# Challenges in Mechanical Machining of Metal-CFRP-Stacks

'Polymer Meets Aerospace' – Innovative Polymers in Aerospace Industries

September 12, 2012, ILA Berlin

Dr.-Ing. Andrea Stoll, Fraunhofer IWU Dipl.-Ing. (FH) Katja Busch, IWP Chemnitz



# **Challenges in Mechanical Machining of Metal-CFRP-Stacks**

- The Fraunhofer Institute for Machine Tools and Forming Technology
- Motivation
- Occurring problems when machining Titanium and Metal-CFRPstacks
- Approaches and results
  - Tool development
  - Process development
- Conclusions and summary



Locations in Germany



- founded on July 1st, 1991
- about 510 employees
- 29 million euro budget
- **Project Group in Augsburg** since January 2009
- Project Group in Zittau since October 2011





Structure and Regional Networks



![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_4.jpeg)

© Fraunhofer IWU Prof. Neugebauer

Archivierungsangaben

Technology Development

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_4.jpeg)

Cutting Technologies

#### Process basis

- Modeling and simulation of cutting processes / optimization of cutting tools
- Design of modular tool systems
- Optimization of coating-substrate-systems
- Clamping of thinwalled workpieces

#### Process development

- Hybrid processes (High pressure or Cryogenic cooling, Ultrasonic oscillations)
- High Alternative Cooling Strategies (Dry cutting, MQL, High pressure or Cryogenic cooling)
- 5 axis milling, hard machining
- Process chain optimization
- Process combinations / integration

![](_page_5_Picture_13.jpeg)

![](_page_5_Picture_14.jpeg)

![](_page_5_Picture_15.jpeg)

![](_page_5_Picture_16.jpeg)

![](_page_5_Picture_17.jpeg)

![](_page_5_Picture_18.jpeg)

![](_page_5_Picture_19.jpeg)

### **Motivation**

![](_page_6_Picture_1.jpeg)

- For the assembly of the components of an aircraft up to 1,000,000 rivet holes are necessary
- Joining of different lightweight construction materials is required, such as CFRP and titanium oder CFRP and aluminum
- Process-reliable manufacturing of rivet holes in an appropriate quality in one process step with one tool
  - $\rightarrow$  Prevention of stresses in the components
  - $\rightarrow$  Reduction of process steps
  - Prevention of refinishing operations
  - → Cost minimization due to shorter process times and reduced tool costs

#### Adequate tools and manufacturing technologies are required

![](_page_6_Picture_11.jpeg)

# **Occurring Problems when Machining Metal-CFRP-Stacks**

Material properties influencing machining

| <b>Titanium</b>                                                                                                                                                 | Aluminium                                                                                                                                           | CFRP                                                                                                                                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Low thermal conductivity<br>(high temperatures)                                                                                                                 | <ul> <li>High thermal conductivity</li> <li>Generally easily cutting</li> </ul>                                                                     | High thermal conductivity of<br>the fibers                                                                                                                                  |  |  |  |
| <ul> <li>High reactivity with the cutting materials at high temperatures</li> <li>High strength at high and low temperatures</li> <li>High tool wear</li> </ul> | <ul> <li>High tendency to built-up edge</li> <li>Often long chips</li> <li>Abrasive behavior of the cutting process at higher Si content</li> </ul> | <ul> <li>Matrix is thermally sensitive</li> <li>High strength and stiffness</li> <li>Low thermal expansion</li> <li>Extremely high strength under changing loads</li> </ul> |  |  |  |
| vierung sangaben                                                                                                                                                |                                                                                                                                                     | <ul> <li>Dust formation when<br/>machining CFRP (fracture of<br/>fiber)</li> <li>Abrasive properties in the<br/>cutting process</li> </ul>                                  |  |  |  |
| <b>CONCLUSION</b> Completely different requirements on the machining process                                                                                    |                                                                                                                                                     |                                                                                                                                                                             |  |  |  |

Completely different requirements on the machining process

![](_page_7_Picture_5.jpeg)

# **Occurring Problems when Machining Metal-CFRP-Stacks**

### Tool and process requirements

|                                                                  | Titanium                                                                                            | Aluminium                                                                       | CFRP                                                                                          |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| ting edge                                                        | <ul> <li>High-temperature resistant<br/>and ductile substrate<br/>heat-resistant coating</li> </ul> | <ul><li>PCD-cutting edge</li><li>neutral rake angle</li></ul>                   | <ul> <li>PCD-cutting edge or<br/>cemented carbide with<br/>diamond coating against</li> </ul> |  |  |
| Cut                                                              | <ul> <li>Sharp cutting edge</li> </ul>                                                              |                                                                                 | abrasion                                                                                      |  |  |
|                                                                  | <ul> <li>positive rake angle</li> </ul>                                                             |                                                                                 | Sharp cutting edge                                                                            |  |  |
| Chip flutes                                                      | <ul> <li><i>helical</i> chip space</li> </ul>                                                       | <ul> <li><i>helical</i> chip space</li> </ul>                                   | <ul> <li>Straight, deep chip space</li> </ul>                                                 |  |  |
| Cooling                                                          | <ul> <li>Internal cooling with<br/>MQL</li> </ul>                                                   | <ul> <li>Internal cooling with<br/>MQL</li> </ul>                               | <ul> <li>Dry machining<br/>perhaps compressed air</li> </ul>                                  |  |  |
| Parameters                                                       | <ul> <li><i>Low</i> rotation speed</li> <li><i>High</i> feed rate</li> </ul>                        | <ul> <li><i>High</i> rotation speed</li> <li><i>middle</i> feed rate</li> </ul> | <ul> <li><i>High</i> rotation speed</li> <li><i>Low</i> feed rate</li> </ul>                  |  |  |
| Metal-CFRP-Stracks Diversification of ideal machining approaches |                                                                                                     |                                                                                 |                                                                                               |  |  |

![](_page_8_Picture_3.jpeg)

### **Approaches**

### Process-reliable manufacturing of high-quality rivet holes

![](_page_9_Picture_2.jpeg)

### **Tool development**

 Geometry (numerical simulation FEM, process studies)

Coatings

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

### **Process development**

- Machining strategy
- Cutting parameters
- Hybrid processes (superposition of vibrations)
- Cooling lubricant strategy (for example High pressure or cryogenic)

![](_page_9_Picture_13.jpeg)

# **Machining of Titanium-CFRP-Stacks**

Main problems

![](_page_10_Picture_2.jpeg)

- **Drilling direction CFRP**  $\rightarrow$  titanium
  - Damaging of the CFRP by hot and sharp titanium chips
  - Burr formation in titanium

![](_page_10_Picture_6.jpeg)

- **Drilling direction titanium**  $\rightarrow$  CFRP
  - Delamination und fiber projection at hole exit

![](_page_10_Picture_9.jpeg)

![](_page_10_Picture_10.jpeg)

- - Flutes blocked by molten CFRP-chips
  - Burning of the CFRP-matrix because of high tool temperatures

![](_page_10_Picture_16.jpeg)

### **Approaches and Results**

**Tool Development** 

![](_page_11_Picture_2.jpeg)

- Deriving different tool geometries from FEM-simulations
- Process studies for machining the single materials (Ti, CFRP) and the stack

|                                       | Hole exit | Hole exit | Hole exit |
|---------------------------------------|-----------|-----------|-----------|
|                                       | V4        | V5        | V13       |
| Stack<br>(CFRP <del>→</del> Titanium) | 6         |           |           |
| Titanium                              | 6         |           |           |

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

**Approaches and Results** 

Tool Development

**V4** 

#### Hole exits in titanium

variation of tool geometry

![](_page_12_Picture_6.jpeg)

V24

- Poor removal of the titanium chips
- $\rightarrow$  Need for improvement

# Quality of transition between materials unproblematic

**Material transition CFRP-titanium** 

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

![](_page_12_Figure_13.jpeg)

**Tool Development** 

![](_page_13_Picture_2.jpeg)

Modification of tool geometry and optimization of tool surface 

#### Hole exits in titanium

tool optimization

![](_page_13_Picture_6.jpeg)

V4

### **Optimized tool** leads to:

- Reduced burr formation at the hole exits
- Better chip removal

![](_page_13_Picture_11.jpeg)

# **Approaches and Results**

**Process Development** 

![](_page_14_Picture_2.jpeg)

Process influenced by cryogenic cooling with carbondioxide snow

#### **Problem:**

- High process temperatures in machining titanium
  - $\rightarrow$  Damaging of the CFRP
  - $\rightarrow$  Blocked flutes by molten CFRP-chips
- For safety reasons application of oily coolants is not possible

### **Solution:**

 Realization of dry machining by cryogenic process cooling

### **Result**:

- Trouble-free removal of the CFRP-chips
- Prevention of scorching hot titanium chips

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_14_Picture_16.jpeg)

![](_page_14_Picture_17.jpeg)

# **Machining of Aluminium-CFRP-Stacks**

### **Process Development**

Application of acoustic emission sensors for determining drill position

- **Objective:** Adjusting the cutting parameters to the layer material during the drilling process of CFPR-Al-stacks
- **Approach:** Indentification of the material transition by using acoustic emission sensors

![](_page_15_Figure_5.jpeg)

**Result:** 

![](_page_15_Figure_7.jpeg)

![](_page_15_Figure_8.jpeg)

material transition (shim-layer)

Development of an algorithm to identify the material transition

![](_page_15_Picture_11.jpeg)

# **Machining of Aluminium-CFRP-Stacks**

### **Process Development**

#### **Process influenced by low-frequency vibrations**

![](_page_16_Picture_3.jpeg)

experimental set-up

vibration equipment

**Objective:** Reduction of the feed forces when drilling Al-CFRP-Stracks

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

# **Machining of Aluminium-CFRP-Stacks**

### **Process Development**

### **Process influenced by low-frequency vibrations**

![](_page_17_Figure_3.jpeg)

#### **Parameters:**

- f = 200 Hz, A = 12 μm
- v<sub>c</sub> = 57 m/min, f = 0.06 mm/rev

![](_page_17_Figure_7.jpeg)

- Lower feed forces
- Reduced tool wear
- Better chip removal

![](_page_17_Picture_11.jpeg)

## **Machining of Titanium**

### **Process Development**

### **High Pressure Cooling for Improved Chip Control**

#### Technology:

- Supply of the coolant at high pressure (up to 260 bar)
- targeted delivery of the active medium directly on the cutting edge

![](_page_18_Picture_6.jpeg)

Nozzles for high pressure jet

![](_page_18_Picture_8.jpeg)

Insert holder with internal coolant supply

![](_page_18_Picture_10.jpeg)

#### Fields of application:

- difficult cutting materials
- Chip breaking problems / long chipping materials
- productivity gains

![](_page_18_Picture_15.jpeg)

### **Machining of Titanium**

#### **Process Development**

#### **High Pressure Cooling for Improved Chip Control**

![](_page_19_Figure_3.jpeg)

Grooving in Ti 5-5-5-3

#### **Effects of high pressure coolant:**

- Excellent chip control (optimum chip breaking)
- Increased cutting speed and productivity
- Reduction of tool wear
- Very good cooling and flushing

![](_page_19_Picture_10.jpeg)

### **Conclusions and Summary**

- In order to avoid burr and delamination the **drilling direction** has to be considered (CFRP→Metal or Metal→CFRP) when developing the tool design for drilling of composite stacks.
- Internal cooling is mandatory in order to reduce the temperature and to improve chip removal.
- The AE signal can be used for online-monitoring of the drill position in the composite stack. When drilling a stack of different materials, it is possible to determine the drill positions at the points of entrance, exit and transition between the different layers. Thus, material-specific cutting parameters can be realized in composite stacks.
- Machining of difficult to machine materials can be influenced efficiently by using hybrid processes and cooling strategies.
- The specific supply of cooling lubricant under high pressure allows for an improved cutting process. Potential options of energy-efficient manufacturing can be realized, above all, by using higher cutting speeds.

![](_page_20_Picture_6.jpeg)

### Thank you for your attention !

Die Ergebnisse entstanden in gemeinsamen Forschungsarbeiten mit

#### GESAU-WERKZEUGE Fabrikations- und Service GmbH, Glauchau Dr. Gühring KG, Chemnitz und Gühring oHG, Sigmaringen-Laiz NILES-SIMMONS Industrieanlagen GmbH, Chemnitz

und wurden durch das Land Sachsen mit EU-Mitteln gefördert.

![](_page_21_Picture_5.jpeg)