and position consistency. This
indicates, that the slight difference between them observed at
the end of the hallway sequence is probably mainly due to
linearization errors which are introduced when new landmarks
are included. These play a less important role in the turntable
sequence, because new landmarks are only inserted once in
the beginning.

The NEES plots show that the filter is inconsistent for
all parameterizations under investigation. The inconsistency
mainly stems from the fact that landmarks are initialized with
a fix depth and a large uncertainty because the Gaussian
distribution assumption is severely violated thereby.

B. Indoor experiment

The EKF-SLAM approach was also applied to an indoor
dataset that was recorded in an office building using a sensor
system fixed to the torso of a pedestrian. The employed sensor
system is composed of MEMS accelerometers with 5-10 mg
RMS noise characteristics and gyroscopes that are subject
to a 0.0056 ◦ / (sec ·√sec) angular velocity random walk
according to the manufacturers. In addition, a camera records
video images with a resolution of 1398x1080 pixels at 28 Hz.
These images are scaled down to half size and the Harris corner
detector with subsequent subpixel estimation is employed to
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Fig. 2. Simulation results for hallway sequence. (a) Top view of a simulation
run with the standard error state parameterization. Green: Estimated trajectory
Light blue: Estimated landmark positions Red: Reference trajectory Orange:
Reference landmark positions. (b) Attitude (top) and position (bottom) error.
(c) Attitude (top) and position (bottom) NEES. Color codings for (b) and (c):
Green: Right-invariant error Red: Left-invariant error Blue: Standard error
state.
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SIMULATION RESULTS: HALLWAY SEQUENCE
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Left-invariant 45.5793 24.2785 0.1895 0.1015

Right-invariant 42.644443 29.209042 0.2192 0.1081

Standard Error-state 46.7471 28.9725 0.1876 0.1077

detect salient image points which are tracked with a pyramidal
implementation of the Lucas-Kanade algorithm [19], [20].

The algorithm was run on this indoor dataset once for each
of the three presented error parameterizations performing a
composition step regularly as described in sec. IV-C. The
calculated trajectories are shown in Fig. 4 printed on top of
the building’s floor plan. Since accurate ground truth is not
available for this dataset, a comparison can only be made by
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Fig. 3. Simulation results for cube sequence. (a) Slanted view of a simulation
run with the standard error state parameterization. (b) Attitude (top) and
position error (bottom). (c) Attitude (top) and position (bottom) NEES. See
Fig. 2 for details.

TABLE II
SIMULATION RESULTS: CUBE SEQUENCE
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Left-invariant 4.0015 5.5863 0.0070 0.0881

Right-invariant 6.6691 5.3010 0.0071 0.0896

Standard Error-state 4.0421 5.3024 0.0070 0.0896

comparing the estimated trajectories with the floor plan. An
integrated compass was used to determine the initial attitude
of the sensor system w.r.t. the map and the starting position
was chosen such that the remaining trajectory fits best to the
floor plan.

It can be observed that the trajectories estimated with the
different error parameterizations increasingly differ from each
other the farther the system gets from the starting point.
However, the results obtained with all parameterizations are

(a)

(b)

(c)

Fig. 4. Results on indoor dataset. Top: Left-invariant error twist, Center:
Right-invariant error twist, Bottom: Standard error state. A blue cross marks
the starting position. A blue diamond marks the trajectory’s end.

very similar in quality. In addition, it is not clear whether the
observed differences primarily stem from the chosen pose error
model or from linearization related inaccuracies pertaining to
the initialization process for new landmarks, which is also
different for each error model. Thus, it is not possible to
determine which of the compared parameterizations is best
based on this experiment.

VI. CONCLUSION

This work compares different pose error parameterizations
for inertial aided visual SLAM. It is noted, that the widespread
error state formulation reflects the structure of the double-



geodesics on the cross-product space SO(3) × R3 while the
twist representation more closely resembles the mathematical
structure of the associated group SE(3). The error state pa-
rameterizations and the corresponding time and measurement
update equations for the applied EKF are described.

A comparison of the different parameterizations is presented
based on simulated trajectories and a real indoor dataset.
For the simulated trajectories, the differences between the
approaches regarding pose error and consistency are marginal.
However, the standard error state approach seems to be slightly
beneficial. Similarly, the results on the real indoor dataset do
not clearly favor one parameterization.

Its incapability to relinearize about past states is a well
known disadvantage of the EKF employed for state estimation
in this work. It would therefore be of interest to compare the
presented motion and measurement models in a batch estima-
tion framework with relinearization in future work in order to
investigate to what extend the different parameterizations can
take advantage of relinearization.
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