TA-NI- AND TI-AL-BRAZE-ALLOYS FOR HIGH TEMPERATURE STABLE CERAMIC – CERAMIC JUNCTIONS

Sven Roszeitis

Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany

* sven.roszeitis@ikts.fraunhofer.de

Introduction Seminar, CNR ICMATE, Genova, June 9th 2017

Content

- Fraunhofer
 - Fraunhofer IKTS
- Ta-Ni-braze-alloys
 - Brazing SiC
 - CALPHAD calculations (program Factsage)
 - Experiments: Arc-melting, Density, XRD, SEM/EDX, Thermoanlaysis
 - Materialparameters: Electrical conductivity, hardness, coefficient of thermal expansion (CTE)
- Tai-Al-braze-alloys
 - Motivation
 - Thermoanlaysis
 - Brazing Al₂O₃, SiC, Si₃N₄, ZrO₂
- Summary and outlook

Fraunhofer worldwide

The Fraunhofer-Gesellschaft at a glance

Fraunhofer IKTS in figures

Sites	Head- quarters	Hermsdorf site	Dresden- Klotzsche site	Total
Personnel (heads)	374	150	151	675
- Scientists, technicians, admin. personnel	308	117	141	566
- PhD candidates, students, trainees	66	34	9	109
Overall budget in million €	28.7	13.6	11.3	53.6
Industrial revenues in million €	10.1	5.4	4.1	19.6

Latest update: December 31, 2016

Institute Director: Prof. Dr. Alexander Michaelis

Unique capabilities of Fraunhofer IKTS

Complete production line From material to system

- Multiscale development From laboratory to pilot scale
- Structural and functional ceramics Combination of different technology platforms
- Material, component and process analysis Throughout the entire product life cycle

Network creator

More than 500 national and international partners

FRAUNHOFER IKTS IN PROFILE CURRENT RESEARCH PROJECTS

- Short overview
- Business divisions
- Current research projects
- Highlights

back to Contents

Current research projects

Current research projects

Current research projects

Personalized ceramic implants

Biocompatible ceramic bone replica with additively manufactured coating and freeze-foamed filling.

Smart materials

Corrosion of ceramic materials

Plasmagel coatings

LTCC-MEMS packaging

Ta-Ni-braze-alloys for high temperature stable ceramic – ceramic junctions

Triebert A, Matthey B, Martin H-P. Untersuchungen zu Ta–Ni-Legierungen als Hochtemperaturlot für SiC–SiC Verbunde. Keram. Z. 2011;63(5):322–328.
Martin H.-P., Triebert A. Keramikverbunde mit Ta-Ni-Loten für Hochtemperaturanwendungen: Kapitel 3.9.2.3. In: Kriegesmann Jochen, ed. Technische Keramische Werkstoffe (DKG). Ellerau: HvB-Verlag 2014:1–28.

[3] Valenza F, Gambaro S, Muolo ML, et al. Wetting and interfacial phenomena of Ni-Ta alloys on CVD-SiC. Int. J. Appl. Ceram. Technol. 2016;2015:551.

Joining SiC-NiTa-SiC

Geometry of samples for joining experiments and bending test

Cross section structure of joining zone

1410 °C

some perpendicular cracks

1500 °C

Some perpendicular cracks

- Nickel silicide located in the center
- TaC concentrated on the interface

Cross section structure images depending on temperature

Bending strength at ambient temperature

Bending strength at high temperature

- Increase of bending strength at high temperatures up to 800 °C
- Considerabel strength level of over 200 MPa
- Strong decrease in strength at 900 °C

CALPHAD calculations (Factsage), 100 SiC + 38 Ta + 62 Ni, 100 mbar

CALPHAD calculations (Factsage), 100 SiC + 38 Ta + 62 Ni, 10⁻⁴ mbar

6 Samples 11 to 67 at% Tantalum, Ni-Ta phase diagram

Eutectics:

- 1366 °C / 13 at% Ta
- 1395 °C / 38 at% Ta

Dystecticum:

1547 °C / 25 at% Ta

Peritectics:

- 1570°C / 50 at% Ta
- 1792°C / 60 at% Ta

Arc-Melting, sample preparation

- Stable 64 foils of pure Ni and Ta
- Five turns arc-melting at ICMATE (Genova)
- One turn with higher arc energy at MPI CPfS (Dresden)

Arc-Melting, samples after five turnes

Arc-Melting, samples after additional high energy turn

Density

EBSD – band contrast and phase analysis, sample 38 at. % Ta

Phase	Gehalt (Vol.%)
TaNi_R-3m_646850	25.8
TaNi2_14mmm_105388	71.7
Ta(Ni) _x ???	2.5

Thermoanlaysis, pure Ni (68 at. %) and Ta (38 at. %) foils, strong exothermic reaction

09.06.2017 CNR ICMATE, Genova, Introduction Seminar, Sven Roszeitis

27 ΙΚΤS

Thermoanlaysis, bulk alloy Ta 38

Ικτς

Electrical Conductivity at room temperture

Vickers Hardness

Coefficient of thermal expansion (CTE)

Summary and outlook NiTa braze alloys

- Bending strength of S-SiC-TaNi joints up to 275 MPa at 800 °C
- Thermoanalysis shows strong exothermic reaction (Ta 38), which is supporting the alloying prozess
- Increase of hardness with increasing Ta content
- **CTE** decreases with increasing Ta content from $12 \cdot 10^{-6}$ K⁻¹ (Ta 11) to $6 \cdot 10^{-6}$ K⁻¹ (Ta 67)
 - \rightarrow individual alignment of the brazes CTE to the ceramics CTE possible
- The generated Data-Matrix is viable tool to design further ceramic ceramic junctions
- Ta-Ni brazes are promissing brazes for high temperatures
- Outlook:
 - Use of barrier coatings at SiC surface to avoid low melting point nickel silizide formation
 - Show that aligned CTE reduces stress in braze joint and increases mechanical strength level

Manufacture of joined ceramics by use of high temperature stable titanium aluminides

- Ti-Al development
 - 1990-2005 Ti-AI material development for use as high temperature alloys
 - γ-TiAl performs as a high temperature stable alloy with moderate toughness
 - economic manufacture routes for TiAl alloys get established after 2000

Ceramic joining

- Ceramics are favoured materials for high temperature applications
- active filler brazing based on Ag/Cu/Ti established
- inferior performance of Ag/Cu/Ti brazed ceramics > 500 °C
- little economic braze alternatives available

Ti-Al system phase diagram

- γ-TiAl 45-55 at% Ti
- melting range 1450...1490 °C
- phases next to TiAl are:

■ TiAl₂

■ Ti₃Al

Ti-Al system properties of Ti-Al intermetallics

			Ref.	20 °C	600 °C	A AND	
thermal conductivity	W/mK	Ti-47Al-4(Nb,W,B)	[1]	15	21	1000	S. Alleria
CTE	10 ⁻⁶ K ⁻¹	Ti-47Al-4(Nb,W,B)	[1]	8.5	11.5		
Young modulus	GPa	Ti-47Al-4(Nb,W,B)	[1]	165	150	5.57	
specific heat	J/gK	Ti-47Al-4(Nb,W,B)	[1]	0.6	0.7	11-1.30	
yield strength	MPa	Ti-46.5Al-4(Cr,Nb,Ta,B)	[2]	810	800	Care Mar.	
electrical resistivity	10 ⁻⁶ Ωcm	Ti-47Al-4(Nb,W,B)	[1]	75	110	11110	

[1] W.J. Zhang et al. Physical properties of TiAl-base alloys, Scripta Materialia 45 (2001), 645-651

[2] H. Kestler et al. Strangpressverfahren zur Herstellung von TiAl-Ventilen, in: Titan-Aluminid-Legierungen... IBSN 3-89336-318-1

Ceramic materials used in this work

			bending strength MPa	CTE 10 ⁻⁶ K ⁻¹	Young modulus GPa
Alumina	Al ₂ O ₃	Frialit 99.7	350	8.2	380
Silicon carbide	S-SiC	IKTS	400	4.4	420
Silicon nitride	Si ₃ N ₄	IKTS	910	3.2	320

[1] W.J. Zhang et al. Physical properties of TiAl-base alloys, Scripta Materialia 45 (2001), 645-651

[2] H. Kestler et al. Strangpressverfahren zur Herstellung von TiAl-Ventilen, in: Titan-Aluminid-Legierungen... IBSN 3-89336-318-1

Experiments

Basic investigations

- DTA experiments
 - Ti- 40 Al (Ti + Al powder mix) + 50 wt%
 - $\blacksquare Al_2O_3$
 - SiC
 - Si₃N₄
 - Phase analysis of DTA samples by XRD

37

Formation of:

Joining experiments pretesting after brazing procedure

Brazing temperature /°C	ceramic hammer test result			
< 1400 °C brazing temperature all samples failed by hammer test				
1400	Al ₂ O ₃	failed		
1400	SiC	passed		
1400	Si ₃ N ₄	passed		
1450	AI_2O_3	passed		
1450	SiC	failed		
1450	Si ₃ N ₄	failed		
1500	Al ₂ O ₃	passed		
1500	SiC	failed		
1500	Si ₃ N ₄	passed		

Joining experiments

mechanical strength of joined ceramic

Brazing at:	Ceramic type	4 point – bending - strength MPa
1400 °C	SiC	39 ±
1400 °C	Si ₃ N ₄	10 ±
1450 °C	Al ₂ O ₃	44 ±
1500 °C	Si ₃ N ₄	27 ±
1500 °C	Al ₂ O ₃	69 ±

		4 point – bending - strength at 800 °C MPa
1500 °C	Si ₃ N ₄	177

Joining experiments microstructure of joining zone by FESEM

Joining experiments microstructure of joining zone by FESEM

 ZrO_2 + $Ti_{50}AI_{50}$ / 1700 °C brazing

Summary and outlook TiAl braze alloys

- Strong chemical interactions occur between TiAl braze and SiC / Si₃N₄ ceramics while a medium reaction occurs with ZrO₂ and no chemical interaction occurs with Al₂O₃
- the optimum joining temperature depends on the found interactions between braze and ceramic
- reliable ceramic joining can be reached, particularily outstanding high temperature strength was obtained
- Specific investigations need to be done for tuning the process parameters
 - → Polito: 700 °C up to 1400 °C powder mixtures of braze ceramic 1:1
 - \rightarrow CNR Genova: arc melting, rolling of foils, wetting angles

Further projects

- Braze alloys or for Super High working temperature up to 1600 °C (systems TaZr, TiZr, WZr, WTi, NiZr)
- Braze alloys or for sub sea systems (crofer, Inconel, SiC, H₂S corrosion)
- Innovative glueing of ceramics up to 1000 °C working temperature

- In FY2017, Japan will launch the world's first pilot experiment of mining and lifting from seabed hydrothermal deposits.
- It will be the first step toward commercialization of marine mineral resources development.

Thanks to

- Uta Körber, Tim Gestrich, Mario Trache, Maria Striegler, Björn Matthey, Anke Triebert, Hans-Peter Martin, Alexander Michaelis (Fraunhofer IKTS, Dresden)
- Sofia Gambaro, Fabrizio Valenza (CNR ICMATE, Genova)
- Susann Scharsach, Marcus Schmidt, Ulrich Burkhardt, Juri Grin (MPI CPfS, Dresden)
- Yasir Akram, Stefano Jamali, Pardeep Kumar Gianchandani, Monica Ferraris (POLITO, Torino)
- We acknowledge the financial support of the European Union and the Free State of Saxony (SuperHi,Fkz. 100231806) and KMM-VIN

Europäische Union

