
UVM goes Universal -
Introducing UVM in SystemC

Stephan Schulz (FhG IIS/EAS),
Thilo Vörtler (FhG IIS/EAS),
Martin Barnasconi (NXP)

1
© Accellera Systems Initiative

UVM what is it?
• Universal Verification Methodology to create modular,

scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

• Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

2© Accellera Systems Initiative

UVM what is it not…
• Infrastructure offering tests or scenario’s out-of-the-box:

all behaviour has to be implemented by user
• Coverage-based verification templates: application is

responsible for coverage and randomization definition;
UVM only offers the hooks and technology (classes)

• Verification management of requirements, test items or
scenario’s is outside the scope of UVM

• Test item execution and regression – automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

3© Accellera Systems Initiative

Outline
• Part A – Introduction
• Part B – Examples and Applications
• Part C – Further steps & Outlook

4© Accellera Systems Initiative

Outline
• Part A - Introduction

– A bit of history…
– Why UVM in SystemC?
– Main concepts of UVM
– Advantages of UVM-SystemC

5© Accellera Systems Initiative

A bit of history…
• In the pre-UVM era, various EDA vendors offered a verification

methodology in SystemC
– OVM-SC (Cadence), AVM-SC (Mentor), VMM-SC (Synopsys)

• Unfortunately, consolidation towards UVM focused on a
SystemVerilog standardization and implementation only

• Non-standard methods and libraries exist to bridge the UVM and
SystemC world
– Cadence’s UVM Multi Language library: offers a ‘minimalistic’ UVM-

SystemC
– Mentor’s UVM-Connect: Mainly TLM communication and configuration

• In 2011, a European consortium started building a UVM standard
compliant version based on SystemC / C++
– Initiators: NXP, Infineon, Fraunhofer IIS/EAS, Magillem, Continental, and

UPMC

6© Accellera Systems Initiative

Why UVM in SystemC?
• Elevate verification beyond block-level towards system-level

– System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual

Prototypes is currently ad-hoc and not well architected
– Beneficial if the first system-level verification environment is UVM

compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, a rich set of C++ libraries can be integrated easily

7© Accellera Systems Initiative

Why UVM in SystemC?
• Support analogue DUTs with SystemC

AMS
• Reuse tests and test benches across

verification (simulation) and validation
(HW-prototyping) platforms
– requires portable language like C++ to

run tests on HW prototypes,
measurement equipment, …

– Enables Hardware-in-the-Loop simulation
and Rapid Control Prototyping

8© Accellera Systems Initiative

Verification stack:
tools, language and methodology

9

SystemC(-AMS)
compliant simulator

SystemC(-AMS)
Language

UVM (-SC / -AMS)
Class library

Universal Verification
Methodology

Verification
management

Language and modeling technology elements:
Tool / simulator

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

UVM technology elements:
• Methodology = what
• Class library = how

UVM-SystemC scope

© Accellera Systems Initiative

UVM in SystemC versus UV in
SystemVerilog

• UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable
– Equivalent UVM base classes and member functions implemented in

SystemC/C++
– Use of existing SystemC functionality where applicable

• TLM interfaces and communication
• Reporting mechanism

– Only a limited set of UVM macros is implemented
• usage of some UVM macros is not encouraged and thus not introduced

• UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
– Constrained randomization
– Coverage groups (not part of SCV yet)

10© Accellera Systems Initiative

Main concepts of UVM (1)
• Clear separation of test stimuli (sequences) and test bench

– Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

– In this way, sequences can be developed and reused independently
• Introducing test bench abstraction levels

– Communication between test bench components based on
transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and
predictors

• Reusable verification components based on standardized
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and

monitor functionality with clearly defined (TLM) interfaces

11© Accellera Systems Initiative

Main concepts of UVM (2)
• Non-intrusive test bench configuration and customization

– Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality
• Well defined execution and synchronization process

– Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions
• Independent result checking

– Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

12© Accellera Systems Initiative

UVM Layered Architecture
• The top-level (e.g. sc_main) contains the

test(s), the DUT and its interfaces
• The DUT interfaces are stored in a

configuration database, so it can be used
by the UVCs to connect to the DUT

• The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the
stimuli and check the result

• The test to be executed is either defined
by the test class instantiation or by the
member function run_test

13

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister
sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

© Accellera Systems Initiative

UVM layered architecture

14

Spec

Test cases

Scenario

Signal

Test casesTest

Fu
nc

tio
na

l c
ov

er
ag

e

Functional

Command Monitor

ScoreboardSequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

© Accellera Systems Initiative

Advantages of UVM-SystemC
• UVM-SystemC library features

– UVM components based on SystemC modules
– TLM communication API based on SystemC
– Phases of elaboration and simulation aligned with

SystemC
– Packing / Unpacking using stream operators
– Template classes to assign RES/RSP types
– Standard C++ container classes for data storage

and retrieval
– Other C++ benefits (exception handling, constness,

multiple inheritance, etc.)

15© Accellera Systems Initiative

UVM components are SystemC modules
• The UVM component class (uvm_component) is derived from

the SystemC module class (sc_module)
– It inherits the execution semantics and all features from SystemC
– Parent-child relations automatically managed by uvm_component_name

(alias of sc_module_name); no need to pass ugly this-pointers
– Enables creation of spawned SystemC processes and introduce

concurrency (SC_FORK, SC_JOIN); beneficial to launch runtime phases
– No need for SV-like “virtual” interfaces; regular SystemC channels

(derived from sc_signal) between UVC and DUT can be applied

16

namespace uvm {
class uvm_component : public sc_core::sc_module,

public uvm_report_object
{
uvm_component(uvm_component_name name);
...

};
} // namespace uvm

class my_uvc : public uvm_env
{
public:
my_uvc(uvm_component_name name) : uvm_env(name)
{}
...

};

LRM definition Application

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

SystemC TLM communication (1)
• TLM-1 put/get/peek interface

– put/get/peek directly mapped on
SystemC methods

– UVM methods get_next_item and
try_next_item mapped on SystemC

– TLM-1 primarily used for
sequencer-driver communication

• TLM-1 analysis interface
– UVM analysis port, export and

import using SystemC
tlm_analysis_if

– Used for monitor-subscriber
(scoreboard) communication

– UVM method connect
mapped on SystemC bind

17

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_sqr_if_base
: public virtual sc_core::sc_interface
{
public:
virtual void get_next_item(REQ& req) = 0;
virtual bool try_next_item(REQ& req) = 0;
virtual void item_done(const RSP& item) = 0;
virtual void item_done() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = 0;
virtual void peek(REQ& req) = 0;
...

}; // class uvm_sqr_if_base

} // namespace uvm

LRM definition

namespace uvm {

template <typename T>
class uvm_analysis_port : public tlm::tlm_analysis_port<T>
{
public:
uvm_analysis_port();
uvm_analysis_port(const std::string& name);

virtual const std::string get_type_name() const;
virtual void connect(tlm::tlm_analysis_if<T>& _if);
void write(const T& t);

}; // class uvm_analysis_port

} // namespace uvm

LRM definition

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

SystemC TLM communication (2)
• As the UVM TLM2 definitions are inconsistent with the

SystemC TLM-2.0 standard, these are not implemented in
UVM-SystemC

• Furthermore, UVM only defines TLM2-like transport
interfaces, and does not support the Direct Memory Interface
(DMI) nor debug interface

• Therefore, a user is recommended to directly use the SystemC
TLM-2.0 interface classes in UVM-SystemC

• Hopefully, the UVM SystemVerilog Standardization Working
Group in IEEE (P1800.2) is willing to resolve this inconsistency
and align with SystemC (IEEE Std 1666-2011)

18© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Phases of elaboration and simulation

19

• UVM-SystemC phases made consistent with SystemC phases
• UVM-SystemC supports the 9 common phases and the

(optional) refined runtime phases
• Objection mechanism supported to manage phase transitions
• Multiple domains can be created to facilitate execution of

different concurrent runtime phase schedules

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases

UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

= top-down execution

= bottom-up execution

Legend

Pre-run phases Runtime phases Post-run phases

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

(Un)packing using stream operators
• Thanks to C++, stream operators (<<, >>) can be overloaded to

enable elegant type-specific packing and unpacking
• Similar operator overloading technique also applied for

transaction comparison (using equality operator ==)

20

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p.pack_field_int(a, 64);
p.pack_field_int(b, 64);

}

virtual void do_unpack(uvm_packer& p)
{

a = p.unpack_field_int(64);
b = p.unpack_field_int(64);

}
...

};

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p << a << b;
}

virtual void do_unpack(uvm_packer& p)
{

p >> a >> b;
}
...

};

ApplicationApplication

Disadvantage: type-
specific methods

Elegant packing using
stream operators

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

C++ Template classes
• Template classes enable

elegant way to deal with
special types such as REQ/RSP

• UVM-SystemC supports
template classes using
macros
UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS
(no difference)

• More advanced template
techniques using explicit
specialization or partial
specialization are possible

21

template <typename REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;

vip_driver(uvm_component_name name)
: uvm_driver<REQ>(name), vif(NULL) {}

UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>);

void build_phase(uvm_phase& phase)
{

uvm_driver<REQ>::build_phase(phase);

if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(),

"Interface not defined! Simulation aborted!");
}

void run_phase(uvm_phase& phase)
{

REQ req;

while(true) // execute all sequences
{

this->seq_item_port->get_next_item(req);
drive_transfer(req);
rsp.set_id_info(req);
this->seq_item_port->item_done();

}

void drive_transfer(const REQ& p)
{

vif->sig_data.write(p.data);
...

}
};

Application

UTILS macro supports
template arguments

Template class

Template argument
defines request type

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Standard C++ container classes
• Standard C++ containers can be used for efficient data storage

using push/pop mechanisms and retrieval using iterators and
operators

• Examples: dynamic arrays (std::vector), queues (std::queue),
stacks (std::stack), heaps (std::priority_queue), linked lists
(std::list), trees (std::set), associative arrays (std::map)

• Therefore UVM-SystemC will not define uvm_queue nor uvm_pool

22

namespace uvm {

class uvm_object : public uvm_void, public uvm_report_object {
public:
...
// Group: Packing
int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);
int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);
...

}; // class uvm_object
} // namespace uvm

LRM definition

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Other benefits
• Exception handling:

The standard C++ exception handler mechanism is beneficial
to catch serious runtime errors (which are not explicitly
managed or found using UVM_FATAL) and enables a graceful
exit of the simulation

• Constness:
Ability to specify explicitly that a variable, function argument,
method or class/object state cannot be altered

• Multiple inheritance:
Ability to derive a new class from two ‘origins’ or base classes.

• …and much more C++ features…

23© Accellera Systems Initiative

Outline
• Part B – Examples and Applications

– Components and Classes
– Register Model
– Abstraction re-use
– Generator
– Visualization

24© Accellera Systems Initiative

25

UVM agents, drivers, and monitors

UVM agent

• Component responsible to drive
and monitor the DUT

• Typically contains three
components
– Sequencer
– Driver
– Monitor

• Could contain analysis
functionality for basic coverage
and checking

26

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM agent

• Possible configurations
• Active agent: sequencer and driver are

enabled
• Passive agent: only monitors signals

(sequencer and driver are disabled)
• Master or slave configuration

• Base class: uvm_agent

27

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM agent – example -1

28

class vip_agent : public uvm_agent
{
public:
vip_sequencer<vip_trans>* sequencer;
vip_driver<vip_trans>* driver;
vip_monitor* monitor;

UVM_COMPONENT_UTILS(vip_agent);

vip_agent(uvm_component_name name)
: uvm_agent(name), sequencer(0),

driver(0), monitor(0) {}

void build_phase(uvm_phase& phase)
{
uvm_agent::build_phase(phase);

if (get_is_active() == UVM_ACTIVE)
{
sequencer = vip_sequencer<vip_trans>::type_id::create("sequencer", this);
assert(sequencer);
driver = vip_driver<vip_trans>::type_id::create("driver", this);
assert(driver);

}

monitor = vip_monitor::type_id::create("monitor", this);
assert(monitor);

}

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

Essential call to base class to
access properties of the agent

trans

seq

vifvif

Dedicated base class to
distinguish agents from
other component types config

analysis

Call to the factory which creates and
instantiates this component dynamically

Registers the object in
the factory

Container for the string
name and provides the
mechanism for building
the hierarchical names

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM agent – example -2

29

...

void connect_phase(uvm_phase& phase)
{

if (get_is_active() == UVM_ACTIVE)
{
// connect sequencer to driver
driver->seq_item_port.connect(sequencer->seq_item_export);

}

}
}; // class vip_agent

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

Only the connection between sequencer
and driver is made here. Connection of

driver and monitor to the DUT is done via
the configuration mechanism in the driver

and monitor, respectively

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM sequencer

• The sequencer controls and delivers
transaction data items upon request of
the driver*

• This allows to react to the current state
of the DUT for every data item
generated

• The UVM standard describes an
interface between sequencer and driver
that follows TLM (1.0) communication

• The sequencer serves as an arbiter for
controlling transactions from multiple
stimulus generators

• Base class: uvm_sequencer

30

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

* Alternatively, there is a UVM
push sequencer (class
uvm_push_sequencer)
which pushes the sequence
items to the driver, but this is
not yet available in UVM-
SystemC

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM sequencer – example

• The communication between sequence and sequencer is
implemented in the base classes of the respective sequence and
sequencer; the user / application does not have to deal with this

31

template <class REQ>
class vip_sequencer : public uvm_sequencer<REQ>
{
public:

vip_sequencer(uvm_component_name name)
: uvm_sequencer<REQ>(name) {}

UVM_COMPONENT_PARAM_UTILS(vip_sequencer<REQ>)

}; // class vip_sequencer

agent

driver monitor

sequencer

seq_item_port

seq_item_export

Template parameter will be
used for transaction type

Factory registration: use ‘_PARAM_’ macro in
case template parameters are used. Note that
the macro supports template classes

item_collected_port

vifvif

config

analysis

trans

seq

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM driver

• The driver is responsible to create
the physical signals to drive the DUT

• For this, the driver repeatedly
requests transactions, encapsulated
in a sequence, via the sequencer,
and translates these to one or more
physical signal(s)

• Connection between the driver and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

• Base class: uvm_driver

32

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM driver – example -1

33

template <class REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;

vip_driver(uvm_component_name name): uvm_driver<REQ>(name){}

UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>)

void build_phase(uvm_phase& phase)
{
uvm_driver<REQ>::build_phase(phase);
if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))

UVM_FATAL(this->get_name(),
"Virtual interface not defined! Simulation aborted!")

}

void run_phase(uvm_phase& phase)
{
REQ req, rsp;
while(true) // forever loop
{
this->seq_item_port->get_next_item(req);
drive_transfer(req);
rsp.set_id_info(req);
this->seq_item_port->item_done();
this->seq_item_port->put_response(rsp);

}
}

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

Process transactions via the
sequencer interface

trans

seq

vifvif

Get interface object using
the configuration

mechanism

config

analysis

Placeholder needed to store the
handle to the interface object

Registration of the
template class

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM driver – example -2

34

...

void drive_transfer(const REQ& p)
{

...
vif->sig_a.write(...);

}

}; // class vip_driver

agent

driver monitor

sequencer

seq_item_port

seq_item_export

Driver output signals are written
to the interface directly

item_collected_port

trans

seq

class vip_if
{
public:
sc_signal<int> sig_a;
vip_if() : sig_a("sig_a") {}

};

vifvif

Connection to the DUT is established via
the configuration mechanism

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM monitor

• The monitor is a passive element
that ‘only’ captures the DUT signals

• It extracts signal information from the
interface and translates this
information to abstract transactions

• It will distribute this transaction to all
connected elements for e.g. coverage
collection and checking

• Connection between the monitor and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

• Base class: uvm_monitor

35

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM monitor – example

36

class vip_monitor : public uvm_monitor
{
public:
uvm_analysis_port<vip_trans> item_collected_port;
vip_if* vif;

vip_monitor(uvm_component_name name): uvm_monitor(name) {}

UVM_COMPONENT_UTILS(vip_monitor)

void build_phase(uvm_phase& phase)
{

uvm_monitor::build_phase(phase);
if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(),

"Virtual interface not defined! Simulation aborted!")
}

void run_phase(uvm_phase& phase)
{
vip_trans t;
while(true) // monitor forever
{

wait(vif->sig_data.default_event());
...
t.data = vif->sig_a.read();
item_collected_port.write(t);

}
}

}; // class vip_monitor

agent

driver monitor

sequencer

seq_item_port

seq_item_export

Example: wait for input changes
in case there is no clock

item_collected_port

trans

seq

Connection to the DUT is established via
the configuration mechanism

class vip_if
{
public:
sc_signal<int> sig_a;
vip_if() : sig_a(“sig_a") {}

};

vifvif

config

analysis

Analysis port used to
pass collected data to
attached components

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM verification component (UVC)

• A reusable verification component
(UVC) is a (sub-) environment which
consists of one or more agents

• The verification component or
agents may set or get configuration
parameters

• An independent sequence, which
contains the actual transaction data,
is processed by the driver via a
sequencer

• Each verification component is
connected to the DUT using a
dedicated interface

• Base class: uvm_env

37

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVC – example

• In this example, the UVM verification component (UVC)
contains only one agent. In practice there will be more agents
instantiated

38

class vip_uvc : public uvm_env
{
public:
vip_agent* agent;

UVM_COMPONENT_UTILS(vip_uvc);

vip_uvc(uvm_component_name name)
: uvm_env(name), agent(0) {}

void build_phase(uvm_phase& phase)
{
uvm_env::build_phase(phase);

agent = vip_agent::type_id::create("agent", this);
assert(agent);

}

}; // class vip_uvc

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component
(env) config

trans

seq

vifvif

Registers the object
in the factory

A UVC is treated as a sub-
environment in large system-

level environments

config

analysis

Essential call to base class to
access properties of the env.

Components are instantiated
in the build phase

Call to the factory which creates and
instantiates this component dynamically

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

39

UVM sequences and sequencers

UVM sequences

• Sequences are part of the test scenario
and define streams of transactions

• The properties (or attributes) of a
transaction are captured in a sequence
item

• Sequences are not part of the testbench
hierarchy, but are mapped onto one or
more sequencers

• Sequences can be layered, hierarchical or
virtual, and may contain multiple
sequences or sequence items

• Sequences and transactions can be
configured via the factory

40

transaction

transaction

transaction

sequence

seq

seq1

seq2

trans

trans

seq1

trans

trans

seq2

© Accellera Systems Initiative

UVM sequence item – example

41

class vip_trans : public uvm_sequence_item
{
public:
int addr;
int data;
bus_op_t op;

UVM_OBJECT_UTILS(vip_trans);

vip_trans(const std::string& name = "vip_trans")
{
addr = 0x0;
data = 0x0;
op = BUS_READ;

}

virtual void do_print(uvm_printer& printer) const { ... }
virtual void do_pack(uvm_packer& packer) const { ... }
virtual void do_unpack(uvm_packer& packer) { ... }
virtual void do_copy(const uvm_object* rhs) { ... }
virtual bool do_compare(const uvm_object* rhs) const { ... }

}; // class vip_trans

agent

driver monitor

sequencer

seq_item_port

seq_item_export

A sequence item should implement
all elementary member functions
to print, pack, unpack, copy and

compare the data items
(there are no field macros in

UVM-SystemC)

item_collected_port

Inherits from
uvm_transaction

trans

seq

vifvif

config

analysis
User-defined data items
(randomization can be

done using SCV or CRAVE)

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM sequence – example

42

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class sequence : public uvm_sequence<REQ,RSP>
{
public:
sequence(const std::string& name)
: uvm_sequence<REQ,RSP>(name) {}

UVM_OBJECT_PARAM_UTILS(sequence<REQ,RSP>);

void body()
{

REQ* req;
RSP* rsp;

for(int i = 0; i < NUM_TRANS; i++)
{
req = new REQ();
rsp = new RSP();
...
start_item(req);
// req->randomize();
finish_item(req);
get_response(rsp);

}
}

}; // class sequence

A sequence contains a request
and (optional) response, both

defined as sequence item

Compatibility layer to SCV or
CRAVE not yet implemented

Optional: get response

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis
Factory registration

supports template classes

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequence

• A virtual sequence encapsulates one
or more sequences, which are
executed on the sub-sequencers in
each UVC agent, which are all
connected to the parent virtual
sequencer

• A virtual sequence can be configured
as default sequence in a test, to
facilitate automatic execution on a
virtual sequencer or a sequencer
which belongs to a UVC agent

• Base class: uvm_sequence
(same as ‘normal’ sequences)

43

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequence – example

44

class virt_sequence : public uvm_sequence<>
{
public:
vip_sequence<vip_trans>* vip_seq;

virt_sequence(const std::string& name = "virt_sequence")
: uvm_sequence<>(name) {}

UVM_OBJECT_UTILS(virt_sequence)

UVM_DECLARE_P_SEQUENCER(virt_sequencer)

void body()
{

UVM_INFO(get_name(),
"Virtual sequence starts here...“, UVM_NONE)

UVM_DO_ON(vip_seq, p_sequencer->vip_seqr)

UVM_INFO(get_name(),
"Virtual sequence finished.“, UVM_NONE);

}
}; // class virt_sequence

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

Use of same base class,
without parameters

Declaration of the
parent sequencer

Macro to start sequence on a
specific sequencer using

its member function start

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequencer

• A virtual sequencer contains
references to its subsequencers
such as UVC sequencers or other
virtual sequencers

• Virtual sequencers process virtual
sequences which encapsulate
sequences for multiple verification
components

• Virtual sequencers do not execute
transactions on themselves but
‘offload’ this to its subsequencers

• Base class: uvm_sequencer
(same as ‘normal’ sequencers)

45

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequencer

• Similar as with the sequencer in
an agent, the communication
between the virtual sequence
and virtual sequencer is
implemented in the base
classes and therefore the
application does not have to
deal with this

46

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequencer – example

47

class virt_sequencer : public uvm_sequencer<>
{
public:

vip_sequencer<vip_trans>* vip_seqr;

UVM_COMPONENT_UTILS(virt_sequencer)

virt_sequencer(uvm_component_name name)
: uvm_sequencer<>(name) {}

}; // class virt_sequencer

As the virtual sequencer does not
process transactions itself, we do
not specify a template parameter

Placeholder to associate one
subsequencer to this virtual sequencer

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

48

UVM scoreboard and subscribers

UVM scoreboard

• The scoreboard performs
end-to-end checking by
comparing expected and processed
transactions

• These transactions are retrieved by
dedicated subscribers or listeners, which
implement the write method of the
analysis ports of each monitor, to which
these subscribers are connected

• A scoreboard may contain a predictor,
which acts as reference or golden model.
Alternatively, the scoreboard may
contain an algorithm to calculate the
expected transaction

• Base class: uvm_scoreboard

49

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

class scoreboard : public uvm_scoreboard
{
public:
uvm_analysis_export<vip_trans> listener1_imp;
uvm_analysis_export<vip_trans> listener2_imp;
subscriber1* subscr1;
subscriber2* subscr2;

scoreboard(uvm_component_name name): uvm_scoreboard(name) {}

UVM_COMPONENT_UTILS(scoreboard)

void build_phase(uvm_phase& phase)
{
uvm_scoreboard::build_phase(phase);
subscr1 = subscriber1::type_id::create("subscr1", this);
subscr2 = subscriber2::type_id::create("subscr2", this);
...

}

void connect_phase(uvm_phase& phase)
{
listener1_imp(subscr1->analysis_export);
listener2_imp(subscr2->analysis_export);

}
void write_listener1(const vip_trans& t) { ... }
void write_listener2(const vip_trans& t) { ... }

};

UVM scoreboard – example

50

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Via the subscribers the expected
and the processed transactions

become available which are used
for the actual checking

Exports used to
connect to the

subscribers

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

class subscriber1: public uvm_subscriber
{
public:

subscriber1(uvm_component_name name): uvm_subscriber(name) {}

UVM_COMPONENT_UTILS(subscriber1)

void write(const vip_trans& t)
{
uvm_object* obj;
scoreboard* sb;

uvm_config_db<scoreboard*>::get(0, "", “sb", sb);
assert(sb);

sb->write_listener1(t);
}

};

UVM subscriber – example

51

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Transactions are passed to
the scoreboard

Implementation of the
write method for the
export in the monitor

The scoreboard in which
the subscriber is used

is retrieved via the
configuration mechanism

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

52

UVM top, test and testbenches

Top, Tests and Testbench

• The top-level (e.g. sc_main)
contains the test(s) and the
DUT

• The interface to which the DUT
is connected is stored in the
configuration database, so it
can be used by the UVCs to
connect to the DUT

• The test to be executed is
either defined by the test class
instantiation or by the
argument of the member
function run_test

53

DUT

AMS DIG SW

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test

top (sc_main)

configdefault
sequence

in

out

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

int sc_main(int, char*[])
{

dut* my_dut = new dut("my_dut");

vip_if* vif_uvc1 = new vip_if;
vip_if* vif_uvc2 = new vip_if;

uvm_config_db<vip_if*>::set(0, "*.uvc1.*",
"vif", vif_uvc1);

uvm_config_db<vip_if*>::set(0, "*.uvc2.*",
"vif", vif_uvc2);

my_dut->in(vif_uvc1->sig_a);
my_dut->out(vif_uvc2->sig_a);

run_test("test");

return 0;

}

Top – example

54

Instantiate
the DUT and

interfaces

Connect DUT to
the interface

DUT

AMS DIG SW

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test

top (sc_main)

configdefault
sequence

in

out

register interface
using the configuration

database

Dynamically instantiates
the test if given as

argument and start it

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM test

• Each UVM test is defined as a
dedicated test class, which
instantiates the testbench and
defines the test sequence(s)

• Reuse of tests and topologies is
possible by deriving tests from a test
base class

• The configuration and factory concept
can be used to configure or override
UVM components, sequences or
sequence items

• Tests can be selected (passed) as
command line option*

• Base class: uvm_test

55

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

* Not yet available in UVM-SystemC

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM test – example

56

class test : public uvm_test
{
public:
testbench* tb;
test(uvm_component_name name) : uvm_test(name) {}

UVM_COMPONENT_UTILS(test)

void build_phase(uvm_phase& phase)
{
uvm_test::build_phase(phase);
tb = testbench::type_id::create("tb",this);

uvm_config_db<uvm_object_wrapper*>::set(this,
"tb.virtual_sequencer.run_phase",
"default_sequence“, virt_sequence::type_id::get());

}

void run_phase(uvm_phase& phase)
{
UVM_INFO(get_name(), "** UVM TEST STARTED **", UVM_NONE)

}

void report_phase(uvm_phase& phase)
{
UVM_INFO(get_name(), "** UVM TEST ENDED **", UVM_NONE)

}
};

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

Configuration of virtual
sequence for virtual

sequencer

The test instantiates
the required testbench

Specific class to identify the
test objects for execution

using the method run_test

Reporting macros for
information, warnings, errors
and fatal errors are available

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM testbench

• A testbench is defined as the
complete environment which
instantiates and configures the
UVCs, scoreboard, and virtual
sequencer if available

• The UVCs are sub-environments in
a testbench

• The testbench only makes the
connections between the
scoreboard and virtual sequencer
to each UVC; the connection
between UVCs and the DUT is
arranged within the UVCs

57

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

conf

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM test bench – example -1

58

class testbench : public uvm_env
{
public:
vip_uvc* uvc1;
vip_uvc* uvc2;
virt_sequencer* virtual_sequencer;
scoreboard* scoreboard1;

UVM_COMPONENT_UTILS(testbench);

testbench(uvm_component_name name)
: uvm_env(name), uvc1(0), uvc2(0),
virtual_sequencer(0), scoreboard1(0) {}

void build_phase(uvm_phase& phase)
{
uvm_env::build_phase(phase);

uvc1 = vip_uvc::type_id::create("uvc1", this);
assert(uvc1);
uvc2 = vip_uvc::type_id::create("uvc2", this);
assert(uvc2);

set_config_int("uvc1.*", "is_active", UVM_ACTIVE);
set_config_int("uvc2.*", "is_active", UVM_PASSIVE);

...

Definition of active or
passive UVCs

All components in the
test bench will be

dynamically
instantiated so they

can be overridden by
the test if necessary

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM test bench – example -2

59

...
virtual_sequencer = virt_sequencer::type_id::create(

"virtual_sequencer", this);
assert(virtual_sequencer);

scoreboard1 =
scoreboard::type_id::create("scoreboard1", this);

assert(scoreboard1);
}

void connect_phase(uvm_phase& phase)
{

virtual_sequencer->vip_seqr = uvc1->agent->sequencer;

uvc1->agent->monitor->item_collected_port.connect(
scoreboard1->listener1_imp);

uvc2->agent->monitor->item_collected_port.connect(
scoreboard1->listener2_imp);

}

}; // class testbench

Analysis ports of the
monitors are connected

to the scoreboard
subscribers (listeners)

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Virtual sequencer points
to UVC sequencer

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

60

UVM configuration customization

UVM configuration mechanism

• Central resource database to store
and retrieve any type specific
information of UVM and non-UVM
objects at any place in the
verification environment

• Configuration is facilitated during
the build process and/or run time

• Information can be accessed by
name (string) or arbitrary type

• Scope (context) of accessibility of
information can be defined by the
application

• Easy access to resource database via the
configuration mechanism uvm_config_db

• Base class: uvm_resource

61

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

int sc_main(int, char*[])
{

my_env* topenv;
topenv = new my_env("topenv");

uvm_set_config_int("topenv.*", "debug", 1);

run_test();

return 0;
}

UVM configuration – example -1

62

class my_env : public uvm_env
{
public:
int debug;
...
UVM_COMPONENT_UTILS(my_env);

my_env(uvm_component_name name) : uvm_env(name), debug(0) {}

void build_phase(uvm_phase& phase)
{
uvm_env::build_phase(phase);
uvm_get_config_int("debug", debug);
std::cout << get_full_name() << ": In Build: debug = " << debug << std::endl;

}
...

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

config

Integer ‘debug’ declared for all
components below topenv

Retrieve value for
integer variable ‘debug’

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM configuration – example -2
• Set UVC interface in top sc_main

63

...
vip_if* dut_if_in = new vip_if();
uvm_config_db<vip_if*>::set(0, "tb.uvc1.*", "vif",

dut_if_in);
...

template <class REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;
...
void build_phase(uvm_phase& phase)
{
uvm_driver<REQ>::build_phase(phase);

if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(), "Virtual interface not defined! Simulation aborted!")

}
...

• Get interface in the build phase of
the driver of UVC1

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

configStore handle of the interface

Only valid in the
context of tb.uvc1

Get handle of the interface

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM factory
• Follows the classical C++ factory design pattern to create

objects without specifying the exact class of these objects
that will be created

• In UVM, the factory will be used to create and/or override
objects for individual test scenario’s

• Only objects which are registered to the factory can be
instantiated or overridden

• Factory objects are dynamically instantiated using a dedicated
static member function create

64

class vip_uvc : public uvm_env
{
vip_agent* agent;
...
void build_phase(uvm_phase& phase) {
...
agent = vip_agent::type_id::create("agent", this);

}
};

class vip_agent : public uvm_agent
{

UVM_COMPONENT_UTILS(vip_agent)
...

};

Object is registered to the
factory using this macro

Object dynamically
instantiated

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM factory overrides
• The factory can be used to substitute a predefined component type

with another specialized type, without having to derive from its
base class

• Various override functions are available
– Type overrides: replaces all objects of the specified type with the new

specified type

– Instance overrides: replaces objects which match the instance path with
the new specified type

– In addition to type overrides, similar member functions exist to override
by name

65

set_type_override_by_type(consumer<packet>::get_type(),
fifo_consumer<packet>::get_type());

set_inst_override_by_type("parent_component.consumer",
consumer<packet>::get_type(),
fifo_consumer<packet>::get_type());

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Work-in-Progress: Register Abstraction Layer

66

Register Abstraction Layer Status
Register model containing registers, fields, blocks, etc. testing
Register callbacks testing
Register adapter, predictor, sequences and
transaction items

testing

Register front-door access testing
Build-in register test sequencers development
Memory and memory allocation manager development
Virtual registers and fields development
Register back-door access (hdl_path) study
Randomization of registers study

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Register Model example (1)

67

class reg_Ra : public uvm_reg
{
public:
uvm_reg_field* F1;
uvm_reg_field* F2;

UVM_OBJECT_UTILS(reg_Ra);

reg_Ra(uvm_component_name name = "Ra") : uvm_reg(name, 32, UVM_NO_COVERAGE) {}

void build()
{

F1 = uvm_reg_field::type_id::create("F1");
F1->configure(this, 8, 0, "RW", false, 0x0, true, false, true);
F2 = uvm_reg_field::type_id::create("F2");
F2->configure(this, 8, 16, "RO", false, 0x0, true, false, true);

}

}; // class reg_Ra

UVM register class

Use of the UVM factory to
instantiate the register fields

Register field ‘F1’ configuration:
• Size: 8 bits
• LSB position in register: bit 0
• Access policy: Read/Write (RW)
• Volatile register: no (false)
• Reset value (if applicable): 0x0
• Reset possible: yes (true)
• Can be randomized: no (false)
• Is individually accessible: yes

(true)

Register “Ra” contains
two fields, F1 and F2

• Although the user can create a register model manually,
the recommended use model is to generate this register
model from an IP-XACT register description

Application

Register contains 32 bits and
contains no coverage model

F2 F1
031 16

Ra

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Register Model example (2)

68

class block_B : public uvm_reg_block
{
public:
reg_Ra* Ra;
reg_Rb* Rb;

UVM_OBJECT_UTILS(block_B);

block_B(uvm_component_name name = "B"): uvm_reg_block(name, UVM_NO_COVERAGE) {}

void build()
{

uvm_reg_addr_t base_addr = 0x0000;
unsigned int n_bytes = 4;

default_map = create_map("default_map", base_addr, n_bytes, UVM_BIG_ENDIAN);

Ra = reg_Ra::type_id::create("Ra");
Ra->configure(this, NULL);
Ra->build();
...
default_map->add_reg(Ra, 0x0, "RW");
default_map->add_reg(Rb, 0x100, "RW");
...

}
}; // class block_B

UVM register
block class

Use of the UVM factory to
instantiate the registers

Create the
address map

Register block B contains
two registers: Ra and Rb

Add register to the register map,
specifying the offset and access rights

F2 F1Ra 0x0

F3F4 F1F2Rb 0x100
block_B

Application

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Testbench including Register Model (1)

69

class tb_env : public uvm_env
{
public:
UVM_COMPONENT_UTILS(tb_env);

block_B* regmodel;
reg_agent<dut>* bus;
uvm_reg_predictor<reg_rw>* predict;
reg2rw_adapter* reg2rw;

tb_env(uvm_component_name name = "tb_env")
: uvm_env(name), regmodel(NULL), bus(NULL),
predict(NULL), reg2rw(NULL) {}

void build_phase(uvm_phase& phase)
{
uvm_env::build_phase(phase);

bus = reg_agent<dut>::type_id::create("bus");

regmodel = block_B::type_id::create("regmodel");
regmodel->build();
regmodel->lock_model();

predict = uvm_reg_predictor<reg_rw>::type_id::create("predict");
}
...

The test bench (env)
contains the register

model, agent, adapter
and predictor

Instantiate
components
and build the
register map

Application Testbench (env)
Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Testbench including Register Model (2)

70

...
void connect_phase(uvm_phase& phase)
{

reg2rw = reg2rw_adapter::type_id::create("reg2rw");

regmodel->default_map->set_sequencer(bus->sqr, reg2rw);
regmodel->default_map->set_auto_predict(false);

predict->map = regmodel->default_map;
predict->adapter = reg2rw;

bus->mon->ap.connect(predict->bus_in);
}

}; // class tb_env

Set the sequencer
and adapter

associated with
this map.

Associate
predictor with

the register map
and adapter

Connect monitor
analysis port with

predictor

Testbench (env)
Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Execute Built-in Register Test (1)

71

class test : public uvm_test
{
public:
tb_env* env;
uvm_reg_sequence<>* seq;

test(uvm_component_name name = "test")
: uvm_test(name), env(NULL), seq(NULL) {}

UVM_COMPONENT_UTILS(test);

void build_phase(uvm_phase& phase)
{
uvm_test::build_phase(phase);

env = tb_env::type_id::create("tb_env");
seq = uvm_reg_bit_bash_seq::type_id::create("seq");

}

void run_phase(uvm_phase& phase)
{
phase.raise_objection(this);
env->regmodel->reset();
seq->model = env->regmodel;
seq->start(env->bus->sqr);
seq->wait_for_sequence_state(UVM_FINISHED);
phase.drop_objection(this);

}
}; // class test

Instantiate the
test bench

Start the
register

sequence

Application Top

Testbench (env)
Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

Test seq
register
sequence

Select the built-in “bit
bashing” sequence

// top-level
int sc_main(int, char*[])
{

... // instantiate DUT
and interfaces

run_test("test");
return 0;

}© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Execute Built-in Register Test (2)

72

SystemC 2.3.1-Accellera --- Dec 29 2014 13:55:54
Copyright (c) 1996-2014 by all Contributors,
ALL RIGHTS RESERVED

Universal Verification Methodology in SystemC (UVM-SystemC)
Version: 1.0-alpha1 Build: 510 Date: 2015-09-01
Copyright (c) 2006 - 2015 by all Contributors
See NOTICE file for all Contributors

ALL RIGHTS RESERVED
http://www.verdi-fp7.eu/

Licensed under the Apache License, Version 2.0

UVM_INFO @ 0 s: reporter [RNTST] Running test 'test'...
UVM_INFO @ 0 s: reporter [STARTING_SEQ]
UVM_INFO @ 0 s: reporter [uvm_reg_bit_bash_seq] Verifying bits in register regmodel.Ra in map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [uvm_reg_bit_bash_seq] ...Bashing RW bit #0
UVM_INFO @ 0 s: reporter [uvm_reg_map] Writing 0x0000000000000001 at address 0x0 via map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [REG_PREDICT] Observed WRITE transaction to register regmodel.Ra: value = 0x1 : updated value = 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Wrote 0x0000000000000001 at address 0x0 via map 'regmodel.default_map': UVM_IS_OK...
UVM_INFO @ 0 s: reporter [RegModel] Wrote register via map regmodel.default_map: regmodel.Ra = 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Reading address 0x0 via map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [REG_PREDICT] Observed READ transaction to register regmodel.Ra: value= 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Read 0x0000000000000001 at address 0x0 via map 'regmodel.default_map': UVM_IS_OK...
UVM_INFO @ 0 s: reporter [RegModel] Read register via map regmodel.default_map: regmodel.Ra = 0x1

:
:

--- UVM Report Summary ---
Quit count : 0 of 10
** Report counts by severity
UVM_INFO : 836
UVM_WARNING : 1
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[RNTST] 1
[RegModel] 256
[STARTING_SEQ] 1
[TPRGED] 1
[uvm_reg_bit_bash_seq] 66
[uvm_reg_map] 512
UVM_INFO @ 0 s: reporter [FINISH] UVM-SystemC phasing completed; simulation finished

© Accellera Systems Initiative

73

Application Examples

UVM-SystemC Generator
• Generator is based on easier uvm code generator for

SystemVerilog from Doulos
(http://www.doulos.com/knowhow/sysverilog/uvm/
easier_uvm_generator/)

• Generator uses template files as input, which are
similiar to the Doulos generator

• Generates complete running UVM-SystemC
environment

© Accellera Systems Initiative 74

UVM-SystemC Generator
• Generated UVM objects and files:

– UVM_Agent
– UVM_Scoreboard
– UVM_Driver
– UVM_Monitor
– UVM_Sequencer
– UVM_Environment
– UVM_Config
– UVM_Subscriber
– UVM_Test
– Makefile to compile the generated UVM project
– Instantiation and DUT connection

© Accellera Systems Initiative 75

UVM-SystemC Generator

• Input file for generating
a complete agent
– Transaction items
– Interface ports

• General Config File

• DUT connection to
agent interfaces (DUT
port <-> agent port))

© Accellera Systems Initiative 76

#agent name
agent_name = clkndata

#transaction item
trans_item = data_tx

#transaction variables
trans_var = int data

#interface ports
if_port = sc_core::sc_signal<bool> clk
if_port = sc_core::sc_signal<bool> reset_n
if_port = sc_core::sc_signal<bool> scl
if_port = sc_core::sc_signal<bool> sda
if_port = sc_core::sc_signal<bool> rw_master

if_clock = clk
if_reset = reset_n

#agent mode
agent_is_active = UVM_ACTIVE

#DUT directory
dut_source_path = mydut
#Additional includes
inc_path = include
#DUT toplevel name
dut_top = mydut
#Pin connection file
dut_pfile = pinlist

!clkndata_if
clk clk
reset_n reset_n
rw_master1 rw_master
scl1 scl
sda1 sda

!agent2_if
...

Hands-on example (Generator)

• DUT is a minimalistic ALU
• Tests checks basic arithmetic

with static operands
• Plain SystemC Testbench as

reference
• Re-implementation with

UVM-SystemC

© Accellera Systems Initiative 77

DUT

AMS DIG SW

Testbench (env)

agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test

top (sc_main)

configdefault
sequence

in outµALUclk_gen
clk

rst

a
b
op
x

Benefits
• Avoidance of boilerplate code copy & paste disasters
• Manual input amount as in hand-crafted testbench

– DUT setup
– Test sequence
– Driver implementation for DUT driving
– Monitor implementation for DUT interpreting

• UVM conformity
• Re-Usage because of modularity more likely

© Accellera Systems Initiative 78

Hands-on example (Visualizer)

© Accellera Systems Initiative 79

Re-use across abstraction levels (1)
• Design of a complex system

within a SystemC environment
– One-time verification setup with

UVM-SystemC
– Behavioral model for concept

phase
– Detailed model for further

implementation require additional
tests

© Accellera Systems Initiative 80

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Re-use across abstraction levels (2)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on a HiL
platform
– Exchange of UVM driver

verification components suitable
for the board

– Additional tests specific to new
model details

© Accellera Systems Initiative 81

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Re-use across abstraction levels (3)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on lab-test
equipment
– Exchange of UVM driver

verification components necessary
– Re-use of all tests possible

© Accellera Systems Initiative 82

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Re-use across abstraction levels (4)

© Accellera Systems Initiative 83

download

monitor
integrate

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Outline
• Part C – Further steps & Outlook

– Standardization in Accellera
– Next steps
– Summary and outlook

84

Standardization in Accellera
• Growing industry interest for UVM

in SystemC
• Standardization in SystemC

Verification WG ongoing
– UVM-SystemC Language Reference

Manual (LRM) completed
– Improving the UVM-SystemC Proof-

of-Concept (PoC) implementation
– Creation of a UVM-SystemC

regression suite started
• Draft release of UVM-SystemC

planned for CW48/49 2015
– Both LRM and PoC available under

the Apache 2.0 license

85© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

• Main focus this year:
– UVM-SystemC API documented in the Language Reference Manual
– Further mature and test the proof-of-concept implementation
– Extend the regression suite with unit tests and more complex

(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
– Add constrained randomization capabilities (e.g. SCV, CRAVE)
– Introduction of assertions and functional coverage features
– Multi-language verification usage (UVM-SystemVerilog ↔ UVM-SystemC)

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps

86© Accellera Systems Initiative

Summary and outlook
• Good progress with UVM-SystemC standardization in

Accellera
– UVM-SystemC foundation elements are implemented
– Register Abstraction Layer currently under development
– Review of Language Reference Manual finished and Proof-of-concept

implementation ongoing
– Draft release of UVM-SystemC planned for CW48/49 2015

• Next steps
– Make UVM-SystemC fully compliant with UVM 1.2
– Introduce new features: e.g. randomization, functional coverage

• How you can contribute
– Join Accellera and participate in this standardization initiative
– Development of unit tests, examples and applications

© Accellera Systems Initiative 87

Questions

© Accellera Systems Initiative 88

	UVM goes Universal - Introducing UVM in SystemC
	UVM what is it?
	UVM what is it not…
	Outline
	Outline
	A bit of history…
	Why UVM in SystemC?
	Why UVM in SystemC?
	Verification stack: �tools, language and methodology
	UVM in SystemC versus UV in SystemVerilog
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	UVM Layered Architecture
	UVM layered architecture
	Advantages of UVM-SystemC
	UVM components are SystemC modules
	SystemC TLM communication (1)
	SystemC TLM communication (2)
	Phases of elaboration and simulation
	(Un)packing using stream operators
	C++ Template classes
	Standard C++ container classes
	Other benefits
	Outline
	Foliennummer 25
	UVM agent
	UVM agent
	UVM agent – example -1
	UVM agent – example -2
	UVM sequencer
	UVM sequencer – example
	UVM driver
	UVM driver – example -1
	UVM driver – example -2
	UVM monitor
	UVM monitor – example
	UVM verification component (UVC)
	UVC – example
	Foliennummer 39
	UVM sequences
	UVM sequence item – example
	UVM sequence – example
	UVM virtual sequence
	UVM virtual sequence – example
	UVM virtual sequencer
	UVM virtual sequencer
	UVM virtual sequencer – example
	Foliennummer 48
	UVM scoreboard
	UVM scoreboard – example
	UVM subscriber – example
	Foliennummer 52
	Top, Tests and Testbench
	Top – example
	UVM test
	UVM test – example
	UVM testbench
	UVM test bench – example -1
	UVM test bench – example -2
	Foliennummer 60
	UVM configuration mechanism
	UVM configuration – example -1
	UVM configuration – example -2
	UVM factory
	UVM factory overrides
	Work-in-Progress: Register Abstraction Layer
	Register Model example (1)
	Register Model example (2)
	Testbench including Register Model (1)
	Testbench including Register Model (2)
	Execute Built-in Register Test (1)
	Execute Built-in Register Test (2)
	Foliennummer 73
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Hands-on example (Generator)
	Benefits
	Hands-on example (Visualizer)
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	Outline
	Standardization in Accellera
	Next steps
	Summary and outlook
	Questions

